Retirement Consumption and Pension Design

Jonas Kolsrud, Camille Landais, Daniel Reck and Johannes Spinnewijn

Federal Reserve Board of Governors

September 21, 2022

Motivation: Evaluating Welfare Effects of Pension Reforms

Large pension reforms in last 25 yrs

- Probably most substantial reforms in social insurance
- Emphasis on incentives to induce workers to retire later
 - ⇒ Steeper pension profiles

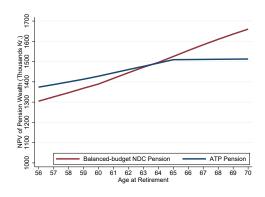


Figure: Profile of Swedish Pension Benefits: Pre vs Post NDC Reform

KLRS (LSE) Pension Design September 21, 2022 2 / 13

Motivation: Evaluating Welfare Effects of Pension Reforms

How to evaluate welfare effects of steeper profiles?

- Trade-off btw providing incentives and smoothing consumption
- Yet, relatively little progress (relative to UI, DI, HI, etc.)

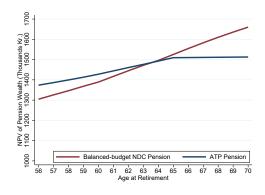


Figure: Profile of Swedish Pension Benefits: Pre vs Post NDC Reform

KLRS (LSE) Pension Design September 21, 2022 2 / 13

Motivation: Evaluating Welfare Effects of Pension Reforms

Challenges:

- Complex dynamic environment (labor supply, savings, real estate, health expenditures, death, bequests,...)
- Complex institutions (pension rules, etc.)
- Data limitations (esp. on value of pensions)

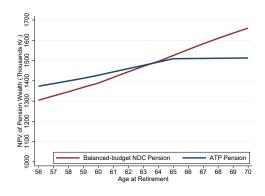


Figure: Profile of Swedish Pension Benefits: Pre vs Post NDC Reform

KLRS (LSE) Pension Design September 21, 2022 2 / 13

This Paper

- Provide framework to assess welfare effects of pension reforms
 - Allows for general & complex environment
 - Expresses welfare impacts in simple terms
 - consumption smoothing vs. incentives
 - Can easily connect to the data under transparent assumptions

KLRS (LSE) Pension Design September 21, 2022 3 / 13

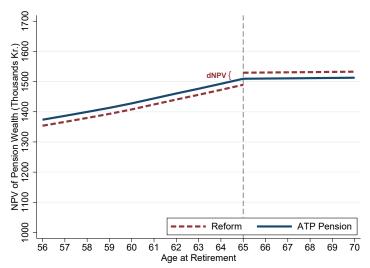
This Paper

- Provide framework to assess welfare effects of pension reforms
 - Allows for general & complex environment
 - Expresses welfare impacts in simple terms
 - consumption smoothing vs. incentives
 - Can easily connect to the data under transparent assumptions
- Study welfare consequences of steeper pension profile in Sweden
 - Use rich admin data from Swedish registers
 - Estimate consumption smoothing costs
 - Revealed by consumption & selection patterns by retirement age
 - Main Findings:
 - $\bullet \ \ \mbox{High cost of steeper profile after 65 (\sim pension rewards after NRA) }$
 - 2 High cost of steeper profile before 61 (\sim pension penalties before EEA)
 - 3 Lower cost of steeper profile btw 61 and 65

KLRS (LSE) Pension Design September 21, 2022 3 / 13

Conceptual Framework: Stylized Reforms

Figure: Steepening Pension Profile At Retirement Age r=65



Conceptual Framework: Evaluate Pension Reform

- Focus on within-cohort welfare effects
- Start from rich life-cycle model, build on "variational" approach
 - Exploit envelope conditions and focus on first-order impacts
- 'Baily-Chetty' formulae for small changes to pension profile:

$$\Delta \mathcal{W} = \underbrace{\frac{CS_{r>65}}{CS_{r\leq 65}}}_{Consumption \ Smoothing} - \underbrace{\frac{1+FE_{r>65}}{1+FE_{r\leq 65}}}_{Fiscal \ Externality}$$

 \bullet CS_r depends on marginal utility of consumption in retirement for individuals who retire at age r

▶ Behavioral

6 / 13

Differences in Consumption Levels in Retirement: Details

$$\frac{\mathit{CS}_{r \leq 65}}{\mathit{CS}_{r > 65}} \cong \theta \cdot (1 + \gamma \times \frac{\mathit{c}_{r > 65} - \mathit{c}_{r \leq 65}}{\mathit{c}_{r > 65}})$$

- Differences in **consumption levels** by retirement age are key
- Consumption difference is scaled with curvature of utility γ
- \bullet θ captures further differences in MUC at same consumption level
- Differences in **Consumption Drops** at retirement (e.g., Gruber '97)
- Differences in MPCs when retired (Landais & Spinnewijn '20)

- 1 Differences in Consumption Levels in Retirement: Details
- Differences in Consumption Drops at retirement (e.g., Gruber '97)

$$\frac{CS_{r\leq65}}{CS_{r>65}} \cong \frac{1+\gamma_{r>65} \times \frac{E_{r>65}(\Delta c/c)}{1+\gamma_{r\leq65} \times \frac{E_{r\leq65}(\Delta c/c)}{E_{r\leq65}(\Delta c/c)}}$$

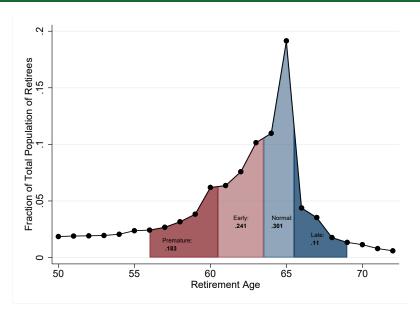
- Captures insurance value against work longevity risk
 - Diamond & Mirrlees '86, Golosov & Tsyvinski '06
- Assumption:
 - diff. in C pre retirement are either irrelevant to the planner or addressable by other policy tools
- Oifferences in MPCs when retired (Landais & Spinnewijn '20)

Measuring Consumption Smoothing Costs Summary Table

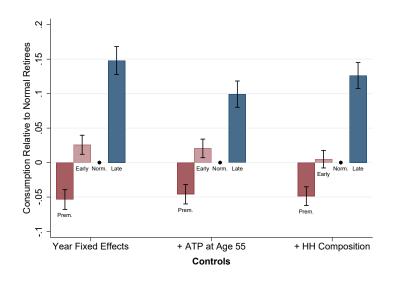
- 1 Differences in Consumption Levels in Retirement: Details
- 2 Differences in Consumption Drops at retirement (e.g., Gruber '97)
- O Differences in MPCs when retired (Landais & Spinnewijn '20)

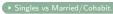
$$\frac{CS_{r \le 65}}{CS_{r > 65}} \cong \frac{\frac{mpc_{r > 65}}{1 - mpc_{r > 65}}}{\frac{mpc_{r \le 65}}{1 - mpc_{r \le 65}}}$$

- Identifies liquidity value of pension
 - MPC captures implicit price of raising additional dollar of consumption



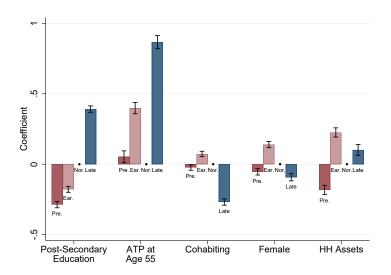
Consumption At Age 68 By Retirement Age





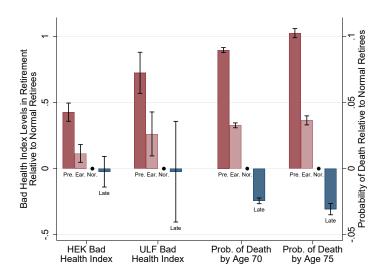
KLRS (LSE)

Selection Into Retirement Age: Socio-Econ Characteristics



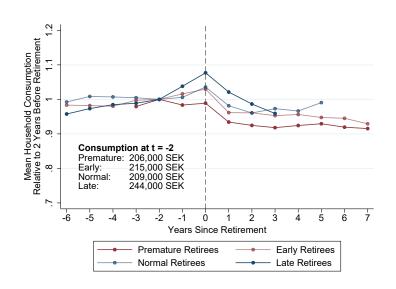
KLRS (LSE) Pension Design September 21, 2022 9 / 13

Selection Into Retirement Age: Post-Retirement Health

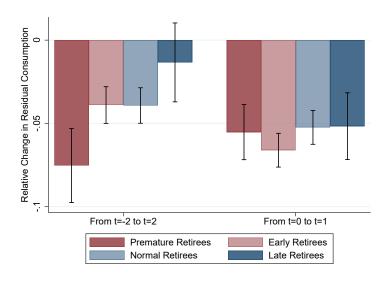


KLRS (LSE) Pension Design September 21, 2022 9 / 13

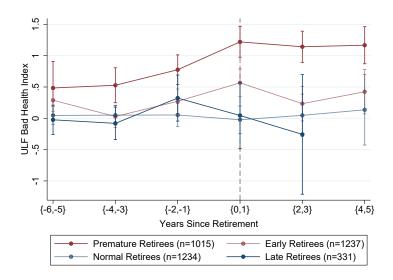
Consumption Drops At Retirement



Consumption Drops At Retirement



Consumption Dynamics & Health Shocks



KLRS (LSE) Pension Design September 21, 2022

MPCs By Retirement Age

Identification:

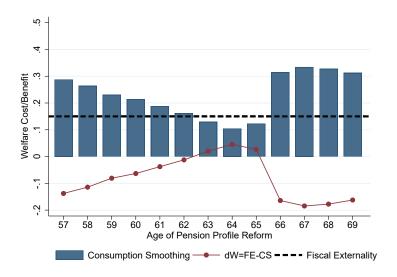
- Use random shocks to price of stocks Passive KG shocks ▶ Distribution
- Shocks generate random permanent variation in wealth Portfolio Value
- Regress evolution of cons around time of passive KG shocks

• Key findings:

- Average MPC out of wealth $\approx .15$ Average MPC
- MPC before retirement < MPC after retirement → By Retirement Status
- Strong negative gradient of MPC with retirement age P By Retirement Age

KLRS (LSE) Pension Design September 21, 2022 12 / 13

Welfare Implications: Consumption Level Implementation



KLRS (LSE) Pension Design September 21, 2022

Policy Implications

- Significant consumption smoothing costs of steeper profile
 - Steep positive gradient of consumption with retirement age
 - Selection on health / life exp. make steeper profiles more regressive
 - Similar conclusion when focusing on insurance/liquidity value only
- Suggests optimality of S-shaped pension profile
 - Providing incentives is costly at premature retirement ages
 - But also at late retirement ages
 - Selection effects: providing higher incentives is most sensible btw 60-65
- Implications are local & conditional on rest of tax/transfer system

KLRS (LSE) Pension Design September 21, 2022 14 / 13

Incentives: Career Length vs Retirement Age

- b(r, Career Length, w)
 - In France, huge emphasis on increasing ret. age *r*
 - But can increase incentives to work longer through \(\partial b / \partial CL\)
- Evidence from Sweden:
 - Strong negative gradient btw CL and consumption
 - Suggests increasing profile through CL incentives is welfare improving

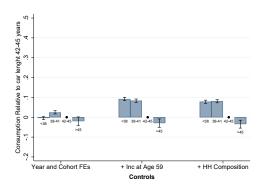


Figure: Consumption in Retirement By Career Length

KLRS (LSE) Pension Design September 21, 2022 15 / 13

APPENDIX SLIDES

Conceptual Framework

$$\textit{U}_{i}\left(\textit{b},\tau\right) = \textit{max} \Sigma_{t=0}^{T} \beta^{t} \int \textit{u}\left(\textit{c}\left(\pi_{i,t}\right), \zeta\left(\pi_{i,t}\right)\right) \textit{dF}\left(\pi_{i,t}\right)$$

subject to

$$\begin{array}{lcl} \mathbf{a}_{i,t+1} & = & R\left(\pi_{i,t}\right)\left[\mathbf{a}_{i,t} + y\left(\pi_{i,t}\right) - c\left(\pi_{i,t}\right)\right] \\ y\left(\pi_{i,t}\right) & = & \left\{ \begin{array}{ll} w\left(\pi_{i,t}\right) - \tau(\pi_{i,t}) \text{ if } s\left(\pi_{i,t}\right) = 1 \\ b\left(\pi_{i,t}\right) \text{ if } s\left(\pi_{i,t}\right) = 0 \end{array} \right. \end{array}$$

- $c(\pi_{i,t})$: consumption
- $\zeta(\pi_{i,t})$: other choices (e.g., labor supply) and characteristics (e.g., productivity)
- $\pi_{i,t}$ is individual state history at age t
 - Contains relevant determinants of utility, choices and policy
 - Includes earlier choices, but also shocks to human capital, financial capital, health capital, etc
- $b(\pi)$ and $\tau(\pi)$ pension benefit/tax function

KLRS (LSE) Pension Design September 21, 2022

Evaluating Pension Reforms

Planner's problem: Government's probem:

$$\max \mathcal{W}\left(b,\tau\right) = \int_{i} \omega_{i} U_{i}\left(b,\tau\right) + \lambda GBC\left(b,\tau\right)$$

subject to

$$\label{eq:GBC} \textit{GBC}\left(\textit{b},\tau\right) = \Sigma_{\textit{r}}\left[\textit{S}\left(\textit{r}\right)\frac{\tau_{\textit{r}}}{\textit{R}^{\textit{r}}} + \left[\textit{S}\left(\textit{r}-1\right) - \textit{S}\left(\textit{r}\right)\right]\textit{NPV}_{\textit{r}}\right] - \textit{G}_{0}.$$

- Pension reforms
 - ullet Change in profile of pension as a function of retirement age r
 - Approach valid for any other marginal reform

▶ Back

A Stereotypical Reform: The Swedish 1998 Pension Reform

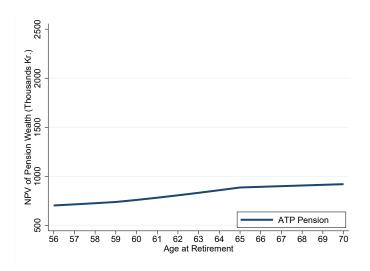
• Old system - ATP Pension:

- Defined Benefit system
- accumulate pension points up to age 65 or 30 yrs of career
- replacement rate applied to average of highest 15 yrs of earnings

• New system - NDC Pension:

- Notional Defined Contribution system
- stronger link between contributions and benefits
 - eliminate age and career length cap for accumulation of points
 - use all contribution years for calculation of replacement rate
 - higher maximum pension benefit
 - BUT more generous minimum pension benefit
- gradually phased in over cohorts 1938-1953

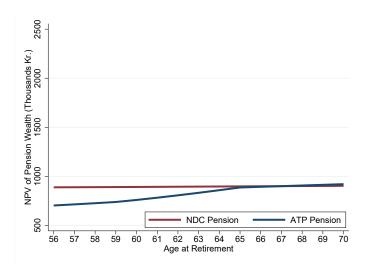
Context: NPV of Pension Wealth By Retirement Age Old ATP System - 1st ATP Decile



▶ Back to Context

▶ Back to Welfare Analysis

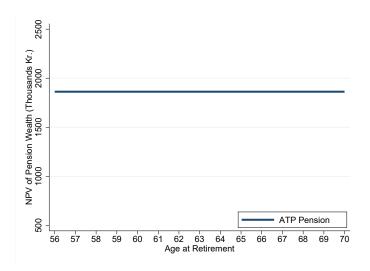
Context: NPV of Pension Wealth By Retirement Age New NDC System - 1st ATP Decile



▶ Back to Contex

► Back to Welfare Analysis

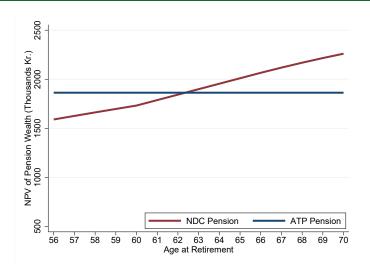
Context: NPV of Pension Wealth By Retirement Age Old ATP System - 10th ATP Decile



Back to Context

▶ Back to Welfare Analysis

Context: NPV of Pension Wealth By Retirement Age New NDC System - 10th ATP Decile



▶ Back to Context

▶ Back to Welfare Analysis

Evaluate Pension Reform: Fiscal Externality

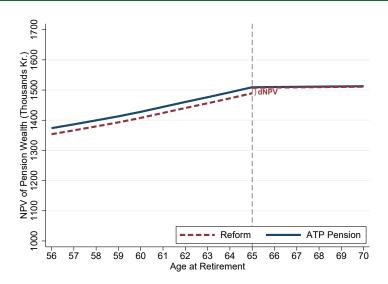
• Fiscal Externality:

• Depends on overall response in survival in employment S(t) at age t, but response around reform age is presumably key

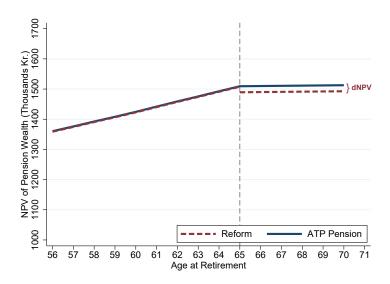
$$FE_{r \leq 65} \approx \lambda[1 - \Sigma_{r'}\underbrace{[\tau_{r'} - [\mathit{NPV}_{r'} - \mathit{NPV}_{r'-1}]]}_{\mathsf{Participation Tax Rate}} \times \frac{\partial S_{r'}}{\partial \mathit{NPV}_{r \leq 65}}]$$

• Swedes retire later in response to steeper profile • Labor Supply Responses

Marginal Reform Combination: $dNPV_{r \le 65} < 0$

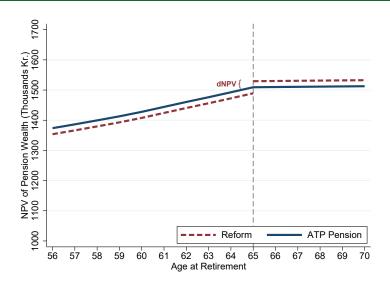


Marginal Reform Combination: $dNPV_{r>65} < 0$



KLRS (LSE) Pension Design September 21, 2022

Marginal Reform Increasing Incentives at 65



- Consumption: Registry data on all earnings/income, transfers/taxes, debt & assets (balance & transactions), some durables
 - Consumption as a residual expenditure measure (Kolsrud et al. '18,'20)

$$consumption_t = income_t - \Delta assets_t$$

➤ Consistency with survey data ➤ Lifetime Consumption Profile

- Consumption-expenditure measure for universe of HH for 2000-2007
- Labor Market: Full labor market history since 1993
 - Retirement = year when earnings fall permanently below PBA
- **Pensions**: Universe of HH since 1920s cohorts
 - State ATP and NDC contributions, rights, claims, benefits, etc.
 - Occupational pensions & Individual pension savings
- **Health**: Death registries + Rich survey info matched with admin data

Registry-based Measure of Consumption

• Simple idea: consumption as a residual expenditure measure,

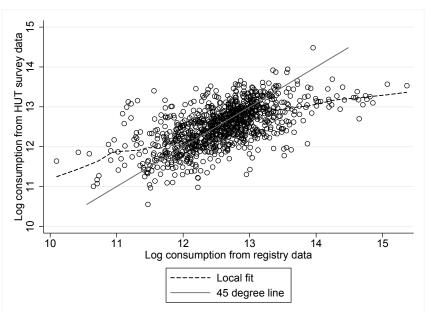
$$consumption_t = income_t - \Delta assets_t$$

- We use admin data (from tax registers) on earnings y, transfers T, bank savings b, outstanding debt d, other financial assets v and real assets h.
 - Account for returns from assets and changes in stock value

10 / 49

Note that we check consistency with consumption survey data

Consistency with survey data



KLRS (LSE) Pension Design September 21, 2022

Lifetime Consumption & Earnings Profiles



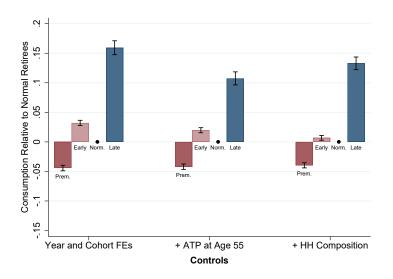
KLRS (LSE) Pension Design September 21, 2022

Consumption Equation

$$c_t = y_t + T_t + \tilde{c}_t^b + \tilde{c}_t^d + \tilde{c}_t^v + \tilde{c}_t^h$$

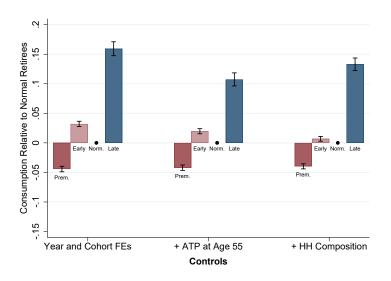
- Bank savings: $\tilde{c}_t^b = y_t^b \Delta b_t$
 - y_t^b : earned interests; Δb_t : change in bank savings
- Debt: $\tilde{c}_t^d = -y_t^d + \Delta d_t$
 - y_t^d : paid interests ; Δd_t : change in debt
- Other financial assets: $\tilde{c}_t^{\nu} = y_t^{\nu} \Delta v_t$
 - ullet $y_t^{
 m v}$: interests, dividends, price change $\Delta p_t^{
 m v} imes q_{t-1}^{
 m v}$
 - ullet Δv_t : change in stock value $p_t^v q_t^v p_{t-1}^v q_{t-1}^v$
- Real assets: $\tilde{c}_t^h = y_t^h \Delta h_t$
 - y_t^h : rent, imputed rent, price change
 - Δh_t : change in stock value

Consumption (At All Ages) By Retirement Age



KLRS (LSE) Pension Design September 21, 2022

Consumption (At All Ages) By Retirement Age: Retired

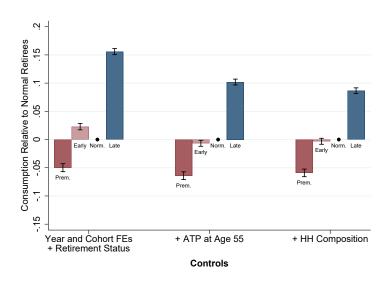


Consumption (At All Ages) By Retirement Age: Not Ret.

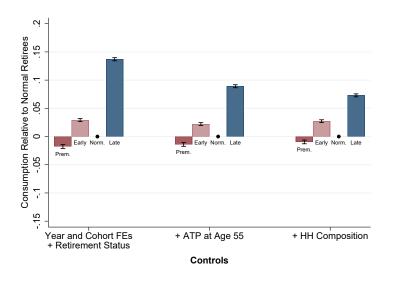


KLRS (LSE) Pension Design September 21, 2022

Consumption By Retirement Age: Singles

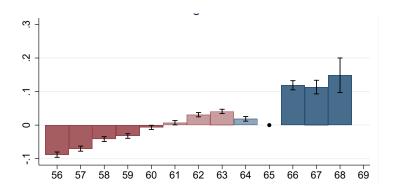


Consumption By Retirement Age: Married/Cohabiting

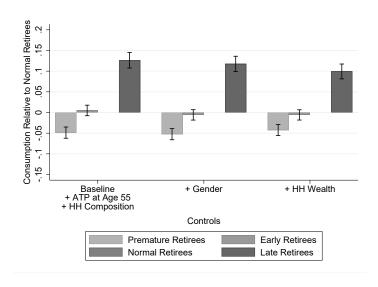


KLRS (LSE) Pension Design September 21, 2022

Consumption By Disaggregated Retirement Age

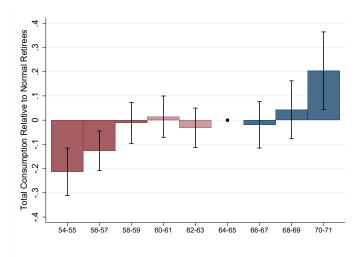


Consumption By Retirement Age: Gender, Wealth Controls

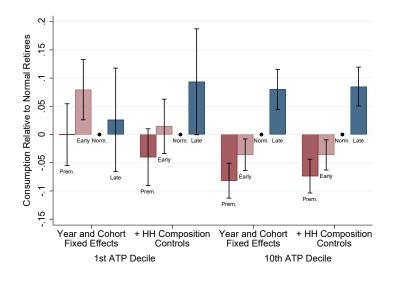


KLRS (LSE) Pension Design September 21, 2022

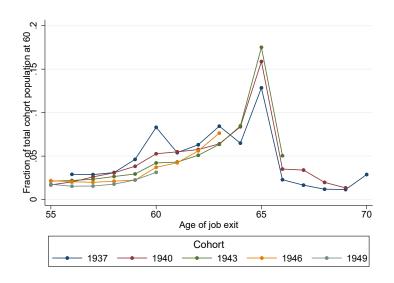
Figure: CONSUMPTION LEVELS BY RETIREMENT AGE IN THE US: HRS DATA



Consumption By Retirement Age: By ATP Decile

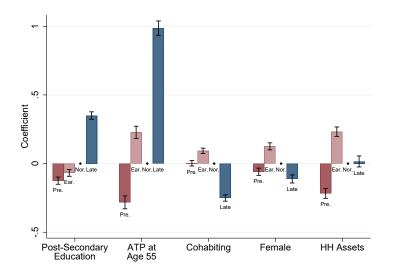


Distribution of Retirement Age By Cohorts



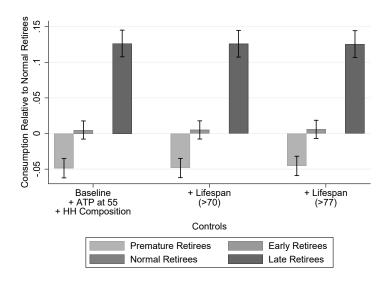
KLRS (LSE) Pension Design September 21, 2022

Selection Into Retirement Ages

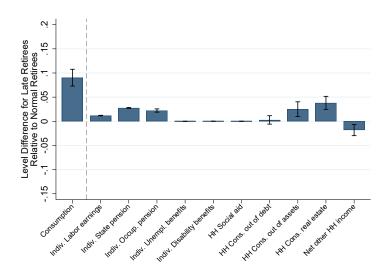


▶ Baseline Consumption Differences with Wealth Controls ➤ Back

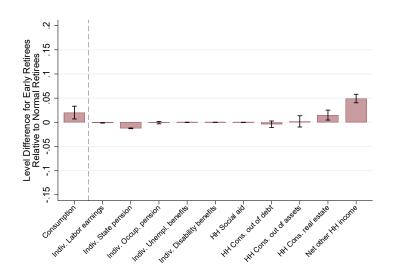
Consumption By Retirement Age: Lifespan Controls



Consumption Decomposition - Age 68: Late Retirees

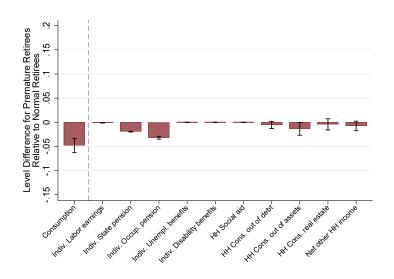


Consumption Decomposition - Age 68: Early Retirees



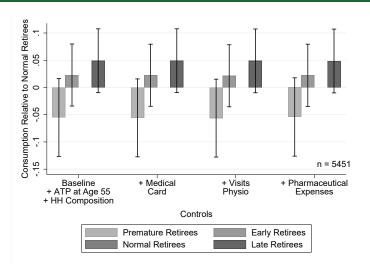
KLRS (LSE) Pension Design September 21, 2022

Consumption Decomposition - Age 68: Premature Retirees

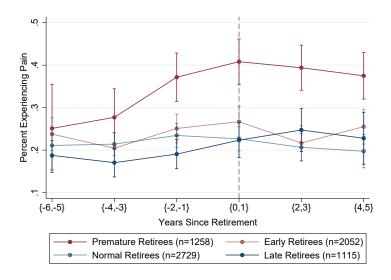


KLRS (LSE) Pension Design September 21, 2022

Consumption (At All Ages) By Retirement Age: Health Controls

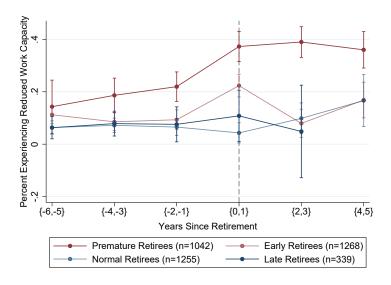


Event Study Health Outcomes: Pain



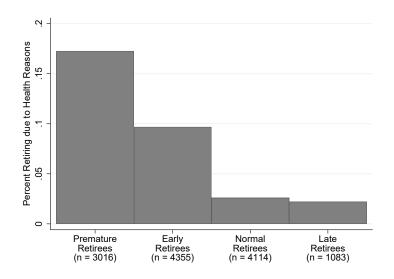
KLRS (LSE) Pension Design September 21, 2022

Event Study Health Outcomes: Reduced Work Capacity



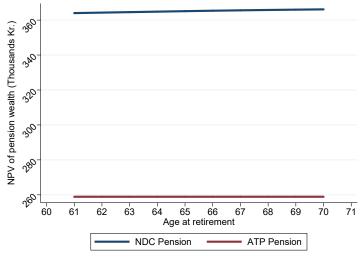
KLRS (LSE) Pension Design September 21, 2022

Health As Reason For Retirement By Retirement Age



KLRS (LSE) Pension Design September 21, 2022

NPV of Pension Wealth By Retirement Age: $\mathbf{w} = P10$

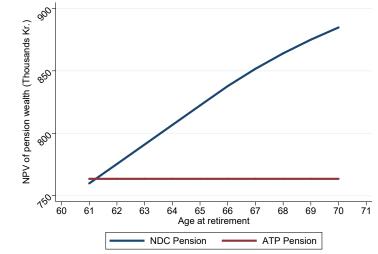


▶ Back

28 / 49

KLRS (LSE) Pension Design September 21, 2022

$\overline{\mathsf{NPV}}$ of Pension Wealth By Retirement Age: $\mathbf{w} = P90$



▶ Back

29 / 49

KLRS (LSE) Pension Design September 21, 2022

Summary: CS Implementation Approaches Back Ba

Empirical Inputs	Economic Interpretation	Assumptions	Challenges
	Implement	ation 1: Consumption Levels – Equation 9	-
$E_{r>\bar{r}}(c)$, $E_{r\leq\bar{r}}(c)$: Average consumption levels of	Captures both the redistributive and	Homogeneous relative risk aversion $\boldsymbol{\gamma}$	Measuring γ
individuals retiring before	insurance value of profile reform	$\omega_r \frac{\partial u(\vec{c}, \vec{\zeta}_{r,t})}{\partial c}$ constant across retirement ages r	Gauging selection into retirement ages based on SMU of consumption,
		Taylor approximation (Chetty [2006])	driven by ω_r or $\zeta_{r,t}$
		Heterogeneity within retirement age group negligible (Andrews and Miller [2013])	
	Implement	ation 2: Consumption Drops – Equation 10	-
$\Delta c_{r>\bar{r}}, \Delta c_{r\leq\bar{r}}$: Average drop in consumption around retirement of individuals retiring before vs after \bar{r}	Captures only the insurance value of profile reform	Homogeneous relative risk aversion $\boldsymbol{\gamma}$	Measuring γ
		$\omega_r \frac{\partial u(c_{r,prer}\zeta_{r,t})}{\partial c}$ constant across retirement ages r	Gauging selection into retirement ages
		Taylor approximation (Chetty [2006])	based on <i>changes</i> in <i>SMU</i> of consumption around retirement, driven by $\frac{\zeta_{r,t}}{\zeta_{r,pre}}$
		Heterogeneity within retirement age group negligible (Andrews and Miller [2013])	
	Implementation 3:	Marginal Propensities to Consume – Equation 11	_
$mpc_{r>\bar{r}}, mpc_{r\leq\bar{r}};$ Average marginal propensity to consume in retirement of individuals retiring before vs after \bar{r}	Captures the liquidity value of profile reform	Constant relative curvature of u over consumption c and resources in ζ across retirement ages (Landais and Spinnewijn [forthcoming])	Finding exogenous unanticipated income shocks to identify MPCs across retirement ages
		Heterogeneity within retirement age group negligible (Andrews and Miller [2013])	

Behavioral Biases

 Important concern that people do not prepare adequately for retirement (e.g., Blundell et al. '98, Chetty et al '14)

$$\Delta W \approx \text{Cons.}$$
 smoothing effects + FE * Behavioral Resp. (1) + Marginal Internalities * Behavioral Resp.

- Behavioral biases can affect the redistributive impact of the pension policy, but impact is still fully captured by CS
 - e.g., myopic agents retire prematurely and have too little savings
 - our measures of CS do not rely on indiv. optimization
- Behavioral biases give rise to 'internalities': magnitude of welfare impact depends on behavioral response to policy
 - e.g., myopic agents save too little but do not respond to pension profile incentives (Chetty et al '14) \Rightarrow small first-order welfare effect

Consumption Smoothing Gains

Marginal value of increasing pension benefits depends on consumption of retirees:

$$\begin{split} CS_{b(x)} &= & E_{b(x)} \left(\omega_{i} \frac{\partial u \left(c_{i}, \zeta_{i} \right)}{\partial c} \right) \\ &\cong & E_{b(x)} \left(\omega_{i} \frac{\partial u \left(c_{0}, \zeta_{i} \right)}{\partial c} \left[1 + \frac{\partial^{2} u \left(c_{0}, \zeta_{i} \right) / \partial c^{2}}{\partial u \left(c_{0}, \zeta_{i} \right) / \partial c} \left[c_{i} - c_{0} \right] \right] \right) \end{split}$$

Relative consumption smoothing gains are:

$$\frac{\mathit{CS}_{b(x)}}{\mathit{CS}_{b(x')}} \quad \cong \quad \frac{\omega_{b(x)}}{\omega_{b(x')}} \frac{\frac{\partial u\left(c_{b(x')},\zeta_{b(x)}\right)}{\partial c}}{\frac{\partial u\left(c_{b(x')},\zeta_{b(x')}\right)}{\partial c}} \left[1 + \frac{\partial^{2} u\left(c_{b(x')},\zeta_{b(x)}\right)/\partial c^{2}}{\partial u\left(c_{b(x')},\zeta_{b(x)}\right)/\partial c} [E_{b(x)}\left(c_{i}\right) - E_{b(x')}\left(c_{i}\right)]\right]$$

• This uses a Taylor expansion around $c_0 = E_{b(x')}\left(c_i\right)$ and relies on no within-group heterogeneity in ω_i and ζ_i .

Insurance Value: Consumption Drops at Retirement

Marginal value of increasing pension benefits depends on consumption of retirees:

$$CS_{b(x)} \cong E_{b(x)} \left(\omega_i \frac{\partial u \left(c_0, \zeta_i \right)}{\partial c} \left[1 + \frac{\partial^2 u \left(c_0, \zeta_i \right) / \partial c^2}{\partial u \left(c_0, \zeta_i \right) / \partial c} \left[c_i - c_0 \right] \right] \right)$$

- Relative consumption gains can be approximated using:
 - Differences in **consumption drops** at retirement:

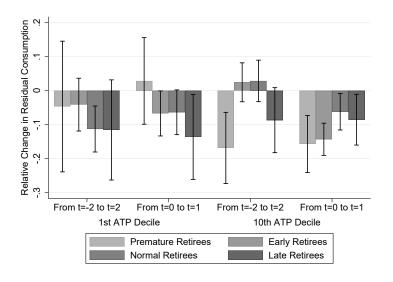
$$\frac{\mathit{CS}_{b(x)}}{\mathit{CS}_{b(x')}} \cong \theta \times \frac{1 + \sigma_{b(x)}[c_i - c_{r-1}]]}{1 + \sigma_{b(x')}[c_i - c_{r-1}]]}$$

- Relies on Taylor expansion around pre-retirement consumption $c_0 = c_{r-1}$ and assumes $\frac{\partial u(c_{r-1},\zeta|r)/\partial c}{\partial u(c_r+\zeta|r-1)/\partial c} = 1$
- Focuses purely on insurance aspect for $\theta = 1$ (i.e., taking pre-retirement redistribution as desirable):

$$\theta = \frac{\omega_{b(x)}}{\omega_{b(x')}} \frac{\partial u\left(c_{r-1}, \zeta_{b(x)}\right) / \partial c}{\partial u\left(c_{r-1}, \zeta_{b(x')}\right) / \partial c}$$

 Insurance can be against unanticipated shock to earnings ability, or against myopia/lack of self insurance

Consumption Drops At Retirement: ATP Deciles



Liquidity Value: MPC

Marginal value of increasing pension benefits depends on consumption of retirees:

$$CS_{b(x)} \cong E_{b(x)} \left(\omega_{i} \frac{\partial u \left(c_{0}, \zeta_{i} \right)}{\partial c} \left[1 + \frac{\partial^{2} u \left(c_{0}, \zeta_{i} \right) / \partial c^{2}}{\partial u \left(c_{0}, \zeta_{i} \right) / \partial c} \left[c_{i} - c_{0} \right] \right] \right)$$

- Relative CS gains can be approximated using:
 - Differences in MPCs :

$$\frac{CS_{r<65}}{CS_{r\geq65}} \cong \frac{E_{r<65} \left(\frac{dc_{it}/dy_{it}}{1-dc_{it}/dy_{it}} \right)}{E_{r\geq65} \left(\frac{dc_{it}/dy_{it}}{1-dc_{it}/dy_{it}} \right)}$$

- Focuses on ability to smooth consumption (Landais & Spinnewijn '20) (i.e., marginal value of transfer depends on its shadow price)
- Assumes curvature in preferences is the same across groups (i.e., to infer shadow price from MPC)

Sample Descriptive Stats

	Retirement Sample		Retirement x Stock Sample	
	Mean	(s.d.)	Mean	(s.d.
I. Retirement		,		
Premature Retirement Probability	14.63 %		15.12 %	
Early Retirement Probability	35.2 %		38.86 %	
Normal Retirement Probability	35.62 %		33.77 %	
Late Retirement Probability	14.56 %		12.24 %	
II. Demographics				
Cohort	1941.71	(5.25)	1940.67	(4.19
Fraction Men	49.49 %	(50)	52.79 %	(49.92
Fraction Married	62.45 %	(48.42)	70.88 %	(45.43
Post-Secondary Education	25.71%	(43.71)	31.04 %	(46.26
III. Income and Wealth at 59, SEK	(2003(K)			
Total Earnings	227.66	(170.19)	226.99	(195.89
Net Wealth	906.30	(2,595.50)	1,366.60	(3,062.00
Bank Holdings	103.50	(404.00)	142.80	(572.80
Portfolio Value	319.28	(14,612.60)	332.95	(15,077.30
Consumption	224.95	(720.72)	242.25	(1,158.50
N	1,328,268		372,831	

MPCs: Empirical Implementation

Define passive KG

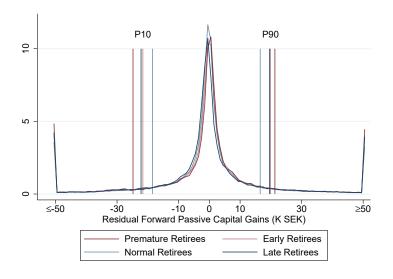
Passive
$$\mathsf{KG}_{i,t+k} = \sum_{j} (p_{j,t+k} - p_{j,t+k-1}) \cdot a_{ijt} = \sum_{j} \Delta p_{j,t+k} \cdot a_{ijt}$$

- a_{ijt} : number of stocks of company j held by individual i in t
- Δp_{jt+k} : change in price of stock j between t+k-1 and t+k
- Show that conditional on X price follow are random walk
- For all years $k \in \{-6, ..., 6\}$, regress :

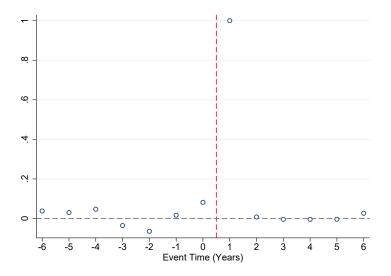
Passive
$$KG_{i,t+k} = \alpha_{t+k}$$
 Passive $KG_{i,t+1} + \mathbf{X}'\beta$

• X: previous returns and variance of portfolio

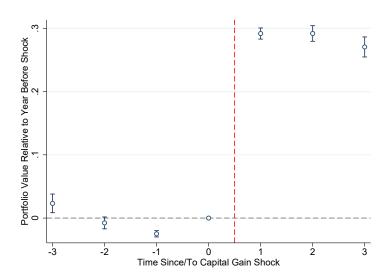
Distribution of Residual Passive K Gains



Serial Correlation In Residual Passive K Gains

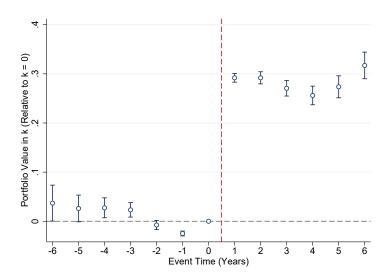


Predicted Passive Value of Portfolio



KLRS (LSE) Pension Design September 21, 2022

True Value of Portfolio



MPCs: Methodology (continued)

• For all years $k \in \{-6, ..., 6\}$, regress :

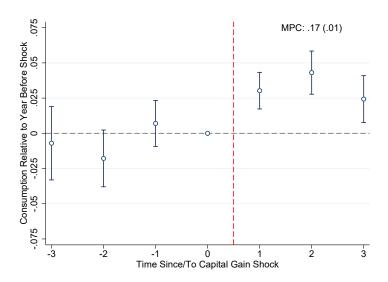
$$\Delta C_{i,t+k} = \alpha_{t+k}^{C}$$
 Passive $\mathrm{KG}_{i,t+1} + \mathbf{X}' eta$

$$\Delta V_{i,t+k} = \alpha_{t+k}^{V}$$
 Passive $\mathrm{KG}_{i,t+1} + \mathbf{X}' eta$

$$Cumulative \ MPC_t = \sum_{t=1}^t \frac{\hat{\alpha}_{t+k}^{C}}{\hat{\alpha}_t^{V}}$$

KLRS (LSE) Pension Design September 21, 2022 42 / 49

Average MPCs



KLRS (LSE) Pension Design September 21, 2022

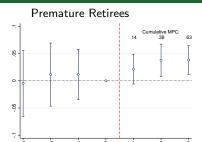
Table: 2SLS ESTIMATES OF MPC OUT OF WEALTH SHOCKS

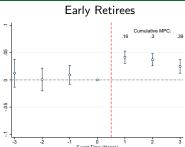
	First Stage	Reduced Form	IV Result	Placebo Test
	α_1^V	Reduced Form	MPC	α_1^P
	α_1		MPC	α_1
	B. By Retirement Status			
Non Retired in t	.66	.09	.13	01
	(.01)	(.01)	(.01)	(.02)
Retired in t	`.71 [´]	.21	`.30 [′]	`.07 [′]
	(.03)	(.03)	(.04)	(.05)
	C. By Retirement Age Group			
Premature Retirees	.69	.23	.34	01
	(.04)	(.03)	(.04)	(.07)
Early Retirees	.63	.22	.34	.03
	(.02)	(.02)	(.03)	(.03)
Normal Retirees	`.68 [´]	`.06 [´]	`.09 [´]	`.03 [^]
	(.01)	(.01)	(.02)	(.02)
Late Retirees	`.70 [′]	0.01	`.01 [′]	(.06)
	(.03)	(.03)	(.04)	(.05)

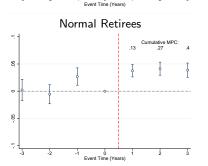
Table: Consumption Smoothing Cost of Steeper Pension Profile

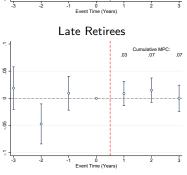
	Baseline	Sensitivity		-	Alternative		
	(1)	(2)	θ (3)	ΔC (4)	MPC (5)		
		A. Age-	Specific	Profile Ch	ange: $\frac{CS_{r \leq \tilde{r}} - CS_{r > \tilde{r}}}{CS_{NRA}}$		
$\tilde{r} \in [57;60]$.25	.13	.32	.17	39		
$\tilde{r} \in [61; 63]$.16	.08	.22	.12	09		
$\tilde{r} \in [64; 65]$.11	.06	.16	.09	.26		
$\tilde{r} \in [64; 65]$ $\tilde{r} \in [66; 69]$.32	.16	.35	.12	.88		
		B. Sv	vedish P	ension Refo	orm: $\Sigma_r \mu_r \frac{CS_r}{CS_{NRA}}$		
	.15	.07	.18	.11	.21		

MPCs by Retirement Age Group

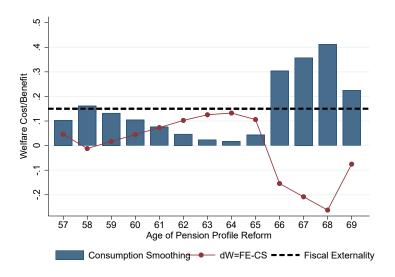






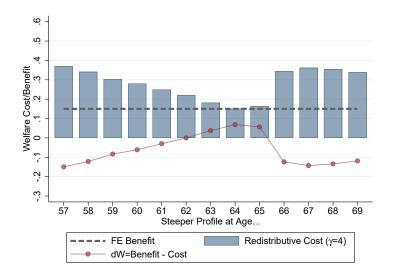


Implementation: Insurance Value Only



KLRS (LSE) Pension Design September 21, 2022

Implementation: Welfare Weight ($\theta \sim \text{Life Expectancy}$)



KLRS (LSE) Pension Design September 21, 2022

Expected Lifetime: Descriptives

	Expected Discounted	Expected Undiscounted
	Lifetime ($eta=0.98$)	Lifetime
Premature	15.49	23.94
Early	16.26	25.02
Normal	16.68	25.54
Late	16.70	25.46

KLRS (LSE) Pension Design September 21, 2022