Stock-flow matching and the performance of the labor market

Paul Gregg* Barbara Petrongolo
University of Bristol London School of Economics
and CEP (LSE) and CEP (LSE)

November 2002

Abstract

We estimate outflow equations for vacancies and unemployed workers in Britain, departing from the stock-based analysis of matching in two ways. First, we deal with the temporal aggregation problem that arises when discrete time data are used to describe continuous time processes. Second, we allow for a stock-flow matching mechanism in which the stock of traders on one side of the market matches with the flow of traders on the other side. Our estimates are in line with the predictions of stock-flow matching in terms of higher exit rates of flows and of matching combinations between labor market stocks and flows. Furthermore, employer search effectiveness did not seem to decline between the 1960s and the 1990s. Nevertheless, some deterioration in worker search effectiveness is detected, however less severe than that implied under the assumption of random matching.

Keywords: temporal aggregation, stock-flow matching, matching effectiveness.
JEL-Codes: J63, J64

*We thank Manuel Arellano, Melvyn Coles, Juan Dolado, Andrew Hildreth, Alan Manning, Costas Meghir, Claudio Michelacci, Chris Pissarides, Jonathan Wadsworth and three anonymous referees for very useful comments. The Leverhulme Trust and the Compagnia di San Paolo are gratefully acknowledged for financial support.
1 Introduction

Modern labor markets are characterized by large flows of jobs and workers between the states of activity and inactivity\(^1\). A key building block in the modelling of labor market flows is the aggregate matching function, which represents a trading technology between workers looking for jobs and firms looking for workers, eventually brought together into productive matches. The key idea is that a complicated exchange process can be summarized by a well-behaved matching function that gives the number of jobs formed at any moment in time in terms of the inputs of firms and workers into search. Variations in job matches at given inputs reflect changes in the intensity of frictions which characterize labor market trade. With stronger frictions, the labor market becomes less effective in matching unemployed workers to available vacancies and the resulting matching rate is reduced (see Pissarides 2000, chapter 1, and Blanchard and Diamond 1989). In this perspective, the instability detected in estimated matching functions for several OECD countries (see Petrongolo and Pissarides 2001) seems to reflect a deterioration in the matching effectiveness of respective labor markets.\(^2\)

In this paper we argue that part of the instability of estimated matching functions derives from problems of misspecification. We study misspecification arising from two sources. First, when discrete-time data are used to estimate a continuous-time matching process, a temporal aggregation problem arises. As shown by Burdett et al. (1994), this generates a bias in the resulting estimates, whose magnitude depends on the time-series

\(^1\)See Davis et al. (1996), Blanchard and Diamond (1990) and Burda and Wyplosz (1994).

\(^2\)Comparable information can be gathered from the performance of the Beveridge curve, which represents the equilibrium outcome of the matching process in terms of the resulting level of unemployment and vacancies. Existing estimates reveal an outward shift in the Beveridge curve in a number of OECD countries (see Jackman et al. 1990), in which a roughly untrended vacancy rate became consistent with a progressively higher unemployment rate across decades.
properties of the conditioning variables, and is inversely related to the frequency of the data. We deal with the temporal aggregation problem by conditioning matching rates on the whole number of agents that can trade within some time interval, i.e. the beginning-of-period stock plus the new inflow.

Second, most of the empirical matching literature rests on the assumption of random search, a process in which unemployed workers take a vacant job at random and apply for it.\footnote{The typical representation of this matching process is the urn-ball problem (see Butters 1977, Hall 1979 and Pissarides 1979 among others).} This implies that agents that are matched at any moment in time are randomly selected from the pool of existing unemployed workers and job vacancies, independently of the duration of search on either side of the match. We contrast this assumption by emphasizing a systematic element in search. We consider a model of non-random matching, in which the role of information channels in a labor market with search is explicitly recognized. Thanks to information channels, job seekers have complete information about the location of available vacancies and apply simultaneously to as many they like. Upon contact, the firm and the worker decide whether to form a match and start producing or resume search. Those who remain unmatched and keep searching do so because there are no trading partners that are suitable for them among the existing pool. It follows that no job vacancy or unemployed worker who has been through one round of sampling will attempt to match later with a pre-existing job seeker or vacancy. Previous contributions in this literature include Coles (1994) and Coles and Smith (1998). Their original framework has been extended in order to analyze price determination in a market equilibrium with non-random search (Coles and Muthoo 1998; Coles 1998, 1999).

Although the assumption of full sampling within a matching period is a simplifying one, this modeling captures a realistic feature of search markets, that a job seeker scans
the bulk of advertisements before deciding where to apply and once an advertisement has been scanned and rejected, return to it is less likely than application to a new one. The stock of unmatched traders on one side of the market is thus trying to match with the flow of new traders on the other side, and labor market search is characterized by *stock-flow* matching. Under stock-flow matching agents have a relatively high probability to trade during the first period they are on the market, being able to sample all existing offers. Matching rates decline after this initial round of sampling, when agents have to wait for new entries in order to trade.

We construct time-aggregated matching functions which encompass stock-flow matching and show that both innovations to previous matching function modelling imply that labor market flows should play a crucial role on the right hand side of estimated matching equations. We estimate the resulting unemployment and vacancy outflow equations on aggregate British data for the period 1967-1996. We find that, first, our estimates are in line with the predictions of stock-flow matching, both in terms of higher exit probabilities of newcomers in the labor market, and in terms of trading combinations between the stocks and flows of unemployed workers and job vacancies. Second, the stability analysis performed on our outflow equations reveals that the matching effectiveness of job vacancies did not decline in Britain between the 1960s and the 1990s. Nevertheless, there remains some deterioration in the matching effectiveness of the unemployed since the early 1970s, which is however less severe than that implied by previous stock-based results. This view suggests that ignoring flows in matching is not an appropriate simplifying assumption and may produce a misleading view of matching effectiveness over time.

The organization of the paper is as follows. Section 2 outlines the main predictions of a stock-flow matching model and compares them with those deriving from the assumption
of random matching. The data used to test these predictions are described in Section 3. Estimation results presented in Section 4 support a non-random matching technology, and suggest a revision of some widespread conclusions on labor market matching effectiveness. Section 5 considers an additional source of non-randomness in matching, namely the presence of vertical heterogeneity among traders. Section 6 concludes.

2 The matching process

This section provides a framework that encompasses the following two properties of the matching process. First, matching is treated in continuous time. This requires dealing with the temporal aggregation problem that arises when discrete time data are used to describe a continuous-time matching process. A time-aggregated matching function is constructed, that still does not negate the standard assumption of random matching. Second, the time-aggregated function is modified, in order to embody a non-random matching mechanism, in which the stock of traders on one side of the market can only match with the flow of new traders on the other side.

2.1 Random matching

We consider a labor market in which trade is decentralized and uncoordinated. Because of this, firms and workers need to invest time and resources in a search process, before job creation and production can take place. Search frictions derive from information imperfections about trading partners, heterogeneities, and possibly a number of other factors, and are conveniently captured by an aggregate matching function, which gives the number of new matches formed in terms of the inputs of firms and workers into search. The simplest
form of the matching function is
\[M = m(U, V), \]
where \(M \) is the number of jobs formed at any moment in time, \(U \) is the number of unemployed workers looking for work and \(V \) is the number of vacant jobs. The function \(m(.) \) is increasing and concave in both arguments, and \(m(U, 0) = m(0, V) = 0 \). Unemployed workers and job vacancies that are matched at each point in time are randomly selected from the sets \(U \) and \(V \). Hence, unemployed workers move into jobs at a Poisson rate \(\lambda_U = M/U \), and vacancies are filled at a Poisson rate \(\lambda_V = M/V \).

The matching function describes a continuous time process. If we are using a discrete interval as our time unit, we observe the aggregated flow of matches during each measuring period. These matches are generated by the beginning-of-period stock of unemployed \(U \) (or vacancies \(V \)) and the inflow \(u \) (or \(v \)) during the period. Let us consider a period of unit length, an initial stock of unemployed \(U \), and a subsequent inflow \(u_t \). The number of matches during the period are given by
\[M_U = [1 - \exp(-\lambda_U)] U + \int_0^1 [1 - \exp(-\lambda_U(1 - t))] u_t dt, \]
where the first term denotes the outflow from the initial stock and the second denotes the outflow from the inflow. Under the simplifying assumption of uniform inflow \(u \) during \([0, 1]\), we obtain the following time-aggregated unemployment outflow function\(^4\)
\[M_U = [1 - \exp(-\lambda_U)] U + \left[1 - \frac{1 - \exp(-\lambda_U)}{\lambda_U} \right] u, \]
The term \(1 - [1 - \exp(-\lambda_U)]/\lambda_U \) is bounded between 0 and 1, and therefore describes a plausible outflow rate from the inflow. Also note that the outflow rate from the inflow
\(^4\)Note that the constant value of \(\lambda_U \) during \([0, 1]\) rests on the approximation that the unemployment and vacancy stock do not change (by much) within the measuring periods.
is lower than the one from the stock, \(1 - \exp(-\lambda_U)\), for the reason that the inflow has, on average, less time available for making successful match during the measuring interval. For small enough \(\lambda_U\), the outflow rate from the inflow could be approximated as half the outflow rate from the stock, using a second order Taylor expansion of both outflow rates around \(\lambda_U = 0\).

A symmetric expression to (3) gives \(M_V\), the number of vacancies that are matched during a unit interval:\(^5\)

\[
M_V = [1 - \exp(-\lambda_V)] V + \left[1 - \frac{1 - \exp(-\lambda_V)}{\lambda_V}\right] v, \tag{4}
\]

where \(\lambda_V\) is the Poisson rate at which vacancies are filled.

2.2 Stock-flow matching

In this section we illustrate how labor market trade is affected when there exists some established information channel that coordinates search.

Consider first a goods market, in which a centralized agency provides information on the location of buyers and sellers of a differentiated commodity. Given centralized information, upon entry new buyers can locate and contact the current stock of sellers. A new buyer who does not find a variety he or she likes among the initial stock of sellers subsequently contacts the flow of later new sellers. Otherwise, if a gain to trade is possible between the new buyer and at least an old seller, the new buyer will immediately trade, and similarly for new sellers. Coles and Muthoo (1998) show that, in this environment, the equilibrium

\(^5\)In principle, one should impose a cross-equation restriction, \(M_U = M_V\). However, as it will be clearer below, this is not possible on our data, given that the only available measure for \(M_U\) is the total unemployment outflow, which does not coincide with the number of vacancies that are filled every period. This is because the destination of part of the unemployment outflow each period is out of the labor force, rather than into jobs, and a fraction of available vacancies are filled by other categories of job-seekers than the unemployed.
is characterized by immediate trade: if a buyer and a seller can profitably trade, deferring
trade simply discounts the available benefits, while not giving them a chance of a better
match in the future. Whether there exist profitable trading opportunities between buyers
and sellers depends on the buyers’ evaluation of the variety being considered. Coles and
Muthoo assume that buyers’ evaluation of a given variety is a draw from a Bernoulli distri-
bution, being one with some positive probability, and zero otherwise. But the immediate
trade results is easily extended to more general distributions for the buyers’ evaluation of
sellers’ varieties.

These ideas have interesting and testable implications for labor market search in an
environment with differentiated jobs and workers. If the information provided by infor-
mation channels (such as newspapers, job centres, unions etc.) is accessible to all labor
market traders, they do not need to spend time and resources in order to locate one an-
other. In the limit we can think of a centralized marketplace, in which every worker can
sample the whole pool of job vacancies in each period. Unlike in the random matching
model, there are no search frictions due to information imperfections. But because of job
and worker differentiation, not all job matches turn out to be acceptable. All acceptable
matches are sorted out so that no firm and worker who could form an acceptable match
remain unmatched. Those who remain unmatched do so because there are no trading
partners that are suitable for them among the existing pool. It follows that no job vacancy
or unemployed worker who has been through one round of matching will attempt to match
again with a pre-existing job seeker or vacancy.

While random matching assumes that it is time consuming to sample vacancies, and
thus a worker only samples a negligible fraction of the existing stock, under stock-flow
matching it takes no time to sample vacancies, so that the whole stock is sampled at once.
The truth probably lies somewhere between these two extremes. The attractiveness of stock-flow matching is that it captures a realistic feature of search markets, that a worker scans a lot of advertisements before deciding where to apply, and once a job opening has been scanned and rejected, return to it is less likely than application to a new opening.

Under these assumptions there is a sharp distinction between the stocks of unemployed workers and vacant jobs and the new inflows. The stock of unemployed workers at the beginning of each period will not match with the stock of vacant jobs also at the beginning of the period, because they were both participants in the matching round in the previous period. Instead, it has to wait for the flow of newly-advertised vacancies in order to match. The resulting matching process is therefore one in which the unmatched stock of traders on one side of the market is trying to match with the flow of traders on the other side.

Stock-flow matching implies a step-wise relationship between matching rates and duration of search. Exit rates are higher upon entry, and drop once the existing pool of potential traders has been sampled. In other words, inflows have higher trading probabilities than stocks, represented by the possibility of finding a partner in the existing stock when they first enter the market, with no need to wait for the inflow of new trading candidates.

The implied drop in exit rates is very much in line with evidence on vacancy durations. Coles and Smith (1998) compute that one quarter of all vacancies in Britain are filled on the first day they are opened and, after that, their matching rates decline sharply. The jump in exit rates is however less pronounced for unemployment workers. This may be due to the fact that the search process is highly asymmetric, with vacancies being posted at job centres and unemployed workers sampling them at their preferred pace. Moreover, as we note below, vacancy inflows relative to vacancy stocks are fairly large, at least compared to the corresponding ratio for unemployment. This implies that, even under stock-flow
matching, unemployment exit rates need not fall as sharply as vacancy exit rates when an agent switches from the unemployment inflow to the stock.

We now need to model the transition of entrants from the “flow” to the “stock” status, and the consequent fall in their matching rates, in the time-aggregated matching function derived in section 2.1. Higher matching probabilities of the unemployment inflow are represented by a positive instantaneous probability p_u that workers are re-employed as soon as they enter the market. With probability $1 - p_u$, unemployed workers need to wait for newcomers in order to trade, at hazard rate λ_U. Note therefore that p_u represents the probability of an immediate match upon entry, while λ_U represents the hazard rate for those surviving after entry.

Allowing for the initial matching probability p_u gives the following unemployment outflow equation6

$$M_U = \left[1 - \exp\left(-\lambda_U\right)\right] U + \left\{1 - \frac{1 - p_u}{\lambda_U} \left[1 - \exp\left(-\lambda_U\right)\right]\right\} u. \quad (5)$$

Note that with $p_u > 0$ the exit rate from the inflow may now exceed the exit rate from the stock. Moreover λ_U now depends on the flow of new job vacancies being posted period after period, while p_u is affected by the existing supply of job vacancies.

A symmetric expression can be derived for the vacancy outflow, where λ_V depends on the flow of new unemployed workers entering the market, while p_v depends on the stock of unemployed job-seekers:

$$M_V = \left[1 - \exp\left(-\lambda_V\right)\right] V + \left\{1 - \frac{1 - p_v}{\lambda_V} \left[1 - \exp\left(-\lambda_V\right)\right]\right\} v. \quad (6)$$

6This is derived, as for equation (3), under the assumption of constant u and λ_U within each measuring interval.
2.3 The expected duration of search

It is also useful to compare the predictions of alternative matching models for completed and uncompleted durations of search spells.

Under random matching, labor market transitions follow a memoryless Poisson process and the duration distribution is exponential. It follows that the completed search duration of all entrants and the uncompleted (elapsed) duration of the current stock have the same expected value in steady state, equal to the inverse of the hazard rate: $1/\lambda_i$, $i = U, V$, (see Lancaster 1990, pp. 91-93).

Under non-random matching, the duration distribution is a mixture of a distribution degenerate at zero (with probability p_i, $i = u, v$) and an exponential distribution with hazard rate λ_i (with probability $1 - p_i$). The expected uncompleted duration of search remains $1/\lambda_i$, and the expected completed duration falls at $(1 - p_i)/\lambda_i$.

A positive instantaneous matching probability drives therefore a wedge between completed and uncompleted durations of spells. In what follows we move on to testing the significance of the key parameter p_i by estimating matching functions such as equation (5) and (6) and comparing completed and uncompleted durations of search spells.

3 The data

We use British data on unemployment and vacancies. They are aggregate, quarterly time series of stocks, inflows and outflows, for the period 1967:1-1996:3.

Unemployment data until October 1982 consisted of all workers who registered as unemployed at the Ministry of Labor’s Employment Exchanges (later Jobcentres), at Branch Employment Offices, or at Youth Employment Bureaux (later Youth Employment Ser-
vice Career Offices). Registration at Jobcentres became voluntary in October 1982, and the administrative measure of unemployment was changed to the count of workers claiming unemployment-related benefits at Unemployment Benefit Offices.\(^7\) Vacancy data are collected at Employment Exchanges/Jobcentres, and include job opportunities for self-employed workers as well as part-time jobs, on top of standard full-time vacancies.\(^8\)

The data used come from two sources. All series until 1985:3 come from the Employment Gazette, while those for the later period are extracted from the NOMIS database. Given that the data for the earlier period are only available as seasonally adjusted, we seasonally adjust all series for the later period.\(^9\)

Figs. 1 and 2 plot time series of these variables. For the unemployed, the ratio between the flows and the stock is 0.7 on average, starting off at nearly 2 in the late 1960s and falling at 0.3 in the early 1990s. For vacancies, turnover is much higher, flows being, on average, 3.7 times larger than the stock. This ratio is strongly countercyclical but does not display a definite trend over the whole sample period.

Quarterly inflows and outflows of unemployed workers track each other closely. Interestingly, the correlation between the unemployment outflow and the stock is 0.46, while the correlation between the unemployment inflow and outflow is 0.65. Vacancy correlations are even more striking: 0.76 and 0.97 respectively. The number of matches therefore spectacularly mirrors the flow of new job openings. From either figure, it can be seen that

\(^7\)A comprehensive description of British unemployment data can be found in *Labour Market Trends*, January 1996.

\(^8\)Gregg and Wadsworth (1996) report that Jobcentres are used by roughly 80 percent of the claimant unemployed, 30 percent of employed job seekers and 50 percent of employers. The vacancy data used here and their limitations are fully described in *Labour Market Trends*, November 1995.

\(^9\)Flow figures are collected for 4 or 5 week periods between unemployment or vacancy count dates. Raw series are therefore converted to a standard 4\(\frac{1}{2}\) week month and then seasonally adjusted. Seasonal adjustment is performed using the Census X-11 program, having constrained the sum of quarterly series within each year to remain unchanged after seasonal adjustment.
Figure 1: Unemployment stock, inflow and outflow in Britain (thousands): 1967:1-1996:3. Data seasonally adjusted. Source: Employment Gazette (various issues) and NOMIS.

Figure 2: Vacancy stock, inflow and outflow in Britain (thousands): 1967:1-1996:3. Data seasonally adjusted. Source: Employment Gazette (various issues) and NOMIS.
the number of matches (measured as the unemployment outflow or the vacancy outflow in turn) is much more volatile than the change in the respective stock. This implies that an increase in the number of matches is mainly driven by an increase in the inflow of new vacancies and unemployed, thereby leaving the underlying stocks largely unchanged. A very similar picture is provided by Blanchard and Diamond (1989) on US data.

Data on unemployment and vacancy durations are available for a shorter period, from 1986:2 to 1996:3. They come in the following form: (i) workers leaving unemployment each quarter by duration classes; (ii) stock of unemployed at the end of each quarter by duration classes; (iii) average completed duration of vacancies being filled during each quarter; (iv) average uncompleted duration of the stock of unfilled vacancies at the end of each quarter. From this set of information we derive completed and uncompleted durations of all spells. In particular, unemployment duration is computed by assigning to each duration class its mid-value (having closed the last open class with duration > 260 weeks at 312 weeks).
Figure 4: Average completed and uncompleted vacancy duration in Britain (weeks), 1986:2-1996:3. Data not seasonally adjusted. Source: NOMIS.

These series are plotted in Fig. 3. The average completed duration of unemployment is around 30 weeks and the uncompleted one is between 50 and 80 weeks. During the whole sample the completed duration of worker search stays lower than the uncompleted one. Fig. 4 plots the average duration of filled and unfilled vacancies. Observed durations are one order of magnitude smaller than the corresponding ones for unemployment, but, similarly as for unemployment, the ratio between uncompleted and completed durations is in the range 2 to 2.5. These ratios are very much at odds with the predictions of the random matching model, that deliver equal completed and uncompleted durations of search in steady state. A positive initial matching probability p_i may reconcile the predictions of a non-random matching model with the observed duration series, by reducing the predicted duration of completed spells below that of uncompleted ones.

We therefore estimate outflow equations such as (5) and (6), precisely to test the hypothesis $p_i > 0$. Also, by allowing outflow equations to shift over time, we explore the
evolution of matching effectiveness under the assumption of non-random matching.

4 Estimation

4.1 Econometric specification

In this section we explore the performance of the matching function in Britain, moving away from the traditional stock-based analysis of matching. This involves two major steps. The first deals with temporal aggregation issues but does not negate the assumption of random matching, as represented in equations (3) and (4). The second allows for stock-flow matching, as represented in equation (5) and (6). We therefore proceed by estimating alternative specifications of these equations for both the unemployed and job vacancies. In each estimated outflow equation, we include a first-order serially correlated disturbance. More detail on the implications of serially correlated disturbances is given in Appendix A.

We estimate three basic models, which we describe below: a random matching model; a model nesting both random and stock-flow matching with fixed p_i; and finally a stock-flow matching model in which p_i is allowed to vary with relevant labor market regressors.

A generic unemployment outflow equation can be written in the following way:

$$M_{U,t} = a_t U_{t-1} + b_t u_t + \epsilon_{U,t},$$

where $M_{U,t}$ is the unemployment outflow between $t-1$ and t, u_t is the corresponding inflow, U_{t-1} is the beginning-of-period stock, a_t and b_t are the outflow rates of stocks and inflows respectively (to be estimated), and $\epsilon_{U,t}$ is a disturbance term.\(^{10}\) Under random matching, which we label as Model 1, $a_t = 1 - \exp(-\lambda U_t)$ and $b_t = 1 - [1 - \exp(-\lambda U_t)] / \lambda U_t$.

\(^{10}\) Note that equation (14) can either represent random or non-random matching, according to the specifications of a_t and b_t (see equations (3) and (5)).
according to equation (3). In the estimation we let the hazard rate $\lambda_{U,t}$ vary with relevant labor market stocks in the following way

$$\lambda_{U,t} = \exp\left(\alpha_0 + \alpha_1 \ln \frac{V_{t-1}}{U_{t-1}}\right),$$

(8)

where α_0 and α_1 are parameters to be estimated.\(^{11}\) The complete regression equation is reported in Appendix B.

Model 2 allows for stock-flow matching and reveals the relative merits of random and stock-flow matching at representing the outflow from unemployment. $\lambda_{U,t}$ now denotes the hazard rate of the unemployment stock and p_u denotes the instantaneous matching probability of the unemployment inflow. In order to nest random and stock-flow matching, $\lambda_{U,t}$ is now expressed as

$$\lambda_{U,t} = \exp\left(\alpha_0 + \alpha_1 \ln \frac{V_t}{U_{t-1}} + \alpha_2 \frac{V_{t-1}}{U_{t-1}}\right),$$

(9)

and p_u is estimated as a constant parameter. Random matching would predict $\alpha_2 > 0$ and $p_u = 0$, while stock-flow matching would predict $\alpha_2 = 0$ and $p_u > 0$.

In Model 3 we let p_u vary with labor market conditions in a similar way as for $\lambda_{U,t}$. Given that p_u measures the instantaneous matching probability of the newly-unemployed, we specify it as

$$p_{u,t} = \exp\left(\gamma_0 + \gamma_1 \ln \frac{V_{t-1}}{u_t}\right).$$

(10)

Note that, for improving identification, $p_{u,t}$ and $\lambda_{U,t}$ should be expressed as functions of different sets of regressors. $p_{u,t}$ can be therefore estimated as from equation (10) only once we assume that $\lambda_{U,t}$ is independent of V_{t-1} (i.e. $\alpha_2 = 0$), and that the newly-unemployed

\(^{11}\)This implicitly assumes that the function $m(\cdot)$ of equation (1) is Cobb-Douglas with constant returns to scale in U and V.

17
enter the market at the beginning of the quarter and lose their flow status just after entry. Below we comment on the possible distortions that this might introduce.

The last step allows outflow equations to shift over time, so as to explore the evolution of matching effectiveness over the period 1967-1996. The shift is assessed by including a quadratic trend in the expression for both $\lambda_{U,t}$ and $p_{u,t}$ in all specifications above. The quadratic trend seems an appropriate and parsimonious way to capture a possibly non-monotonic pattern in matching effectiveness. But clearly one should abstain from using this parametric representation of matching patterns for extrapolation.

The same modelling steps are followed to build vacancy outflow equations. All the specifications estimated are reported in Appendix B.

4.2 Unemployment outflow equations

Table 1 reports estimates of non-linear outflow equations for the unemployed. Values reported in square brackets for λ_U and p_u are (the sample average of) those predicted by the underlying models (see equations (8)-(10)), using the estimated parameter vectors α and γ respectively.

In column I we estimate Model 1, which represents the unemployment outflow under random matching and controls for temporal aggregation. The stock of vacancies seems to contribute significantly to the unemployment outflow, as shown by the coefficient α_1, but the overall econometric specification does not perform satisfactorily, given the extremely high value of the $AR(1)$ coefficient in the error term. Column II estimates Model 2, allowing for stock-flow matching. We find a positive effect coming through the inflow of new vacancies, represented by $\alpha_1 > 0$, and a non-significant effect coming through the stock of old vacancies (α_2 is in fact insignificantly different from zero). p_u is positive and

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Model 1</td>
<td>Model 2</td>
<td>Model 2</td>
<td>Model 3</td>
<td>Model 1</td>
<td>Model 2</td>
<td>Model 2</td>
<td>Model 3</td>
</tr>
<tr>
<td></td>
<td>$\alpha_2=0$</td>
<td>quadratic</td>
<td>quadratic</td>
<td>quadratic</td>
<td>quadratic</td>
<td>quadratic</td>
<td>quadratic</td>
<td>quadratic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>trend</td>
<td>trend</td>
<td>trend</td>
<td>trend</td>
<td>trend</td>
<td>trend</td>
<td>trend</td>
</tr>
<tr>
<td>λ_U</td>
<td>[0.408]</td>
<td>[0.321]</td>
<td>[0.324]</td>
<td>[0.381]</td>
<td>[0.715]</td>
<td>[0.427]</td>
<td>[0.427]</td>
<td>[0.368]</td>
</tr>
<tr>
<td>α_0</td>
<td>-0.494</td>
<td>-0.547</td>
<td>-0.370</td>
<td>-0.191</td>
<td>1.154</td>
<td>0.118</td>
<td>-0.021</td>
<td>-0.184</td>
</tr>
<tr>
<td>(0.338)</td>
<td>(0.234)</td>
<td>(0.165)</td>
<td>(0.213)</td>
<td>(0.057)</td>
<td>(0.143)</td>
<td>(0.148)</td>
<td>(0.179)</td>
<td></td>
</tr>
<tr>
<td>α_1</td>
<td>0.186</td>
<td>1.077</td>
<td>0.886</td>
<td>0.913</td>
<td>0.290</td>
<td>0.416</td>
<td>0.555</td>
<td>0.445</td>
</tr>
<tr>
<td>(0.084)</td>
<td>(0.168)</td>
<td>(0.073)</td>
<td>(0.070)</td>
<td>(0.026)</td>
<td>(0.087)</td>
<td>(0.047)</td>
<td>(0.058)</td>
<td></td>
</tr>
<tr>
<td>α_2</td>
<td>-</td>
<td>-0.162</td>
<td>-</td>
<td>0.083</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>p_u</td>
<td>-</td>
<td>0.502</td>
<td>0.499</td>
<td>[0.421]</td>
<td>-</td>
<td>[0.339]</td>
<td>[0.406]</td>
<td>[0.410]</td>
</tr>
<tr>
<td>(0.077)</td>
<td>(0.078)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_0</td>
<td>-</td>
<td>-</td>
<td>-1.117</td>
<td>-</td>
<td>-0.617</td>
<td>-0.534</td>
<td>-0.175</td>
<td></td>
</tr>
<tr>
<td>(0.533)</td>
<td>(0.133)</td>
<td>(0.122)</td>
<td>(0.190)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.143</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.155</td>
</tr>
<tr>
<td>(0.173)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.065)</td>
</tr>
<tr>
<td>t</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.033</td>
<td>-0.015</td>
<td>-0.012</td>
<td>-0.015</td>
<td></td>
</tr>
<tr>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t^2/1000$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.195</td>
<td>0.091</td>
<td>0.069</td>
<td>0.086</td>
<td></td>
</tr>
<tr>
<td>(0.016)</td>
<td>(0.012)</td>
<td>(0.013)</td>
<td>(0.011)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_U</td>
<td>0.965</td>
<td>0.703</td>
<td>0.705</td>
<td>0.711</td>
<td>0.466</td>
<td>0.247</td>
<td>0.400</td>
<td>0.230</td>
</tr>
<tr>
<td>(0.021)</td>
<td>(0.072)</td>
<td>(0.070)</td>
<td>(0.072)</td>
<td>(0.088)</td>
<td>(0.090)</td>
<td>(0.090)</td>
<td>(0.097)</td>
<td></td>
</tr>
</tbody>
</table>

Mean dur.: 32.6 26.8 26.9 26.7 26.0 26.5 23.5 26.6

Elasticities:

- $\partial \ln M / \partial \ln U = 0.504$ 0.031 0.043 0.035 0.517 0.267 0.245 0.270
- $\partial \ln M / \partial \ln V = 0.126$ -0.068 - -0.053 0.214 0.045 - 0.055
- $\partial \ln M / \partial \ln u = 0.194$ 0.593 0.591 0.588 0.268 0.467 0.526 0.460
- $\partial \ln M / \partial \ln v = - 0.451$ 0.373 0.436 - 0.226 0.299 0.220

$R^2 = 0.699$ 0.782 0.782 0.790 0.765 0.836 0.834 0.848

No. obs. 111 110 110 111 110 111 110 110

Data seasonally adjusted. Dependent variable: quarterly unemployment outflow. Estimation method: non-linear least squares. Asymptotic standard errors are reported in brackets. ρ_U represents the $AR(1)$ coefficient in the error term. Expected duration is measured in weeks, and computed as $13(1 - p_u)/\lambda_U$. Matching elasticities are sample averages. Source: Employment Gazette (various issues) and NOMIS.
highly significant, suggesting that a half of the newly-unemployed find a suitable job at their first round of sampling. The estimates of column II thus provide clear evidence that the vacancy stock does not significantly affect the matching rate of the unemployed, in line with stock-flow matching. Matching elasticities, computed at sample averages of relevant regressors, clearly confirm the picture that flows play a much more important role in matching than stocks. In column III a further specification of Model 2 is estimated, in which α_2 is restricted to zero. The results are virtually unchanged from column II.

Column IV estimates Model 3, and delivers an estimate for γ_1 which is not significantly different from zero, although the average value of p_u (reported in squared brackets) stays fairly close to the estimates of columns II and III. An estimated value of γ_1 close to zero seems to suggest that the newly-unemployed are not matching with the vacancy stock, although the unemployment flow still has a higher matching rate than the corresponding stock. This may reflect pure vertical heterogeneity among job vacancies, in the sense that the stock of left-over vacancies may be of very low quality and therefore is not useful to any job-seeker. Section 5 explores this issue further but does not find evidence in this direction. Alternatively, the reason may lie in the specific time structure of the data used. Given the assumption made for the determination of p_u, the ratio V_{t-1}/u_t considers the stock of vacancies at the start of the quarter as possible trading partners for the unemployment inflow during the following three months. Because of the observed short vacancy duration, a low proportion of workers entering unemployment each quarter match with the initial stock of vacancies, mainly because few of these survive long enough.

Columns V-VIII replicate regressions I-IV, allowing for some shift in the matching rates of both stocks and flows. According to the coefficients on our trends, the random matching model of column V reveals a deterioration in the matching effectiveness of the unemployed
until 1988:4, and a slight recovery thereafter. This finding is consistent with the outward shift in the Beveridge curve in Britain, that seems to have come to a halt in the late 1980s (see Jackman et al. 1989 and Gregg and Petrongolo 1997). Column VI introduces stock-flow matching, and broadly confirms the results of column II, with \(p_u > 0 \) and \(\alpha_2 \) non significantly different from zero. Interestingly, when stock-flow matching is introduced in regressions VI and VII, the deterioration of the matching effectiveness of the unemployed is reduced, as shown by the coefficients on the trend variables. Column VIII endogenizes \(p_u \), and shows a positive and significant impact of the supply of old vacancies on the matching probabilities of the newly-unemployed. Therefore part of the reason why \(\gamma_1 \) was not significantly different from zero in column (4) is the correlation between \(\ln(V_{t-1}/u_t) \) and the quadratic trend.

The estimates in Table 1 predict an expected completed duration of unemployment around 26 weeks, obtained as the sample average of \(13(1-p_u)/\lambda_U \), so as to convert quarterly durations into weeks. According to stock-flow matching, this is an average of search spells of zero length by those (roughly 40%) who find a job just after entry, and search spells of length \(13/\lambda_U \) (roughly 40 weeks) by those that end up waiting for new vacancies being posted period after period.

Unemployment durations can also provide evidence on the quantitative importance of the deterioration in matching rates. We therefore compute the predicted change in unemployment duration that is solely explained by the quadratic trend, by keeping fixed all labor market variables at their 1967:1 values. The random matching model of column V predicts that unemployment duration starts off at 6 weeks in the late 1960s, increases by a factor of 4 until the 1988 peak, and then decreases to 20 weeks at the end of the sample. A fall in \(\ln(V_{t-1}/U_{t-1}) \) is clearly the source of the further rise in unemployment
duration up to the current value of 30 weeks (see Fig. 3). Under the non-random matching model of column VII, the decline in the matching effectiveness of the unemployed is less pronounced. Predicted duration goes from 6 weeks in the late 1960s to 15 weeks in 1988, and subsequently falls to 13 weeks. The bulk of the increase in unemployment duration seems now explained by a fall in $\ln(v_t/U_{t-1})$.

It is important to notice why stock-flow matching - while implying that unemployment exit rates should be more correlated to v_t/U_{t-1} than to V_{t-1}/U_{t-1} - may also explain a large part of the deterioration in worker matching effectiveness between the late 1960s and the late 1980s. During this period, the v_t/U_{t-1} ratio experiences a much more pronounced fall than the V_{t-1}/U_{t-1} ratio. Therefore the v_t/U_{t-1} ratio does quite a good job at explaining movements in unemployment exit rates during the first two decades of our sample period, with little explanatory power left to the quadratic trend.

4.3 Vacancy outflow equations

We next turn to vacancy outflow equations in Table 2. In the first half of the table we obtain qualitatively similar results to that found for the unemployed. When accounting for stock-flow matching in regression II, the unemployment stock does not raise significantly the probability of filling an old vacancy, and three quarters of newly-posted vacancies are filled very quickly, as implied by the estimated value of p_v. It is worthwhile to note the substantial drop in λ_V when moving from regression I to regression II: the interpretation is that while all vacancies that are ever advertised match at an average hazard of 3.6, the sub-set of vacancies that survive after their first round of sampling have a hazard around 0.7-0.8. The determinants of p_v are considered in regression IV. The estimated value of δ_1, measuring the effect of the unemployment stock in the matching rate of new

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
<td>Model 2</td>
<td>Model 3</td>
<td>Model 1</td>
<td>Model 2</td>
<td>Model 2</td>
<td>Model 2</td>
<td>Model 3</td>
</tr>
<tr>
<td>λ_V</td>
<td>3.633</td>
<td>0.515</td>
<td>0.731</td>
<td>0.710</td>
<td>3.428</td>
<td>0.515</td>
<td>0.775</td>
<td>0.837</td>
</tr>
<tr>
<td>β_0</td>
<td>0.369</td>
<td>-0.941</td>
<td>-1.081</td>
<td>-0.987</td>
<td>0.676</td>
<td>-1.548</td>
<td>-1.072</td>
<td>-1.235</td>
</tr>
<tr>
<td></td>
<td>(0.096)</td>
<td>(0.266)</td>
<td>(0.263)</td>
<td>(0.252)</td>
<td>(0.134)</td>
<td>(0.370)</td>
<td>(0.247)</td>
<td>(0.275)</td>
</tr>
<tr>
<td>β_1</td>
<td>0.393</td>
<td>0.334</td>
<td>0.433</td>
<td>0.364</td>
<td>0.389</td>
<td>0.851</td>
<td>0.436</td>
<td>0.541</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.111)</td>
<td>(0.095)</td>
<td>(0.111)</td>
<td>(0.048)</td>
<td>(0.295)</td>
<td>(0.083)</td>
<td>(0.117)</td>
</tr>
<tr>
<td>β_2</td>
<td>-0.085</td>
<td>-0.026</td>
<td>-0.039</td>
<td>-0.024</td>
<td>-0.039</td>
<td>-0.024</td>
<td>-0.039</td>
<td>-0.024</td>
</tr>
<tr>
<td></td>
<td>(0.054)</td>
<td>(0.233)</td>
<td>(0.233)</td>
<td>(0.233)</td>
<td>(0.233)</td>
<td>(0.233)</td>
<td>(0.233)</td>
<td>(0.233)</td>
</tr>
<tr>
<td>p_v</td>
<td>-0.744</td>
<td>0.782</td>
<td>0.786</td>
<td>-0.786</td>
<td>-0.844</td>
<td>0.768</td>
<td>0.753</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.068)</td>
<td>(0.057)</td>
<td>(0.057)</td>
<td>(0.057)</td>
<td>(0.057)</td>
<td>(0.057)</td>
<td>(0.057)</td>
<td></td>
</tr>
<tr>
<td>δ_0</td>
<td>-0.269</td>
<td>-0.282</td>
<td>-0.308</td>
<td>-0.327</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.077)</td>
<td>(0.065)</td>
<td>(0.065)</td>
<td>(0.065)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ_1</td>
<td>0.028</td>
<td>-0.009</td>
<td>0.004</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.005)</td>
<td>(0.001)</td>
<td>(0.002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>-0.009</td>
<td>0.004</td>
<td>0.001</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t^2/1000$</td>
<td>0.043</td>
<td>-0.002</td>
<td>-0.008</td>
<td>-0.016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>(0.001)</td>
<td>(0.007)</td>
<td>(0.010)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_V</td>
<td>0.940</td>
<td>0.637</td>
<td>0.648</td>
<td>0.633</td>
<td>0.825</td>
<td>0.481</td>
<td>0.595</td>
<td>0.537</td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td>(0.083)</td>
<td>(0.081)</td>
<td>(0.083)</td>
<td>(0.061)</td>
<td>(0.094)</td>
<td>(0.086)</td>
<td>(0.092)</td>
</tr>
<tr>
<td>exp. dur.:</td>
<td>3.9</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Elasticities:

$\partial \ln M / \partial \ln U$ | 0.110 | 0.014 | 0 | 0.016 | 0.112 | -0.039 | 0 | -0.024 |
| | (0.014) | (0.014) | (0.014) | (0.014) | (0.014) | (0.014) | (0.014) | (0.014) |
$\partial \ln M / \partial \ln V$ | 0.178 | 0.098 | 0.086 | 0.095 | 0.177 | 0.056 | 0.089 | 0.075 |
| | (0.017) | (0.017) | (0.017) | (0.017) | (0.017) | (0.017) | (0.017) | (0.017) |
$\partial \ln M / \partial \ln u$ | 0 | 0.057 | 0.067 | 0.055 | 0 | 0.102 | 0.070 | 0.090 |
| | (0.005) | (0.005) | (0.005) | (0.005) | (0.005) | (0.005) | (0.005) | (0.005) |
$\partial \ln M / \partial \ln v$ | 0.718 | 0.828 | 0.845 | 0.831 | 0.712 | 0.879 | 0.839 | 0.857 |
| | (0.018) | (0.018) | (0.018) | (0.018) | (0.018) | (0.018) | (0.018) | (0.018) |
R^2 | 0.966 | 0.971 | 0.971 | 0.972 | 0.966 | 0.973 | 0.973 | 0.973 |
| No. obs. | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 |

Data seasonally adjusted. Dependent variable: quarterly vacancy outflow. Estimation method: non-linear least squares. Asymptotic standard errors are reported in brackets. ρ_V represents the $AR(1)$ coefficient in the error term. Expected duration is measured in weeks and computed as $13(1 - p_v) / \lambda_V$. Matching elasticities are sample averages. Source: Employment Gazette (various issues) and NOMIS.
vacancies, is positive, although it hardly reaches the standard significance levels. As we noted above for unemployment outflow equations, this result may suggest the presence of vertical heterogeneity among the unemployed. Finally, the information conveyed by the computed matching elasticities is quite extreme, showing that the bulk of matches are explained by movements in the vacancy inflow.

Including a quadratic trend in regression V reveals some deterioration in the matching effectiveness of vacancies until 1993:4. Due to this tendency in matching effectiveness, vacancy duration would have increased from 4.2 weeks in the late 1960s to 6.8 weeks in the early 1990s. Column VI introduces stock-flow matching, and two important changes can be detected. First, there is a slight improvement in vacancy matching rates until 1990:2. Second, the unemployed stock seems to have a negative effect on the matching rate of old vacancies. Unemployed stocks entering vacancy outflow equations with a negative sign are also found by Burgess and Profi (1998). Their and our specifications have in common some control for the shift of the outflow function, that clearly interacts with the unemployment stock, this being itself quite similar to a time trend. The negative coefficient β_2 in column VI proxies a deterioration in vacancy matching rates, which is then offset by the positive time trend. The vacancy equation becomes in fact perfectly stable when the unemployment stock is removed in column VII, given the non-significant coefficient on the trend variables, and shows once more a favorable shift when the unemployment stock is introduced in column VIII as a determinant of the matching probabilities of newly-posted vacancies. We therefore conclude that the characterization of the matching process in terms of stock-flow matching removes the instability from vacancy outflow equations.

Turning to vacancy durations, the estimates of Table 2 predict an average vacancy duration of around four weeks, which is also confirmed by raw data for the later period
in Fig. 4. However, a failure to match initially implies a much longer duration around 16 weeks, obtained as $13/\lambda_V$ (estimates from regression VIII).

It can thus be concluded that three quarters of vacancies and 40% of the unemployed match almost immediately, but those that are not successful at this juncture face low matching rates and a fairly long expected remaining duration. In particular, our estimates imply that long-term unemployment in the UK is a significant problem for as much as 60% of those who ever become unemployed.

Two important results emerge from the estimates of these last two sub-sections. First, matching appears to be strongly non-random, in the sense that stocks do not match with stocks, but with the corresponding flows, as clearly shown by the non-significant estimates of α_2 and β_2. This in turn implies that labor market flows have a higher matching rate than the corresponding stocks, represented in our estimation by the positive values of p_u and p_v. Second, allowing for non-random matching implies near complete stability in the matching effectiveness of vacancies, and reduces the deterioration in the matching effectiveness of the unemployed. We speculate further on this result in the concluding section of the paper.

Before moving to our conclusions however, we attempt to isolate the effect of stock-flow matching on labor market dynamics from that of an extra source of non-randomness.

5 Stock-flow matching and heterogeneity

The results of the previous section imply that agents with relatively short search duration have higher matching rates. Lower exit rates for the long-term unemployed have long been recognized (for an overview, see e.g. Devine and Kiefer 1991 and Layard et al. 1991, chapter 5) and they are typically attributed to two main sources. First, skill obsolescence,
discouragement and/or the stigma attached to the long-term unemployed may reduce the probability of finding a job at long unemployment durations, therefore introducing negative duration dependence in unemployment exit rates. Second, the presence of heterogeneity - both observed and unobserved - among the unemployed, implies that workers with higher hazard rates exit unemployment first, so that the average exit rate among the stock of unemployed falls over time. Similarly as for the unemployed, vacancy heterogeneity would deliver an inverse relationship between duration and average matching rates. Much less is known, however, on the time pattern of vacancy matching rates, with few notable exceptions (van Ours and Ridder 1993 and Burdett and Cunningham 1997), partly because of lack of data and partly because a long-term vacancy is rarely observed.

Stock-flow matching suggests a further rationale for the presence of negative duration dependence in matching rates of unemployed workers and vacancies, which is related with the wider range of matching partners that can be sampled upon labor market entry. In this section, we aim at separately identifying the effect of worker and vacancy heterogeneity on the one hand and stock flow-matching on the other hand in determining the time pattern of unemployment exit rates.

We look at vacancy heterogeneity first. In a pool of heterogeneous job vacancies, some job vacancies are more attractive to the unemployed, and therefore are easier to fill than others. As good vacancies get filled, the existing stock is increasingly made of hard-to-fill vacancies, and the average matching rate declines. Using the terminology of the previous sections, this would deliver a positive p_v, as stock-flow matching would also predict. But unlike stock-flow matching, heterogeneity predicts that all the unemployed prefer new vacancies to old ones. Average quality is in fact higher among new vacancies than in the stock left over, and therefore the former are preferred to the latter by unemployed workers.
at all durations. NOMIS data contains information on how many workers find jobs and how many remain unemployed, disaggregated by duration classes, for the period 1985:2 onwards, which allow us to distinguish the effect of vacancy heterogeneity and stock-flow matching in unemployment exit rates. Our test consists in estimating separate log-linear outflow equations for the unemployment stock and the unemployment inflow. This allows us to test the responsiveness of each outflow rate to stocks and flows of job vacancies.

We denote by $\theta(0|t)$ and $\theta(1^+|t)$ the unemployment exit rates during quarter t for those unemployed for 1 quarter or less, and for more than one quarter, respectively. These exit rates can be computed on our data using information on unemployment outflows for different duration classes. In our time framework, $\theta(0|t)$ and $\theta(1^+|t)$ represent the exit rates for the unemployment inflow and the unemployment stock, respectively. The following outflow equations are estimated:

\begin{align}
\ln \theta(0|t) &= a_0 + a_1 \ln v_t + a_2 \ln V_{t-1} + \varepsilon_{U,t} \\
\ln \theta(1^+|t) &= b_0 + b_1 \ln v_t + b_2 \ln V_{t-1} + \varepsilon_{V,t}.
\end{align}

Under stock-flow matching we expect $a_1, a_2, b_1 > 0$, and $b_2 = 0$, because the unemployment stock does not match with the vacancy stock. Vacancy heterogeneity should in turn deliver $a_1 > a_2$ and $b_1 > b_2$, as the vacancy stock would not be too useful to all the unemployed, being already depleted of the best job opportunities. Note therefore that while difference $a_1 - a_2$ is only explained by vacancy heterogeneity (as there would be no reason, under pure stock-flow matching, why the unemployment inflow should prefer the vacancy inflow to the vacancy stock), the difference $b_1 - b_2$ stems instead from both effects (unobserved heterogeneity and stock-flow matching). One way to check for the importance of pure stock-flow matching is therefore to compare $a_1 - a_2$ with $b_1 - b_2$ in our estimates.
Table 3: The determinants of unemployment outflow rates in Britain for two duration classes, 1986:2-1996:3.

<table>
<thead>
<tr>
<th>dependent variable:</th>
<th>U-Inflow</th>
<th>U-stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln vt</td>
<td>0.138</td>
<td>0.364</td>
</tr>
<tr>
<td>(0.126)</td>
<td>(0.172)</td>
<td></td>
</tr>
<tr>
<td>ln Vt−1</td>
<td>0.247</td>
<td>0.133</td>
</tr>
<tr>
<td>(0.060)</td>
<td>(0.087)</td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>0.494</td>
<td>0.765</td>
</tr>
<tr>
<td>(0.120)</td>
<td>(0.072)</td>
<td></td>
</tr>
<tr>
<td>const.</td>
<td>−6.048</td>
<td>−7.995</td>
</tr>
<tr>
<td>(1.277)</td>
<td>(1.787)</td>
<td></td>
</tr>
<tr>
<td>quarterly dummies</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>R²</td>
<td>0.750</td>
<td>0.753</td>
</tr>
<tr>
<td>No. obs.</td>
<td>42</td>
<td>42</td>
</tr>
</tbody>
</table>

Notes. The dependent variables is (log of) the exit rate for the unemployment inflow (with duration shorter or equal to 1 quarter) and the unemployment stock (with duration longer than 1 quarter). Sample period: 1985:4-1996:3. Data not seasonally adjusted. ρ represents the AR(1) coefficient in the error term. Standard errors in brackets. Source: NOMIS.

The results are reported in Table 3. While the vacancy stock has a positive and significant impact on the exit rate of the unemployment inflow, it has no significant impact on the exit rate of the unemployed stock. The exit rate for the unemployment inflow is actually less sensitive to the vacancy inflow than the vacancy stock: any positive difference between the two effects would suggest the presence of vertical heterogeneity among vacancies, but we do not find evidence in this direction.

We should however note that the small sample size may have lowered the precision of our estimates, and therefore understated the importance of vacancy heterogeneity in matching. As a final check, the positive and significant value of b₂ suggests that vacancy heterogeneity - if any - does not prevent the unemployment inflow from matching with old
vacancies.

Unfortunately, as vacancy data in the NOMIS are not disaggregated by duration classes, we cannot run the symmetric estimation to the one reported in Table 3, to test for the importance of worker heterogeneity in the matching rates of new and old vacancies. However, van den Berg and van Ours (1996) show that time series data on unemployment outflow rates from different duration classes can be used to distinguish duration dependence in the unemployment exit rate from worker heterogeneity.12 In particular, they compute the ratio between unemployment exit rates from two subsequent duration classes as a function of parameters of both the heterogeneity and the duration dependence distributions. Below, we will briefly describe their method, and then apply it to our analysis.

Let’s denote by $\theta(d|t, \nu)$ the probability that an individual leaves unemployment right after d periods of unemployment, given calendar time t, and conditional on his unobserved characteristics ν. Assuming a mixed proportional hazard specification, it can be written $\theta(d|t, \nu) = \psi_1(d)\psi_2(t) \cdot \nu$, where the functions $\psi_1(d)$ and $\psi_2(t)$ represent duration dependence and calendar time dependence, respectively, and ν has distribution $G(\nu)$, independent of d and t. Let’s denote by $\theta(d|t)$ the unconditional exit rate: $\theta(d|t) = E_{\nu} \theta(d|t, \nu)$. It can be shown that $\theta(d|t)/\theta(d-1|t)$ is a (highly non-linear) function of (i) the unemployment exit rates for all duration classes shorter than d; (ii) the first $d + 1$ moments of the $G(\nu)$ distribution, $\mu_1, ... , \mu_{t+1}$; and (iii) a parameter capturing duration dependence. More specifically, estimating $\theta(d|t)/\theta(d-1|t)$ functions require identifying $d + 1$ parameters with non-linear least squares. Given our small sample size, we save on the number of parameters to be identified and pick $d = 1$. We therefore estimate an equation for $\theta(1|t)/\theta(0|t)$, where $\theta(0|t)$ denotes the exit rate during quarter t for those unemployed for up to one quarter,12See also Van Den Berg and Van Ours (1998) and Abbring et al. (1999) for applications.
and $\theta(1|t)$ denotes the exit rate during quarter t for those unemployed for more than one quarter and up to two quarters. For this case, it can be shown that (see den Berg and van Ours 1996 for derivation):

$$
\frac{\theta(1|t)}{\theta(0|t)} = \eta \frac{1 - \gamma \theta(0|t-1)}{1 - \theta(0|t-1)},
$$

where $\eta \equiv \psi_1(1)/\psi_1(0)$ captures duration dependence (with $\eta < 1$ implying negative duration dependence between duration class 0 and duration class 1) and $\gamma = 1 + \text{var}(\nu)/\mu_1^2$ captures unobserved heterogeneity (with $\gamma > 1$ implying $\text{var}(\nu) > 0$, and therefore revealing the presence of unobserved heterogeneity).

We estimate (13) in log form, having added quarterly dummies and a first order serially correlated error term, for the period 1985:2-1996:3. The results for the parameters of interest are $\hat{\eta} = 0.834$ (s.e. 0.056) and $\hat{\gamma} = 1.021$ (s.e. 0.086). While $\hat{\eta}$ is significantly lower than 1, revealing significance duration dependence in unemployment exit rates, $\hat{\gamma}$ is not significantly different from 1, detecting therefore no significant unobserved heterogeneity. As this result hints at significant duration dependence just after one quarter of unemployment, stock-flow matching may provide a more plausible explanation for such fall in exit rates rather than traditional concepts of duration dependence based on loss of skills or discouragement, which should mostly be at work at longer durations.

The picture which emerges from this section is one in which unobserved heterogeneity in either the vacancy or the unemployment stocks does not seem to play an important role in shaping unemployment exit rates. As the estimates of this section are obtained on small samples, they should be treated with some care, and a more conservative view should not rule out altogether the presence of unobserved heterogeneity. But it can be safely concluded that unobserved heterogeneity, if any, cannot explain alone the higher initial matching rates of unemployed workers and job vacancies.
6 Summary and discussion

The aggregate matching function is a simple and powerful tool for analyzing labor market effectiveness in matching job vacancies and unemployed job-seekers. The standard stock-based matching function analysis has been interpreted as providing evidence of deteriorating labor market effectiveness in Britain until the late 1980s, which has been halted or slightly reversed since. But appearances can be deceptive.

In this paper we deal with two major issues in the specification of empirical matching functions. One is the temporal aggregation problem that arises when discrete time data are used to describe a continuous time process. We deal with it by taking into account the whole pool of traders during the interval between two subsequent observations and constructing the corresponding time-aggregated matching function. The second issue derives from the view of labor market trade implied by random matching of unemployed and vacancies. Non-random matching is supported instead by empirical evidence on the duration of search spells and by estimates of outflow equations which allow for higher matching rates for inflows than for stocks.

We explained higher initial matching probabilities using a stock-flow model, in which the stock of traders on one side of the market is matching with the inflow of traders on the other side. In this set-up, inflows have higher trading probabilities than stocks, represented by the possibility of finding a partner in the existing stock when they first enter the market, with no need to wait for the inflow of new trading candidates. This interpretation is reinforced by the fact that unobserved heterogeneity does not seem to play too strong a role in raising initial matching rates.

Our evidence suggests that most new vacancies are filled very quickly. However, a minority do not match with the unemployment stock and have to rely on the next round of
newly-unemployed in order to match. These vacancies have low matching rates and form the bulk of the stock of unfilled vacancies at any point in time. Symmetric considerations hold for the pool of unemployed workers. When combined with a proper treatment of temporal aggregation in the matching function, the stock-flow matching framework suggests that there has been no deterioration in the matching effectiveness of vacancies, but the conventional deterioration results still apply (although with reduced magnitude) to the matching effectiveness of the unemployed.

Mixed results on the two sides of the matching market may be reconciled by noting that not all vacancy outflows involve a match with a claimant unemployed - including flows of the non-claimant into jobs and job-to-job moves - and not all unemployment outflows represent moves into jobs. Interestingly, Gregg and Wadsworth (1996) show that the job entry probabilities of out-of-work individuals with a working partner have been rising in Britain over the past two decades, while those for individuals with no partner or a non-working one were falling. Those with a working partner are systematically under-represented in the claimant count. As this group increases their share of job matches, outflows of claimants would fall with no change in the matching effectiveness of vacancies. Concerning job switches, Fuentes (1997, 1998) documents an increase in on-the-job search since the mid-1970s. The implication is that overall matching effectiveness in the labor market may have not deteriorated since the late 1960s, but claimants of unemployment-related benefits are facing stronger competition from other labor market segments and therefore are taking a lower proportion of available jobs.
Appendix

A: Serially correlated disturbances

The generic unemployment outflow equation of Section 4.1:

\[M_{U,t} = a_t U_{t-1} + b_t u_t + \epsilon_{U,t} \]

(14)
describes a matching technology, and the disturbance \(\epsilon_{U,t} \) can be interpreted as a technological shock affecting matching rates. The presence of the disturbance term may derive from the omission from (14) of variables that nevertheless affect the matching technology. Insofar any of the omitted variables are autocorrelated, our disturbances are also autocorrelated, delivering inefficient least squares estimates of the coefficients of interest. In our specific case, however, autocorrelated disturbances may also lead to inconsistent estimates.

To see this, note that inflows and outflows are linked by the following identity, on top of the matching technology (14):

\[U_t = U_{t-1} + u_t - M_{U,t}. \]

(15)

Rewriting (15) one period back, and substituting \(M_{U,t-1} \) using (14) gives

\[U_{t-1} = U_{t-2} + u_{t-1} - M_{U,t-1} \]
\[= (1 - a_{t-1}) U_{t-2} + (1 - b_{t-1}) u_{t-1} - \epsilon_{U,t-1}. \]

(16)

Suppose now that the error term follows a stationary AR(1) process

\[\epsilon_{U,t} = \rho_U \epsilon_{U,t-1} + \eta_{U,t}, \]

(17)

with \(|\rho_U| < 1 \) and \(\eta_{U,t} \sim i.i.d.(0, \sigma_{\eta,U}^2) \). Equation (16) implies that \(U_{t-1} \) is correlated with \(\epsilon_{U,t-1} \), which, given (17), also implies that \(U_{t-1} \) is correlated with the error term in (14).
order to obtain consistent estimates of the parameters of interest, we apply the Cochran-
Orcutt transformation to all outflow equations:

\[M_{U,t} = \rho M_{U,t-1} + a_t U_{t-1} - \rho a_{t-1} U_{t-2} + b_t u_t - \rho b_{t-1} u_{t-1} + \eta_{U,t}, \]

(18)

where \(\eta_{U,t} \) is uncorrelated with all regressors.

B: Regression equations

Unemployment outflow equations

(Model 1) \[M_{U,t} = \begin{cases} 1 - \exp \left(- \exp \left(\alpha_0 + \alpha_1 \ln \frac{V_{t-1}}{U_{t-1}} \right) \right) \end{cases} U_{t-1} \]

\[+ \begin{cases} 1 - \exp \left(- \exp \left(\alpha_0 + \alpha_1 \ln \frac{V_{t-1}}{U_{t-1}} \right) \right) \frac{u_t}{\exp \left(\alpha_0 + \alpha_1 \ln \frac{V_{t-1}}{U_{t-1}} \right)} \end{cases} u_t \]

\[+ \rho_U \epsilon_{U,t-1} + \eta_{U,t}. \]

(Model 2) \[M_{U,t} = \begin{cases} 1 - \exp \left(- \exp \left(\alpha_0 + \alpha_1 \ln \frac{V_{t-1}}{U_{t-1}} + \alpha_2 \frac{V_{t-1}}{U_{t-1}} \right) \right) \end{cases} V_{t-1} \]

\[+ \begin{cases} 1 - \exp \left(- \exp \left(\alpha_0 + \alpha_1 \ln \frac{V_{t-1}}{U_{t-1}} + \alpha_2 \frac{V_{t-1}}{U_{t-1}} \right) \right) \frac{u_t}{\exp \left(\alpha_0 + \alpha_1 \ln \frac{V_{t-1}}{U_{t-1}} + \alpha_2 \frac{V_{t-1}}{U_{t-1}} \right)} \end{cases} u_t \]

\[+ \rho_U \epsilon_{U,t-1} + \eta_{U,t}. \]

(Model 3) \[M_{U,t} = \begin{cases} 1 - \exp \left(- \exp \left(\alpha_0 + \alpha_1 \ln \frac{V_{t-1}}{U_{t-1}} \right) \right) \end{cases} V_{t-1} \]

\[+ \begin{cases} 1 - \exp \left(- \exp \left(\alpha_0 + \alpha_1 \ln \frac{V_{t-1}}{U_{t-1}} \right) \right) \frac{u_t}{\exp \left(\alpha_0 + \alpha_1 \ln \frac{V_{t-1}}{U_{t-1}} \right)} \end{cases} u_t \]

\[+ \rho_U \epsilon_{U,t-1} + \eta_{U,t}. \]
Vacancy outflow equations

(Model 1) \[M_{V,t} = \left\{ 1 - \exp \left(- \exp \left(\beta_0 + \beta_1 \ln \frac{U_{t-1}}{V_{t-1}} \right) \right) \right\} V_{t-1} \]

+ \left\{ 1 - \frac{1 - \exp \left(- \exp \left(\beta_0 + \beta_1 \ln \frac{U_{t-1}}{V_{t-1}} \right) \right)}{\exp \left(\beta_0 + \beta_1 \ln \frac{U_{t-1}}{V_{t-1}} \right)} \right\} v_t

+ \rho_v \epsilon_{V,t-1} + \eta_{V,t}.

(Model 2) \[M_{V,t} = \left\{ 1 - \exp \left(- \exp \left(\beta_0 + \beta_1 \frac{U_t}{V_{t-1}} + \ln \beta_2 \frac{U_{t-1}}{V_{t-1}} \right) \right) \right\} V_{t-1} \]

+ \left\{ 1 - \frac{1 - p_v}{} \left\{ 1 - \exp \left(- \exp \left(\beta_0 + \beta_1 \frac{U_t}{V_{t-1}} + \ln \beta_2 \frac{U_{t-1}}{V_{t-1}} \right) \right) \right\} v_t

+ \rho_v \epsilon_{V,t-1} + \eta_{V,t}.

(Model 3) \[M_{V,t} = \left\{ 1 - \exp \left(- \exp \left(\beta_0 + \beta_1 \ln \frac{U_t}{V_{t-1}} \right) \right) \right\} V_{t-1} \]

+ \left\{ 1 - \frac{1 - \exp \left(\delta_0 + \delta_1 \ln \frac{U_{t-1}}{V_{t-1}} \right)}{\exp \left(\beta_0 + \beta_1 \ln \frac{U_{t-1}}{V_{t-1}} \right)} \right\} v_t

+ \rho_v \epsilon_{V,t-1} + \eta_{V,t}.

References

