Optimal Unemployment Insurance over the Business Cycle

Landais (LSE), Michaillat (LSE), and Saez (Berkeley)

November 2013
Unemployment insurance debate

1. UI provides a safety net

2. UI reduces job search and raises unemployment

3. UI raises wages and raises unemployment

4. job search is irrelevant if firms do not hire much

- public-finance approach: $1 + 2$

- our approach: $1 + 2 + 3 + 4$
Public-finance approach [Baily, 1978]

- workers are initially unemployed
- workers search for a job with some effort
- workers find a job at rate f per unit of effort
- workers are risk averse but no self-insurance
- job-search effort is unobservable
- **limitation:** f is a fixed parameter
Our approach

- matching model of unemployment with firms
- job-finding rate f depends on tightness θ
- $\theta = \text{recruiting effort} / \text{job-search effort}$
- θ depends on UI + business cycle
- **contribution**: optimal UI formula in sufficient statistics when f responds to UI + business cycle
Outline

1. General matching model
2. Optimal UI formula
3. Specific matching models
4. Quantitative exploration
A static model

- measure 1 of identical workers, initially unemployed
- measure 1 of identical firms
- workers and firms meet on frictional labor market
- **tightness** $\theta = \text{recruiting effort/job-search effort}$
Summary of matching frictions

- unobservable job-search effort: e
- job-finding rate per unit of effort: $f(\theta)$
- **job-finding probability**: $e \cdot f(\theta)$ with $f' > 0$
- employees = $[1 + \tau(\theta)] \cdot$ producers
- recruiters = $\tau(\theta) \cdot$ producers with $\tau' > 0$
- workers like θ, firms dislike θ
Workers

- given θ and UI, choose e to maximize

$$
\begin{align*}
&v(c^u) + e \cdot f(\theta) \cdot [v(c^e) - v(c^u)] - k(e) \\
&\text{consumption utility} \quad \text{utility gain from search} \quad \text{search cost}
\end{align*}
$$

- effort supply $e^s(\theta, UI)$ determines optimal effort:

$$
k'(e^s) = f(\theta) \cdot [v(c^e) - v(c^u)]
$$

- labor supply $l^s(\theta, UI)$ determines employment rate:

$$
l^s(\theta, UI) = e^s(\theta, UI) \cdot f(\theta)
$$
Firms

- number of employees \(l > \) number of producers \(n \)
- given \(\theta \) and wage \(w \), choose \(n \) to maximize

\[
y(n) - w \cdot [1 + \tau(\theta)] \cdot n
\]

production wage of producers + recruiters

- labor demand \(l^d(\theta, w) \) gives optimal employment:

\[
y' \left(\frac{l^d}{1 + \tau(\theta)} \right) = \left[1 + \tau(\theta) \right] \cdot w
\]

MPL matching wedge real wage
Government

- UI provides c^u to unemployed workers
- UI provides $c^e > c^u$ to employed workers
- generosity of UI is replacement rate:

$$R \equiv 1 - \frac{c^e - c^u}{w} = \text{labor tax rate} + \text{benefit rate}$$
Equilibrium

- take UI policy as given
- equilibrium is \((\theta, w)\) such that supply = demand:

\[l^s(\theta, UI) = l^d(\theta, w) \]

- 2 variables, 1 equation: wage \(w\) is indeterminate
- take general wage schedule: \(w = w(\theta, UI)\)
- **equilibrium tightness is** \(\theta(UI)\)
Equilibrium in \((l, \theta)\) plane

Labor supply

Labor demand

Equilibrium

Unemployment

Labor market tightness

\(\theta\)

Employment
Outline

1. General matching model
2. **Optimal UI formula**
3. Specific matching models
4. Quantitative exploration
Government’s problem

- Choose UI to maximize welfare

\[l \cdot v(c^e) + (1 - l) \cdot v(c^u) - k(e) \]

- Subject to budget constraint

\[l \cdot c^e + (1 - l) \cdot c^u = y \left(\frac{l}{1 + \tau(\theta)} \right) \]

- Subject to \(e = e^s(\theta, UI), l = l^s(\theta, UI), \theta = \theta(UI) \)
Social welfare maximization

- Lagrangian: \(\mathcal{L} = \text{welfare} + \phi \cdot \text{budget} \)
- first-order condition \(\frac{d\mathcal{L}}{dUI} = 0 \) implies
 \[
 \left. \frac{\partial \mathcal{L}}{\partial UI} \right|_\theta + \left. \frac{\partial \mathcal{L}}{\partial \theta} \right|_{UI} \cdot \frac{d\theta}{dUI} = 0
 \]
- \(\frac{\partial \mathcal{L}}{\partial UI} \bigg|_\theta = 0 \) is Baily formula
- \(\frac{\partial \mathcal{L}}{\partial \theta} \bigg|_{UI} = 0 \) is generalized Hosios condition
- \(\frac{d\theta}{dUI} \) can be expressed in sufficient statistics
Baily formula

■ optimal UI at constant θ satisfies

$$\frac{R}{1 - R} = \frac{l}{\varepsilon^m} \cdot \left[\frac{v'(c^u)}{v'(c^e)} - 1 \right]$$

UI generosity moral hazard cost insurance value

■ R: replacement rate of UI

■ microelasticity ε^m: response of unemployment to UI at constant θ (only search effort responds)
Microelasticity in \((l, \theta)\) plane

![Graph showing labor supply, demand, and equilibrium with high UI.](image-url)
Microelasticity in \((l, \theta)\) plane

- Labor supply with high UI
- Labor supply with low UI
- Microelasticity \(\epsilon^m\)
- Labor demand with high UI
Generalized Hosios condition

- optimal θ at constant UI satisfies

$$\frac{\Delta v}{\phi \cdot w} + R \cdot \left(1 + \varepsilon^d\right) - \frac{\eta}{1 - \eta} \cdot \tau(\theta) = 0$$

- Δv: utility gain from employment
- η: curvature of matching function
- ε^d: discouraged-worker elasticity
- $\tau(\theta)$: business-cycle statistic
Hosios term over the business cycle

Lagrangian $L(UI, \theta)$

Hosios term = 0

Labor market tightness θ

Welfare
Hosios term over the business cycle

Lagrangian $L(UI, \theta)$

Welfare

Labor market tightness θ

Hosios term > 0

recession
Hosios term over the business cycle

Welfare

Labor market tightness θ

Lagrangian $L(UI, \theta)$

Hosios term < 0

expansion
Microelasticity and macroelasticity

Equilibrium with high UI

Microelasticity ε^m

Labor supply with low UI

Labor market tightness

Employment
Microelasticity and macroelasticity

- Equilibrium with low UI
- Labor demand with low UI
- Labor supply with low UI

Microelasticity ε_m

Macroelasticity ε^M

Equilibrium

$d\theta < 0$
Microelasticity and macroelasticity

Labor demand with low UI

Employment

Labor market tightness

Equilibrium with low UI

Microelasticity ε^m

Equilibrium with high UI

Macroelasticity ε^M

Labor supply with low UI

Labor demand with low UI

$d\theta = 0$
Microelasticity and macroelasticity

Employment

Labor market tightness

\[d\theta > 0 \]

Equilibrium with low UI

Microelasticity \(\varepsilon^m \)

Labor supply with low UI

Labor demand with low UI

Equilibrium with high UI

Macroelasticity \(\varepsilon^M \)
Externalities

Equilibrium with low UI

Labor supply with low UI

Labor demand with low UI

Wage externality

Equilibrium with high UI

Labor market tightness

Employment
Elasticity wedge measures $d\theta/dUI$

- macroelasticity ε^M: response of employment to UI in general equilibrium (search effort + θ respond)

- $1 - (\varepsilon^M / \varepsilon^m) > 0$: lower UI \Rightarrow lower θ

- $1 - (\varepsilon^M / \varepsilon^m) = 0$: UI does not influence θ

- $1 - (\varepsilon^M / \varepsilon^m) < 0$: lower UI \Rightarrow higher θ
Optimal UI formula in general equilibrium

\[\frac{R}{1-R} = \text{Baily term} + P \cdot \left[1 - \frac{\varepsilon^M}{\varepsilon^m} \right] \cdot \text{Hosios term} \]

- \(\frac{\partial \mathcal{L}}{\partial UI} \bigg|_{\theta} = 0 \)
- \(\frac{d \theta}{d UI} \cdot \left[\frac{\partial \mathcal{L}}{\partial \theta} \bigg|_{UI} \right] \): externality-correction term
- more UI than Baily if \(\frac{d \theta}{d UI} \cdot \left[\frac{\partial \mathcal{L}}{\partial \theta} \bigg|_{UI} \right] > 0 \)
- more UI than Baily if UI brings \(\theta \) to optimum
Optimal UI formula in general equilibrium

\[
\frac{R}{1-R} = \text{Baily term} + \left(\sum_{i} P_i \cdot \left[1 - \frac{\varepsilon^M}{\varepsilon^m} \right] \cdot \text{Hosios term} \right)
\]

- \(R \): replacement rate of UI

- if \(\left[1 - \left(\frac{\varepsilon^M}{\varepsilon^m} \right) \right] \cdot \text{Hosios term} > 0 \): UI above Baily

- if \(\left[1 - \left(\frac{\varepsilon^M}{\varepsilon^m} \right) \right] \cdot \text{Hosios term} = 0 \): UI at Baily

- if \(\left[1 - \left(\frac{\varepsilon^M}{\varepsilon^m} \right) \right] \cdot \text{Hosios term} < 0 \): UI below Baily
Optimal replacement rate vs. Baily rate

\[1 - \left(\frac{\varepsilon^M}{\varepsilon^m} \right) \]

<table>
<thead>
<tr>
<th></th>
<th>$-$</th>
<th>0</th>
<th>$+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>recession</td>
<td>lower</td>
<td>same</td>
<td>higher</td>
</tr>
<tr>
<td>at Hosios</td>
<td>same</td>
<td>same</td>
<td>same</td>
</tr>
<tr>
<td>expansion</td>
<td>higher</td>
<td>same</td>
<td>lower</td>
</tr>
</tbody>
</table>
Outline

1. General matching model
2. Optimal UI formula
3. **Specific matching models**
4. Quantitative exploration
Three matching models

<table>
<thead>
<tr>
<th></th>
<th>Pissarides</th>
<th>Hall</th>
<th>Michaillat</th>
</tr>
</thead>
<tbody>
<tr>
<td>production</td>
<td>linear</td>
<td>linear</td>
<td>concave</td>
</tr>
<tr>
<td>$y(n) = n$</td>
<td>$y(n) = n$</td>
<td>$y(n) = n^\alpha$, $\alpha < 1$</td>
<td></td>
</tr>
<tr>
<td>wage</td>
<td>Nash bargaining</td>
<td>rigid</td>
<td>rigid</td>
</tr>
<tr>
<td>$w = w(\theta, UI)$</td>
<td>$w > 0$</td>
<td>$w > 0$</td>
<td></td>
</tr>
</tbody>
</table>
Pissarides’ model: \(1 - (\varepsilon^M / \varepsilon^m) < 0\)
Pissarides’ model: \[1 - \left(\frac{\varepsilon^M}{\varepsilon^m} \right) < 0 \]
Pissarides’ model: $1 - \left(\frac{\varepsilon^M}{\varepsilon^m} \right) < 0$
Hall’s model: \(1 - \left(\frac{\varepsilon^M}{\varepsilon^m} \right) = 0 \)
Hall’s model: \[1 - (\varepsilon^M / \varepsilon^m) = 0 \]
Michaillat’s model: \(1 - \left(\frac{\varepsilon^M}{\varepsilon^m}\right) > 0\)
Michaillat’s model: $1 - \left(\frac{\varepsilon^M}{\varepsilon^m} \right) > 0$
Michaillat’s model: \[1 - \left(\frac{\epsilon^M}{\epsilon^m} \right) > 0 \]
Optimal UI in various matching models

<table>
<thead>
<tr>
<th></th>
<th>Pissarides</th>
<th>Hall</th>
<th>Michaillat</th>
</tr>
</thead>
<tbody>
<tr>
<td>wage ext.</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>labor-demand ext.</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>$1 - (\varepsilon^M/\varepsilon^m)$</td>
<td>—</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>optimal UI</td>
<td>procyclical</td>
<td>acyclical</td>
<td>countercyclical</td>
</tr>
</tbody>
</table>
Outline

1. General matching model
2. Optimal UI formula
3. Specific matching models
4. Quantitative exploration
Empirical strategy

- microelasticity: increase in probability of unemployment when *individual UI* increases
- macroelasticity: increase in aggregate unemployment when *aggregate UI* increases
Elasticity wedge estimates

- Crepon, Duflo, Gurgand, Rathelot, and Zamora [QJE, 2013] for France
 - treatment: job-search assistance
 - labor-demand externality only
 - $1 - (\varepsilon^M / \varepsilon^m) = 0.37 > 0$

- Lalive, Landais, and Zweimüller for Austria
 - treatment: increase UI duration from 52 to 209 weeks
 - labor-demand and wage externality
 - $1 - (\varepsilon^M / \varepsilon^m) = 0.35 > 0$
Optimal UI over the business cycle

Unemployment rate
Replacement rate

\[1 - \left(\frac{\varepsilon^M}{\varepsilon^m} \right) = 0.4 \]

\[1 - \left(\frac{\varepsilon^M}{\varepsilon^m} \right) = 0 \]
Optimal UI over the business cycle

\[1 - \left(\frac{\varepsilon^M}{\varepsilon^m} \right) = 0.4 \]

\[1 - \left(\frac{\varepsilon^M}{\varepsilon^m} \right) = 0 \]

\[1 - \left(\frac{\varepsilon^M}{\varepsilon^m} \right) = -0.5 \]
Optimal UI over the business cycle

1 - (ε^M/ε^m) = 0.4
1 - (ε^M/ε^m) = 0
1 - (ε^M/ε^m) = -0.5
0.2 < 1 - (ε^M/ε^m) < 0.9
Future research

1. empirical estimates of elasticity wedge $1 - (\varepsilon^M / \varepsilon^m)$

2. optimal macro policies over the business cycle
 - fiscal policy, insurance programs, monetary policy
 - formula for policy τ takes form

\[
0 = \text{PF term} + \frac{d\theta}{d\tau} \cdot \text{Hosios term}
\]

- PF term $= \frac{\partial SW}{\partial \tau}|_\theta$ and Hosios term $= \frac{\partial SW}{\partial \theta}|_\tau$
- see Michaillat and Saez [2013]
Matching frictions

- measure 1 of workers, initially unemployed
- job-search effort (unobservable): \(e \)
- number of vacancies: \(o \)
- constant-returns matching function: \(m(\cdot, \cdot) \)
- number of matches: \(l = m(e, o) \leq 1 \)
- labor market tightness: \(\theta \equiv o/e \)
- vacancy-filling proba.: \(q(\theta) = l/o = m(1/\theta, 1) \)
- job-finding rate: \(f(\theta) = l/e = m(1, \theta) \)
- job-finding proba.: \(e \cdot f(\theta) \)
Matching cost

posting each vacancy requires \(r \) workers:

\[
\begin{align*}
\text{employees} & = n + r \cdot \frac{l}{q(\theta)} \\
\Rightarrow l \cdot \left[1 - \frac{r}{q(\theta)}\right] & = n \\
\Rightarrow l & = \left[1 + \frac{r}{q(\theta) - r}\right] \cdot n \\
\Rightarrow \text{employees} & = \left[1 + \tau(\theta)\right] \cdot \text{producers}
\end{align*}
\]
Formula in dynamic model

\[\frac{w}{\Delta c} - 1 \approx \frac{1}{\varepsilon^m} \left(\frac{c^e}{c^u} - 1 \right) + \frac{1}{1 + \varepsilon^d} \left(1 - \frac{\varepsilon^M}{\varepsilon^m} \right) \times \left[\frac{\ln(c^e/c^u)}{1 - c^u/c^e} + \left(1 + \varepsilon^d \right) \left(\frac{w}{\Delta c} - 1 \right) - \frac{\eta}{1 - \eta \Delta c} \frac{w}{u} \tau(\theta) \right] \]

- solve for replacement rate \(1 - (\Delta c / w)\)
- exogenous sufficient statistics: \(\varepsilon^d, \varepsilon^M, \varepsilon^m, \eta, \tau(\theta)/u\)
- \(1 - (\varepsilon^M / \varepsilon^m)\) measures labor-demand & wage externality
- \(\tau(\theta)/u\) measures business cycle
Flows in finite-duration model

- Employed: \(n \)
- Eligible Unemployed: \(x^u \)

Job finding: \(e^u . f(\theta) . x^u \)
Flows in finite-duration model

- Employed: \(n\)
- Eligible Unemployed: \(x^u\)
- Ineligible Unemployed: \(x^a\)
- Job finding: \(e^u.f(\theta).x^u\)
- Ineligibility: \(\lambda x^u\)
Flows in finite-duration model

- Job finding: $e^a f(\theta) x^a$
- Employed: n
- Eligible Unemployed: x^u
- Ineligible Unemployed: x^a
- Ineligibility: λx^u
Countercyclical arrival rate of ineligibility

![Graph showing the relationship between unemployment rate and arrival rate of ineligibility]