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Abstract

We develop a theory of optimal unemployment insurance (UI) that accounts for work-

ers’ job-search behavior and firms’ hiring behavior. The optimal replacement rate of UI is

the conventional Baily [1978]-Chetty [2006a] rate, which solves the trade-off between in-

surance and job-search incentives, plus a correction term, which is positive when UI brings

the labor market tightness closer to efficiency. For instance, when tightness is inefficiently

low, optimal UI is more generous than the Baily-Chetty rate if UI raises tightness and less

generous if UI lowers tightness. We propose empirical criteria to determine whether tight-

ness is inefficiently high or low and whether UI raises or lowers tightness. The theory has

implications for the cyclicality of optimal UI.
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I. Introduction

Unemployment insurance (UI) is a key component of social insurance in modern welfare states.

The microeconomic theory of optimal UI, developed by Baily [1978] and Chetty [2006a], is

well understood: it is an insurance-incentive trade-off in the presence of moral hazard. UI helps

workers smooth consumption when they are unemployed, but it also increases unemployment

by discouraging job search. The Baily-Chetty formula resolves this trade-off.

The microeconomic theory of optimal UI, however, accounts only for workers’ job-search

behavior and not for firms’ hiring behavior. This becomes problematic in slumps because when

unemployment is high, the effect of UI on welfare can only be properly measured if firms’ hiring

behavior is accounted for. For instance, some argue that UI has a particularly negative effect

of welfare in slumps because UI exerts upward pressure on wages, thereby discouraging job

creation. Others argue that in slumps, jobs are simply not available to jobseekers, irrespective

of how much they search, so UI does not raise unemployment much.

In this paper we develop a macroeconomic theory of optimal UI, accounting not only for

workers’ job-search behavior but also for firms’ hiring behavior.1 The theory encompasses the

microeconomic insurance-incentive trade-off as well as the macroeconomic influence of UI on

firms’ hiring decisions. We derive a formula that gives the optimal replacement rate of UI as a

function of statistics that can be estimated empirically. Our formula provides guidance to link

the generosity of UI to the unemployment rate.2

We begin by embedding the Baily-Chetty model of UI into a matching model with general

production function, wage mechanism, and matching function.3 The matching framework is

well suited for our purpose because it describes both workers’ job-search process and firms’

1A few papers study the optimal response of UI to shocks by simulating calibrated macroeconomic models, but
by nature the results are somewhat specific to the calibration and structural assumptions about the wage mechanism
or production function. See for instance Jung and Kuester [2015].

2In the US, the generosity of UI depends on the unemployment rate. UI benefits have a duration of 26 weeks
in normal times. The Extended Benefits program automatically extends duration by 13 weeks in states where un-
employment is above 6.5% and by 20 weeks in states where unemployment is above 8%. Duration is often further
extended in severe recessions. For example, the Emergency Unemployment Compensation program enacted in
2008 extended durations by an additional 53 weeks in states where unemployment was above 8.5%.

3Matching models have been used to study UI in other contexts. See for instance Cahuc and Lehmann [2000],
Fredriksson and Holmlund [2001], Lehmann and Van Der Linden [2007], and Mukoyama [2013].
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hiring process. The labor market tightness, defined as the ratio of vacancies to aggregate job-

search effort, is central to our theory. In equilibrium, tightness equalizes labor demand and

supply. UI generally affects tightness because labor supply and demand respond to UI.

In matching models the equilibrium is not necessarily efficient. The labor market is efficient

if tightness maximizes welfare for a given UI; otherwise, the labor market is inefficient. Tight-

ness is inefficiently high if reducing tightness increases welfare; in that case, unemployment

is inefficiently low and firms devote too much labor to recruiting workers. Tightness is inef-

ficiently low if raising tightness increases welfare; in that case, unemployment is inefficiently

high and too few jobseekers find a job.

When the labor market is efficient, the optimal replacement rate of UI is given by the Baily-

Chetty formula. The reason is that when the labor market is efficient, the marginal effect of UI

on tightness has no first-order effect on welfare. Hence, optimal UI is governed by the same

principles as in the Baily-Chetty model, in which tightness is fixed. Our theory uses the Baily-

Chetty formula as a baseline. This is convenient because the Baily-Chetty formula has been

studied extensively, so we have a good idea of the replacement rate implied by the formula.4

When the labor market is inefficient, the replacement rate given by the Baily-Chetty formula

is no longer optimal. This is our main result, and it has a simple intuition. Consider a labor

market in which tightness is inefficiently low. If UI raises tightness, UI is desirable beyond the

insurance-incentive trade-off, and the optimal replacement rate of UI is higher than the Baily-

Chetty rate. Conversely, if UI lowers tightness, UI is not as desirable as what the insurance-

incentive trade-off implies, and the optimal replacement rate of UI is lower than the Baily-

Chetty rate. The same logic applies when tightness is inefficiently high.

Formally, we develop a formula that expresses the optimal replacement rate of UI as the

sum of the Baily-Chetty rate plus a correction term. The correction term is equal to the effect

of UI on tightness times the effect of tightness on welfare. The term is positive if UI brings

tightness closer to its efficient level, and negative otherwise. Hence, the optimal replacement

rate of UI is above the Baily-Chetty rate if and only if increasing UI brings the labor market

closer to efficiency.

4See for instance Gruber [1997] and Chetty [2006a].
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In matching models, increasing UI can raise or lower tightness. UI can lower tightness

through a job-creation effect: when UI rises, firms hire less because wages increase through

bargaining, which reduces tightness. UI can also raise tightness through a rat-race effect: if the

number of jobs available is somewhat limited, then by discouraging job search, UI mechanically

increases the job-finding rate per unit of search effort and thus tightness. The overall impact of

UI on tightness depends on which effect dominates. For example, in the model of Pissarides

[2000] with wage bargaining and linear production function, only the job-creation effect oper-

ates and UI lowers tightness. But in the job-rationing model of Michaillat [2012] with rigid

wage and concave production function, only the rat-race effect operates and UI raises tightness.

To facilitate the application of the theory, we express the optimal UI formula in terms of es-

timable statistics, as in Chetty [2006a]. We develop an empirical criterion to evaluate whether

tightness is inefficiently low or inefficiently high. The criterion is that tightness is inefficiently

low if and only if the value of having a job relative to being unemployed is high enough com-

pared to the share of labor devoted to recruiting. We develop another empirical criterion to

evaluate whether UI raises or lowers tightness. The criterion is that UI raises tightness if and

only if the microelasticity of unemployment with respect to UI is larger than its macroelasticity.

The microelasticity measures the partial-equilibrium response of unemployment to UI, keeping

tightness constant, whereas the macroelasticity measures its general-equilibrium response. The

microelasticity accounts only for the response of job search to UI while the macroelasticity also

accounts for the response of tightness. This criterion is simple to understand. Imagine that UI

raises tightness. Then UI increases the job-finding rate, which dampens the negative effect of

UI on job search. In that case, the macroelasticity is smaller than the microelasticity.

Our theory can be combined with empirical evidence to determine the cyclicality of opti-

mal UI. Recent empirical work finds that the macroelasticity of unemployment with respect to

UI is smaller than the microelasticity, suggesting that UI raises tightness. Using data from the

Current Employment Statistics program and the National Employment Survey of the Bureau

of Labor Statistics (BLS), we construct a monthly time series for the share of labor devoted to

recruiting. This share exhibits wide procyclical fluctuations in the US, suggesting that tightness

is inefficiently low in slumps and inefficiently high in booms. This empirical evidence indicates
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that the correction term in our optimal UI formula is countercyclical. Hence, the optimal re-

placement rate of UI is below the Baily-Chetty rate in booms and above the Baily-Chetty rate

in slumps.

Finally, to quantify the countercyclical fluctuations of the optimal replacement rate of UI,

we simulate the job-rationing model of Michaillat [2012]. We opt for this model because unlike

other matching models, but consistent with available evidence, it predicts that the macroelas-

ticity of unemployment with respect to UI is smaller than the microelasticity. The simulations

indicate that the optimal replacement rate of UI is sharply countercyclical, increasing from be-

low 55% to above 75% when the unemployment rate rises from 5% to 13%.

II. The Model

This section develops a model of UI. This model embeds the model of UI by Baily [1978] and

Chetty [2006a] into a matching model of the labor market.5

The Labor Market. There is a measure 1 of identical workers and a measure 1 of identical

firms. Initially, all workers are unemployed and search for a job with effort e. Each firm posts

o vacancies to recruit workers. The number l of workers who find a job is given by a matching

function taking as arguments aggregate search effort and vacancies: l = m(e,o). The function

m has constant returns to scale, is differentiable and increasing in both arguments, and satisfies

the restriction that m(e,o)≤ 1.

The labor market tightness is defined as the ratio of vacancies to aggregate search effort:

θ = o/e. Since the matching function has constant returns to scale, the labor market tightness

determines the probabilities to find a job and fill a vacancy. A jobseeker finds a job at a rate

f (θ) = m(e,o)/e = m(1,θ) per unit of search effort; thus, a jobseeker searching with effort e

finds a job with probability e · f (θ). A vacancy is filled with probability q(θ) = m(e,o)/o =

m(1/θ ,1) = f (θ)/θ . The function f is increasing in θ and the function q is decreasing in θ . In

other words, it is easier to find a job but harder to fill a vacancy when the labor market tightness

5See Pissarides [2000] for a classical matching model of the labor market. Our matching model follows the
formalism developed by Michaillat and Saez [2015].

5



is higher. We denote by 1−η and −η the elasticities of f and q: 1−η = θ · f ′(θ)/ f (θ) > 0

and η =−θ ·q′(θ)/q(θ)> 0.

Firms. The representative firm hires l workers, paid a real wage w, to produce a consumption

good. We assume that the firm has two types of employees: some are engaged in production

while others are engaged in recruiting. A number n < l of workers are producing a quantity

y(n), where the production function y is differentiable, increasing, and concave. A number l−n

of workers are recruiting employees by posting vacancies. Posting a vacancy requires r ∈ (0,1)

recruiter, so the number of recruiters required to post o vacancies is l− n = r · o. Since hiring

l employees requires posting l/q(θ) vacancies, the number n of producers in a firm with l

employees is limited to n = l− r · l/q(θ). Hence, the numbers of producers and employees are

related by

n =
l

1+ τ(θ)
, (1)

where τ(θ) ≡ r/(q(θ)− r) is the recruiter-producer ratio. The function τ is positive and in-

creasing when q(θ) > r, which holds in equilibrium. The elasticity of τ is θ · τ ′(θ)/τ(θ) =

η · (1+ τ(θ)).

The firm sells its output on a product market with perfect competition. Given θ and w,

the firm chooses l to maximize profits π = y(l/(1+ τ(θ)))−w · l. The optimal number of

employees satisfies

y′
(

l
1+ τ(θ)

)
= (1+ τ(θ)) ·w. (2)

At the optimum, the marginal revenue and marginal cost of hiring a producer are equal. The

marginal revenue is the marginal product of labor, y′(n). The marginal cost is the real wage, w,

plus the marginal recruiting cost, τ(θ) ·w.

We implicitly define the labor demand ld(θ ,w) by

y′
(

ld(θ ,w)
1+ τ(θ)

)
= (1+ τ(θ)) ·w. (3)
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The labor demand gives the number of workers hired by firms when firms maximize profits.

The Unemployment Insurance. The receipt of UI cannot be contingent on search effort be-

cause search effort is not observable. Hence, UI provides all employed workers with consump-

tion ce and all unemployed workers with consumption cu < ce, irrespective of their search effort.

We use three alternative measures of the generosity of UI: UI is more generous if the consump-

tion gain from work ∆c ≡ ce− cu decreases, if the utility gain from work ∆v ≡ v(ce)− v(cu)

decreases, or if the replacement rate

R≡ 1− ∆c
w

increases.6 The government must satisfy the budget constraint

y(n) = (1− l) · cu + l · ce. (4)

If firms’ profits π are equally distributed, the UI system can be implemented with a UI benefit

b funded by a tax on wages t so that (1− l) · b = l · t and cu = π + b and ce = π +w− t. If

profits are unequally distributed, a 100% tax on profits rebated lump sum implements the same

allocation.

Workers. Workers cannot insure themselves against unemployment in any way, so they con-

sume ce if employed and cu if unemployed. The utility from consumption is v(c). The function

v is differentiable, increasing, and concave. The disutility from job-search effort, e, is k(e). The

function k is differentiable, increasing, and convex. Given θ , ce, and cu, a representative worker

chooses e to maximize expected utility

l · v(ce)+(1− l) · v(cu)− k(e) (5)

6When a jobseeker finds work, she keeps a fraction ∆c/w = 1−R of the wage and gives up a fraction R as
UI benefits are lost. This is why we can interpret R as the replacement rate of the UI system. Our definition of
the replacement rate relates to the conventional definition as follows. Consider a UI system that provides a benefit
b funded by a tax t so that ∆c = w− t− b. Our replacement rate is defined as R = (t + b)/w. The conventional
replacement rate is b/w; it ignores the tax t and is not the same as R. However, since unemployment is small
relative to employment, t� b and R≈ b/w.
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subject to the matching constraint

l = e · f (θ), (6)

where l is the probability to find a job and 1− l is the probability to remain unemployed. The

optimal search effort satisfies

k′(e) = f (θ) ·∆v. (7)

At the optimum, the marginal utility cost and marginal utility gain of search are equal. The

marginal utility cost is k′(e). The marginal utility gain is the rate at which a unit of effort leads

to a job, f (θ), times the utility gain from having a job, ∆v. We implicitly define the effort

supply es( f (θ),∆v) as the solution of (7). The function es increases with f (θ) and ∆v. Hence,

search effort is higher when the labor market is tighter and when UI is less generous.

We define the labor supply by

ls(θ ,∆v) = es( f (θ),∆v) · f (θ). (8)

The labor supply gives the number of workers who find a job when workers search optimally.

The labor supply increases with θ and with ∆v. Labor supply is higher when UI is less generous

because search efforts are higher. The labor supply is higher when the labor market is tighter

because the job-finding rate per unit of effort is higher and search efforts are higher.

Equilibrium. For a given ∆v and w, an equilibrium is a collection of variables {e, l,n,θ ,ce,cu}

such that workers maximize utility given tightness and UI, firms maximize profits given tight-

ness and wage, and the government satisfies a budget constraint. These variables satisfy (1),

(2), (4), (6), (7), and ∆v = v(ce)− v(cu). The equilibrium consists of 6 variables determined by

6 equations, so it is well defined.

So far we have taken ∆v and w as given. After Section III, ∆v will be determined by the

government to maximize welfare, and w will be determined by a wage mechanism. Once ∆v and
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Figure 1: Equilibrium in a (l,θ) plane

w are determined, the key to solving the equilibrium is determining the labor market tightness,

θ . Note that in equilibrium, θ equalizes labor supply and labor demand:

ls(θ ,∆v) = ld(θ ,w). (9)

Hence, we determine θ by solving (9). Once θ is determined, l is determined from l = ls(θ ,∆v),

e from e = es( f (θ),∆v), n from n = l/(1+ τ(θ)), and ce and cu from the budget constraint (4)

and ∆v = v(ce)− v(cu).

The equilibrium is represented in a (l,θ) plane in Panel A of Figure 1. The labor supply

curve is upward sloping, and it shifts inward when UI increases. The labor demand curve may

be horizontal or downward sloping, and it responds to UI when the wage responds to UI. The

intersection of the labor supply and labor demand curves gives the equilibrium level of labor

market tightness, employment, and unemployment.

III. The Social Welfare Function

We express social welfare as a function of two arguments: the generosity of UI and the labor

market tightness. We compute the derivatives of the social welfare function with respect to UI

and tightness. These derivatives are the key building blocks of the optimal UI formula derived
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in Section IV. Following Chetty [2006a], we express the derivatives in terms of statistics that

can be estimated empirically. Section VII will discuss estimates of these statistics.

We begin by defining the social welfare function. Consider an equilibrium parameterized by

a utility gain from work ∆v and a wage w. For a given ∆v, there is a direct relationship between

w and the labor market tightness θ . This relationship is given by (9). Hence, it is equivalent to

parameterize the equilibrium by ∆v and θ . Social welfare is thus a function of ∆v and θ :

SW (θ ,∆v) = es(θ ,∆v) · f (θ) ·∆v+ v(cu(θ ,∆v))− k(es(θ ,∆v)), (10)

where cu(θ ,∆v) is the equilibrium level of consumption for unemployed workers. The con-

sumption cu(θ ,∆v) is implicitly defined by

y
(

ls(θ ,∆v)
1+ τ(θ)

)
= ls(θ ,∆v) · v−1 (v(cu(θ ,∆v))+∆v)+(1− ls(θ ,∆v)) · cu(θ ,∆v). (11)

This equation ensures that the government’s budget constraint is satisfied when all the variables

take their equilibrium values. Since v(ce) = v(cu)+∆v, the term v−1 (v(cu(θ ,∆v))+∆v) gives

the consumption of employed workers.

Next, we define two elasticities that measure how search effort responds to UI and labor

market conditions. We use these elasticities to analyze the social welfare function.

DEFINITION 1. The microelasticity of unemployment with respect to UI is

ε
m =

∆v
1− l

· ∂ ls

∂∆v

∣∣∣∣
θ

.

The microelasticity measures the percentage increase in unemployment when the utility

gain from work decreases by 1%, taking into account jobseekers’ reduction in search effort

but ignoring the equilibrium adjustment of labor market tightness. The microelasticity can be

estimated by measuring the reduction in the job-finding probability of an unemployed worker

whose unemployment benefits are increased, keeping the benefits of all other workers constant.

In Panel B of Figure 1, a change in UI leads to a change in search effort, which shifts the labor

supply curve. The microelasticity measures this shift.
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The empirical literature does not typically estimate εm. Instead, this literature estimates the

microelasticity εm
R of unemployment with respect to the replacement rate, R. This is not an issue,

however, because the two elasticities are closely related. Usually εm
R is estimated by changing

benefits cu while keeping ce constant. As ∆c = (1−R) ·w, ∆v = v(ce)−v(ce− (1−R) ·w)) and

∂ ls/∂R
∣∣
θ ,ce

=−w · v′(cu) ·
(
∂ ls/∂∆v

∣∣
θ

)
. The empirical elasticity εm

R is thus related to εm by

ε
m
R ≡

R
1− l

· ∂ (1− ls)

∂R

∣∣∣∣
θ ,ce

=
R ·w · v′(cu)

∆v
· εm. (12)

DEFINITION 2. The discouraged-worker elasticity is

ε
f =

f (θ)
e
· ∂es

∂ f

∣∣∣∣
∆v
.

The discouraged-worker elasticity measures the percentage increase in search effort when

the job-finding rate per unit of effort increases by 1%, keeping UI constant. In our model, work-

ers search less when the job-finding rate decreases and ε f > 0; hence, ε f captures jobseekers’

discouragement when labor market conditions deteriorate. The discouraged-worker elasticity

determines the elasticity of labor supply with respect to labor market tightness:

LEMMA 1. The elasticity of labor supply with respect to tightness is related to the discouraged-

worker elasticity by

θ

l
· ∂ ls

∂θ

∣∣∣∣
∆v

= (1−η) · (1+ ε
f )

Proof. Obvious because ls(θ ,∆v) = es( f (θ),∆v) · f (θ), ε f is the elasticity of es with respect to

f , and 1−η is the elasticity of f with respect to θ .

Equipped with these elasticities, we can differentiate the social welfare function:
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LEMMA 2. The social welfare function admits the following derivatives:

∂SW
∂θ

∣∣∣∣
∆v

=
l
θ
· (1−η) ·φ ·w ·

[
∆v

φ ·w
+R ·

(
1+ ε

f
)
− η

1−η
· τ(θ)

]
(13)

∂SW
∂∆v

∣∣∣∣
θ

= (1− l) · φ ·w
∆v
· εm ·

[
R− l

εm ·
∆v
w
·
(

1
v′(ce)

− 1
v′(cu)

)]
, (14)

where φ is a harmonic mean of workers’ marginal utilities:

1
φ
=

l
v′(ce)

+
1− l
v′(cu)

. (15)

Proof. We first derive (13). Since workers choose effort to maximize expected utility, a standard

application of the envelope theorem says that changes in the effort es(θ ,∆v) resulting from

changes in θ have no impact on social welfare. The effect of θ on welfare therefore is

∂SW
∂θ

=
l
θ
· (1−η) ·∆v+ v′(cu) · ∂cu

∂θ
. (16)

The first term is the welfare gain arising from the increase in employment following an increase

in θ . Higher employment is beneficial for welfare because it implies that more workers enjoy

the high level of consumption ce instead of the low level of consumption cu. The first term is

obtained by noting that the elasticity of f (θ) is 1−η so e · f ′(θ) = (l/θ) · (1−η). This term

accounts only for the change in employment resulting from a change in job-finding rate, and not

for that resulting from a change in effort. The second term is the welfare change arising from

the consumption changes required so that the budget constraint (11) continues to hold after a

change in θ .

To compute the consumption change ∂cu/∂θ , we implicitly differentiate cu(θ ,∆v) with

respect to θ in (11). A few preliminary results are helpful. First, (2) implies that y′(n)/(1+

τ(θ)) = w. Second, Lemma 1 implies that ∂ ls/∂θ = (l/θ) · (1− η) · (1+ ε f ). Third, the

definition of ∆v implies that v−1 (v(cu(θ ,∆v))+∆v)−cu =∆c. Fourth, the elasticity of 1+τ(θ)

is η ·τ(θ) so the derivative of 1/(1+τ(θ)) with respect to θ is−η ·τ(θ)/ [θ · (1+ τ(θ))]. Fifth,

the derivative of v−1 (v(cu)+∆v) with respect to cu is v′(cu)/v′(ce). The implicit differentiation
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therefore yields

l
θ
· (1−η) · (1+ ε

f ) · (w−∆c)− l
θ
·η · τ(θ) ·w =

(
l

v′(ce)
+

1− l
v′(cu)

·
)
· v′(cu) · ∂cu

∂θ
.

The first term on the left-hand side is the budgetary gain from the new jobs created. Each new

job increases government revenue by w− ∆c. The new jobs result both from a higher job-

finding rate and from a higher search effort. The term (1+ ε f ) captures the combination of the

two effects. The second term on the left-hand side is the loss in resources due to a higher θ ,

which forces firms to devote more labor to recruiting and less to producing. The entire left-

hand side is the change in resources available to the government to fund the UI system after a

change in θ . This change in resources dictate the consumption change ∂cu/∂θ . Plugging the

expression for ∂cu/∂θ into (16), and introducing the variable φ defined by (15), yields (13).

Next, we derive (14). Following the same logic as above, the effect of ∆v on welfare is

∂SW
∂∆v

= l + v′(cu) · ∂cu

∂∆v
. (17)

The first term is the welfare gain enjoyed by employed workers after a reduction in UI contri-

butions. The second term is the welfare change arising from the consumption changes required

so that the budget constraint (11) continues to hold after a change in ∆v.

To compute the consumption change ∂cu/∂∆v, we implicitly differentiate cu(θ ,∆v) with

respect to ∆v in (11). We need two preliminary results in addition to those above. First, the

definition of the microelasticity implies that ∂ ls/∂∆v = [(1− l)/∆v] ·εm. Second, the derivative

of v−1 (v(cu)+∆v) with respect to ∆v is 1/v′(ce). The implicit differentiation therefore yields

1− l
∆v
· εm · (w−∆c)− l

v′(ce)
=

(
l

v′(ce)
+

1− l
v′(cu)

·
)
· v′(cu) · ∂cu

∂∆v
.

The first term on the left-hand side is the budgetary gain from the new jobs created by reducing

the generosity of UI. This is a behavioral effect, coming from the response of job search to UI.

The second term on the left-hand side is the budgetary loss coming from the reduction in the UI

contributions paid by employed workers. This is a mechanical effect. Plugging the expression
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for ∂cu/∂θ into (17), and introducing the variable φ defined by (15),

∂SW
∂∆v

= (1− l) ·φ ·
[

w
∆v
· εm ·R+

l
1− l

·
(

1
φ
− 1

v′(ce)

)]
.

The definition of φ implies that 1/φ − 1/v′(ce) = −(1− l) · (1/v′(ce)−1/v′(cu)). Combining

this expression with the last equation yields (14).

IV. The Optimal Unemployment Insurance Formula

In this section we derive the optimal UI formula, expressed in terms of estimable statistics.

It is well understood that in matching models with unemployment insurance, the equilibrium

is generically inefficient. This means that a marginal increase in labor market tightness, keeping

the utility gain from work constant, generically has an effect on welfare. 7 If increasing tightness

while keeping the utility gain from work constant has no first-order effect on welfare, tightness

is efficient. But if the increase enhances welfare, tightness is inefficiently low, and if the increase

reduces welfare, tightness is inefficiently high. The equilibrium wage is inefficiently high when

the equilibrium tightness is inefficiently low, and it is inefficiently low when the equilibrium

tightness is inefficiently high. We will show that the optimal level of UI depends on the effect

of tightness on welfare. The following proposition is therefore important because it provides a

simple condition to assess the effect of tightness on welfare.

DEFINITION 3. The efficiency term is

∆v
φ ·w

+R ·
(

1+ ε
f
)
− η

1−η
· τ(θ),

where φ is given by (15).

7Our matching model assumes random search—workers apply to firms randomly, irrespective of the wage that
they offer. With random search there is no reason for the equilibrium to be efficient, as explained by Pissarides
[2000]. Other matching models assume directed search—workers apply to submarkets based on the wage-tightness
compromise that they offer. With directed search, the competitive search mechanism of Moen [1997] usually
ensures efficiency. But with a UI system, even the competitive search mechanism cannot ensure efficiency because
agents fail to internalize the effects of their actions on the government budget constraint [Lehmann and Van Der
Linden, 2007]. Hence, inefficiency is generic in matching models with unemployment insurance, whether random
or directed search is assumed.
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PROPOSITION 1. Consider a marginal increase in labor market tightness, keeping the utility

gain from work constant. The efficiency term is positive iff the increase raises welfare, zero iff

the increase has no first-order effect on welfare, and negative iff the increase lowers welfare.

Proof. The result directly follows from (13).

This proposition is closely related to efficiency condition of Hosios [1990]. One difference is

that the Hosios condition is a condition on the wage mechanism—it relates workers’ bargaining

power to the elasticity of the matching function—whereas our efficiency condition is a condition

on estimable statistics. Another difference is that the Hosios condition applies to models with

risk-neutral workers whereas our condition applies to models with risk-averse workers.

So far, we have parameterized each equilibrium by a pair (θ ,∆v). We have used this prelimi-

nary analysis to describe the social welfare function and introduce the efficiency term. However,

to study optimal UI, we need to account for the equilibrium response of θ to ∆v. This requires

us to specify a wage mechanism. We assume that the wage is determined by a general wage

mechanism

w = w(θ ,∆v).

Since all the endogenous variables in the model are a function of (θ ,∆v), this mechanism allows

the wage to be any function of θ , ∆v, and any other variable. As a consequence, this is the most

general wage mechanism possible. With this wage mechanism, the equilibrium condition (9)

implicitly defines θ as a function of ∆v.

The response of the wage to UI has important implications for optimal UI because it de-

termines how labor demand responds to UI. However, we do not need an explicit expression

for the wage mechanism. The only information needed is the response of employment to UI,

measured by the following elasticity:

DEFINITION 4. The macroelasticity of unemployment with respect to UI is

ε
M =

∆v
1− l

· dl
d∆v

.
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The macroelasticity measures the percentage increase in unemployment when the utility

gain from work decreases by 1%, taking into account jobseekers’ reduction in search effort and

the equilibrium adjustment of labor market tightness. The macroelasticity can be estimated by

measuring the increase in aggregate unemployment following a general increase in unemploy-

ment benefits. Of course, the macroelasticity is endogenous: it may respond to the labor market

tightness or the generosity of UI.

The optimal level of UI will depend on the effect of UI on tightness. The following propo-

sition is therefore important because it shows that the effect of UI on tightness is measured by

the wedge between microelasticity and macroelasticity of unemployment with respect to UI.

DEFINITION 5. The elasticity wedge is 1− εM/εm.

PROPOSITION 2. The elasticity wedge measures the response of labor market tightness to UI:

∆v
θ
· dθ

d∆v
=−1− l

l
· 1

1−η
· εm

1+ ε f ·
(

1− εM

εm

)
. (18)

The elasticity wedge is positive iff tightness increases with the generosity of UI, negative iff

tightness decreases with the generosity of UI, and zero iff tightness does not depend on UI.

Proof. Since l = ls(θ ,∆v), we have:

∆v
1− l

· dl
d∆v

=

(
θ

1− l
· ∂ ls

∂θ

)
·
(

∆v
θ
· dθ

d∆v

)
+

(
∆v

1− l
· ∂ ls

∂∆v

)
.

Using (θ/l)(∂ ls/∂θ) = (1−η)(1+ ε f ) from Lemma 1, we obtain

ε
M =

l
1− l

· (1−η) ·
(

1+ ε
f
)
· ∆v

θ
· dθ

d∆v
+ ε

m. (19)

Dividing this equation by εm and rearranging the terms yields the desired result.

The proposition shows that a wedge appears between microelasticity and macroelasticity

when UI affects tightness, and that this wedge has the same sign as the effect of UI on tightness.

Figure 2 illustrates this result. The horizontal distance A–B measures the microelasticity

and the horizontal distance A–C measures the macroelasticity. In Panel A, the labor demand

16



A

C

B
dθ > 0

LD
La

bo
r m

ar
ke

t t
ig

ht
ne

ss
 θ

Employment l

LS, high UI LS, low UI

Microelasticity εm 

Macroelasticity εM

Panel A. Positive elasticity wedge (εM < εm)

C’

C

AB

Microelasticity εm 

Macroelasticity εM

dθ < 0

LD, high UI

LD, low UI

La
bo

r m
ar

ke
t t

ig
ht

ne
ss

 θ

Employment l

LS, low UILS, high UI

Panel B. Negative elasticity wedge (εM > εm)

Figure 2: The effect of UI on tightness determines the sign of the elasticity wedge, 1− εM/εm

Notes: This figure illustrates Proposition 2. Panel A considers a downward-sloping labor demand curve that does
not respond to UI. Panel B considers a downward-sloping labor demand curve that shifts inward when UI increases.

curve is downward sloping, and it does not shift with a change in UI. After a reduction in UI,

the labor supply curve shifts outward (A–B) and tightness increases along the new labor supply

curve (B–C). Since tightness rises after the increase in UI, the macroelasticity is smaller than

the microelasticity. In Panel B, the labor demand also shifts inward with an increase in UI.

Tightness falls along the new supply curve after the labor demand shift (C’–C). In equilibrium,

tightness can rise or fall depending on the size of the labor demand shift. In Panel B tightness

falls so the macroelasticity is larger than the microelasticity. In Section VI, we will consider

specific matching models to describe the mechanisms through which UI affects tightness.

Having analyzed the effects of tightness on welfare and those of UI on tightness, we are

equipped to derive the optimal UI formula. The problem of the government is to choose the

utility gain from work, ∆v, to maximize social welfare, given by (10), subject to the equilibrium

response of tightness, given by (9). The following proposition characterizes optimal UI:

PROPOSITION 3. The optimal replacement rate of UI satisfies the formula

R =
l

εm
∆v
w

[
1

v′(ce)
− 1

v′(cu)

]
+

1
1+ ε f

[
1− εM

εm

][
∆v
wφ

+
(

1+ ε
f
)

R− η

1−η
τ(θ)

]
, (20)

where φ satisfies (15). The first term in the right-hand side is the Baily-Chetty rate, and the

second term is the correction term.
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Proof. We define welfare SW (θ ,∆v) by (10). The derivative of the social welfare with respect

to ∆v is dSW/d∆v = ∂SW/∂∆v + (∂SW/∂θ) · (dθ/d∆v). Therefore, the first-order condi-

tion dSW/d∆v = 0 in the current problem is a linear combination of the first-order conditions

∂SW/∂θ = 0 and ∂SW/∂∆v = 0. Hence, the optimal UI formula is a linear combination of

the efficiency condition and the Baily-Chetty formula. Moreover, the efficiency condition is

multiplied by the wedge 1− εM/εm because the factor dθ/d∆v is proportional to that wedge.

Equation (18) shows that the labor market tightness variation is given by

dθ

d∆v
=

1− l
l
· 1

1−η
· 1

1+ ε f ·
θ

∆v
·
(
ε

M− ε
m) .

We combine this equation with the derivatives in Lemma 2 to write the first-order condition

dSW/d∆v = 0. Dividing the resulting equation by (1− l) ·φ ·w · εm ·/∆v yields (20).

COROLLARY 1. If the labor market equilibrium is efficient, the optimal replacement rate of UI

satisfies the Baily-Chetty formula:

R =
l

εm ·
∆v
w
·
(

1
v′(ce)

− 1
v′(cu)

)
. (21)

Proof. Equation (21) obtains from Propositions 1 and 3. It may not be immediately apparent

that (21) is equivalent to the traditional Baily-Chetty formula. The equivalence becomes clear

using (12), which allows us to rewrite formula (21) as

ε
m
R = l ·

(
v(cu)

v′(ce)
−1

)
.

This is the standard expression for the Baily-Chetty formula.

Formula (20) shows that the optimal replacement rate of UI is the sum of the Baily-Chetty

rate and a correction term. The Baily-Chetty rate solves the trade-off between the need for

insurance, measured by 1/v′(ce)−1/v′(cu), and the need for incentives to search, measured by

εm, exactly as in the analysis of Baily [1978] and Chetty [2006a]. The correction term is the

product of the effect of UI on tightness, measured by the elasticity wedge, and the effect of
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Table 1: Optimal replacement rate of UI compared to Baily-Chetty replacement rate

Panel A. Comparison based on theoretical derivatives
dθ/d∆v > 0 dθ/d∆v = 0 dθ/d∆v < 0

∂SW/∂θ
∣∣
∆v > 0 lower same higher

∂SW/∂θ
∣∣
∆v = 0 same same same

∂SW/∂θ
∣∣
∆v < 0 higher same lower

Panel B. Comparison based on estimable statistics
Elasticity wedge < 0 Elasticity wedge = 0 Elasticity wedge > 0

Efficiency term > 0 lower same higher
Efficiency term = 0 same same same
Efficiency term < 0 higher same lower

Notes: The replacement rate of UI is R = 1−(ce−cu)/w. The Baily-Chetty replacement rate is given by (21). The
elasticity wedge is 1− εM/εm. The efficiency term is (∆v+ k(e))/(φ ·w)+(1+ ε f ) ·R− [η/(1−η)] · τ(θ). The
optimal replacement rate of UI is higher than the Baily-Chetty rate if the correction term in (20) is positive, same
as the Baily-Chetty rate if the correction term is zero, and lower than the Baily-Chetty rate if the correction term is
negative.

tightness on welfare, measured by the efficiency term. The correction term is positive if and

only if increasing UI brings the labor market equilibrium toward efficiency.8

There are two situations when the correction term is zero and the optimal replacement rate

is given by the Baily-Chetty formula. The first situation is when the labor market tightness is

efficient such that the efficiency term is zero. This is the situation described by the corollary.

In that case, the marginal effect of UI on tightness has no first-order effect on welfare; hence,

optimal UI is governed by the same principles as in the Baily-Chetty framework in which tight-

ness is fixed. The second situation is when UI has no effect on tightness such that the elasticity

wedge is zero. In that case, our model is isomorphic to the Baily-Chetty framework, so optimal

UI is guided by the same principles.

In all other situations, the correction term is nonzero and the optimal replacement rate de-

parts from the Baily-Chetty rate. The main implication of our formula is that increasing UI

above the Baily-Chetty rate is desirable if and only if increasing UI brings the labor market

8The response of tightness to UI can be interpreted as a pecuniary externality. The reason is that tightness can be
interpreted as a price influenced by the search behavior of workers and influencing welfare when the labor market
is inefficient. Under this interpretation, the additive structure of the formula—a standard term plus a correction
term—is similar to the structure of many optimal taxation formulas obtained in the presence of externalities.
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tightness closer to efficiency. UI brings tightness closer to efficiency either if tightness is inef-

ficiently low and UI raises tightness or if tightness is inefficiently high and UI lowers tightness.

In terms of the estimable statistics, UI brings tightness closer to efficiency if the efficiency term

and elasticity wedge are both positive or if they are both negative. Table 1 summarizes all the

possible situations.

As is standard in optimal tax formulas, the right-hand-side of (20) is endogenous to UI. Even

though the formula only characterizes optimal UI implicitly, it is useful. First, it transparently

shows the economic forces at play. Second, it gives conditions for the optimal replacement rate

of UI to be above or below the Baily-Chetty rate. These conditions apply to a broad range of

matching models. Third, the right-hand-side term is expressed with statistics that are estimable.

Hence, the formula could be combined with empirical estimates to assess a UI system. This

assessment is valid even if the right-hand-side of the formula is endogenous to UI.

An important implication of our formula is that even in the presence of private provision

of UI, the public provision of UI is justified. Indeed, small private insurers do not internalize

tightness externalities and offer insurance against unemployment at the Baily-Chetty rate. It

is therefore optimal for the government to correct privately provided UI by a quantity equal to

the correction term. The correction term is positive or negative depending on the level of labor

market tightness and the sign of the elasticity wedge.

Our formula reveals some counterintuitive properties of optimal UI. First, even if UI has

no adverse on unemployment and εM = 0, full insurance is not desirable. Consider a model

in which the number of jobs is fixed. Increasing UI redistributes from employed workers to

unemployed workers without destroying jobs, but, unlike what intuition suggests, the optimal

replacement is strictly below 1. This can be seen by plugging εM = 0 and εm > 0 in (20). The

reason is that increasing UI increases tightness and forces firms to allocate more workers to

recruiting instead of producing, thus reducing output available to consumption. In fact, if the

efficiency condition holds, UI is given by the standard Baily-Chetty formula and the magnitude

of εM is irrelevant.

Second, even in the absence of any concern for insurance, some UI should be offered if UI

brings the labor market closer to efficiency. Consider a model with risk-neutral workers and
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exogenous search effort (εm = ε f = 0). Formula (20) reduces to τ(θ) = (1−η)/η , which is

the condition on tightness to maximize output and hence restore efficiency.9

Third, even though wages may respond to UI, the response of wages does not appear directly

in the formula. It does not matter whether wages change or not because wages do not enter in

the government’s budget constraint or workers’ search decisions. The wage does appear in

firms’ decisions, but this effect is measured by the macroelasticity. In other words, the elasticity

wedge is the sufficient statistics that captures the effects of UI on wages.

V. Robustness of the Formula

In this section, we show that the optimal UI formula derived in the previous section is quite

robust. It continues to hold in a dynamic model that accounts for long-term employment re-

lationships. It also holds when workers can partially insure themselves against unemployment

through home production. Finally, it holds when unemployed workers suffer a nonpecuniary

cost from being unemployed.

A. The Formula in a Dynamic Model

Section IV considers a static model. However, most employment relationships are long term

rather than short term in the US [Hall, 1982]. Here we embed the static model of Section II into

a dynamic environment to represent long-term employment relationships. The main difference

introduced by the long-term relationships is that at all times, some workers are employed, and

only the fraction of workers who are unemployed need to search for a job. In contrast, in the

static model, all workers are initially unemployed and need to search for a job. Given this

difference, the derivation of the optimal UI formula is slightly modified in the dynamic model.

We work in continuous time. At time t, the number of employed workers is l(t) and the

number of unemployed workers is u(t) = 1− l(t). Labor market tightness is θt = ot/(et · ut).

Jobs are destroyed at rate s > 0. Unemployed workers find a job at rate e(t) · f (θ(t)). Thus, the

9To see this, multiply formula (20) by εm · (1−R). With εm = ε f = 0 and ∆v = ∆c due to risk neutrality, we
have φ = 1 and ∆v/w = 1−R. Therefore, −εM · [(1−R)+R−η · τ(θ)/(1−η)] = 0. If UI influences tightness,
εM > 0 and we obtain τ(θ) = (1−η)/η .
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law of motion of employment is

l̇(t) = e(t) · f (θ(t)) · (1− l(t))− s · l(t). (22)

In steady state l̇(t) = 0. Hence, employment, effort, and tightness are related by

l =
e · f (θ)

s+ e · f (θ)
. (23)

Let L(x) = x/(s+ x). The elasticity of L with respect to x is 1−L. It is because l = L(e · f (θ))

in the dynamic model instead of l = e · f (θ) in the static model that the factor 1− l appears in

many formulas of the dynamic model.

Firms employ n(t) producers and l(t)−n(t) recruiters. Each recruiter handles 1/r vacancies

so the law of motion of the number of employees is

l̇(t) =−s · l(t)+ l(t)−n(t)
r

·q(θ(t)). (24)

In steady state l̇(t) = 0 and the number of employees is proportional to the number of producers:

l = (1+ τ(θ)) ·n, where τ(θ) = s · r/ [q(θ)− s · r].10

We focus on the steady state of the model with no time discounting. Firms, workers, and

government maximize the flow value of profits, utility, and social welfare subject to the steady-

state constraints. Given w and θ , the representative firm chooses n to maximize y(n)−w · (1+

τ(θ)) · n. The optimal employment level satisfies (2). Given θ , ce, and cu, the representative

unemployed worker chooses e to maximize

l · v(ce)+(1− l) · v(cu)− (1− l) · k(e) (25)

with l given by (23). Routine calculations show that the optimal search effort satisfies

k′(e) =
l
e
· (∆v+ k(e)) . (26)

10The wedge τ(θ) is a different function of the parameters in the static and dynamic environments, but τ(θ)
should be considered as a sufficient statistic defined as 1+τ(θ)≡ l/n. That is, τ(θ) is the recruiter-producer ratio.
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Finally, the government chooses ce and cu to maximize (25) subject to (1), (2), (23), (26),

and (4).

Without discounting, the static results are barely modified in the dynamic model. Following

the same steps as in the static model, we can show that the formula of Lemma 1 becomes

θ

l
· ∂ ls

∂θ

∣∣∣∣
∆v

= (1− l) · (1+ ε
f ) · (1−η)

The only difference with the original formula is the extra factor 1− l. In the dynamic environ-

ment, equation (19), which links micro- and macroelasticity becomes

ε
M = ε

m + l · (1−η) ·
(

1+ ε
f
)
· ∆v

θ
· dθ

d∆v
.

As expected, the only difference with the original formula is that a factor l replaces the factor

l/(1− l). Accordingly, in the dynamic model, the wedge becomes

1− εM

εm =−l · (1−η) · 1+ ε f

εm · ∆v
θ
· dθ

d∆v
.

Here again, the only difference with the original wedge is that a factor l replaces the factor

l/(1− l). Accordingly, in the dynamic model the optimal UI formula becomes

R =
l∆v
εmw

[
1

v′(ce)
− 1

v′(cu)

]
+

1
1+ ε f

[
1− εM

εm

][
∆v+ k(e)

wφ
+
(

1+ ε
f
)

R− η

1−η

τ(θ)

1− l

]
(27)

with φ given by (15).

Although it seems that the optimal UI formula is modified in the dynamic model, the formu-

las in the static and dynamic models are identical once expressed with the correct statistics. The

derivation of formula (20) shows that the ∆v in the efficiency term stands for the utility gap be-

tween employment and unemployment. This gap is ∆v in the static model, where employed and

unemployed workers search for jobs, but it is ∆v+ k(e) in the dynamic model, where only un-

employed workers search for jobs. The derivation also shows that the τ(θ) in the efficiency term

is divided by the elasticity of the function L, defined such that ls(θ ,∆v) = L(es(θ ,∆v) · f (θ)).

This elasticity is 1 in the static model but 1− l in the dynamic model. These differences between
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the static and dynamic models explain why the ∆v and τ(θ) in the efficiency term of (20) are

replaced by ∆v+ k(e) and τ(θ)/(1− l) in the efficiency term of (27).

B. The Formula With Partial Self-Insurance Against Unemployment

Section IV assumes that workers cannot insure themselves against unemployment. In reality,

workers insure themselves partially against unemployment [Gruber, 1997]. Here we assume

that workers insure themselves partially against unemployment with home production.11

The UI system provides employed workers with consumption ce and unemployed work-

ers with consumption cu < ce. In addition to consuming cu, unemployed workers consume

an amount h produced at home at a utility cost x(h). The function x is increasing and con-

vex, and x(0) = 0. Workers choose h to maximize the utility when unemployed, v(cu + h)−

x(h). This choice minimizes the utility gain from work, v(ce)− v(cu + h)+ x(h). Let ∆vh ≡

minh {v(ce)− v(cu +h)+ x(h)} be the optimal utility gain from work. Let ch ≡ cu + hs(cu) be

the optimal consumption of unemployed workers, where hs(cu) ≡ argmaxh {v(cu +h)− x(h)}

is the optimal home production. We also redefine the elasticities εm, εM, and ε f using ∆vh

instead of ∆v.

When workers have partial access to self-insurance, the optimal UI formula becomes

R =
l

εm
∆vh

w

[
1

v′(ce)
− 1

v′(ch)

]
+

1
1+ ε f

[
1− εM

εm

][
∆vh

wφ
+
(

1+ ε
f
)

R− η

1−η
τ(θ)

]
,

where φ satisfies 1/φ = l/v′ (ce)+ (1− l)/v′
(
ch). Hence, formula (20) carries over; the only

minor modifications required by self-insurance are to change the utility gain from work from

∆v to ∆vh and the marginal utility of unemployed workers from v′(cu) to v′(ch). We obtain the

formula by repeating all the derivations of formula (20), but replacing ∆v by ∆vh.12

11Home production is a simple representation of all the means of self-insurance available to workers. In practice,
workers insure themselves not only with home production but also with savings or spousal income. Analyzing
savings or spousal income would be more complex.

12Repeating the derivations is straightforward, except for three steps. First, the social welfare function admits a
slightly different expression:

SW (θ ,∆vh) = es(θ ,∆vh) · f (θ) ·∆vh + v(cu(θ ,∆vh)+hs(cu(θ ,∆vh)))− x(hs(cu(θ ,∆vh)))− k(es(θ ,∆vh)).

However, since unemployed workers choose home production to maximize their utility, a standard application of

24



The availability of self-insurance affects both the Baily-Chetty rate and the efficiency term

in the formula. In the Baily-Chetty rate, the need for insurance becomes 1/v′(ce)−1/v′(ch)<

1/v′(ce)−1/v′(cu). The need for publicly provided unemployment insurance is lower because

unemployed workers are able to insure themselves partially against unemployment. Hence,

the Baily-Chetty rate is lower. In the efficiency term, the utility gap between employment

and unemployment becomes ∆vh = minh {v(ce)− v(cu +h)+ x(h)} < v(ce)− v(cu). Since the

utility gap between employment and unemployment is lower, the efficiency term is lower, which

implies that the efficient labor market tightness is lower. Using the logic in Table 1, it follows

that the optimal replacement rate is higher if the elasticity wedge is negative but lower if the

elasticity wedge is positive. Overall, when self-insurance is available, the optimal replacement

rate is unambiguously lower if the elasticity wedge is positive, but the optimal replacement rate

may be higher or lower if the elasticity wedge is negative.

C. The Formula With a Nonpecuniary Cost of Unemployment

Section IV assumes that the well-beings of unemployed and employed workers differ only be-

cause unemployed workers have a lower income and thus consume less. In reality, controlling

for income and many other personal characteristics, unemployed workers report much lower

well-being than employed workers [Blanchflower and Oswald, 2004; Di Tella, MacCulloch and

Oswald, 2003]; the source of this lower well-being seems to be higher anxiety, lower confi-

dence, lower self-esteem, and depression [Theodossiou, 1998].13 Here we assume that unem-

ployed workers have utility v(cu)− z, where the parameter z captures the nonpecuniary cost of

unemployment. Given the large body of work in medicine, psychology, and economics that

documents the large nonpecuniary cost suffered by unemployed workers, it is likely that z > 0.

the envelope theorem says that changes in home production hs(cu(θ ,∆vh)) resulting from changes in θ and ∆vh

have no impact on social welfare. Therefore, (16) and (17) remain valid once ∆v and cu are replaced by ∆vh and
ch. Second, since ∆vh = v(ce)− v(cu +hs(cu))+ x(hs(cu)), the consumption of employed workers is given by

ce(θ ,∆vh) = v−1
(

v(cu(θ ,∆vh)+hs(cu(θ ,∆vh)))− x(hs(cu(θ ,∆vh)))+∆vh
)
.

However, because unemployed workers choose home production to maximize v(cu + h)− x(h), changes in
hs(cu(θ ,∆vh)) resulting from changes in θ and ∆vh have no impact on ce(θ ,∆vh). Therefore, the expressions
for the consumption changes ∂cu/∂θ and ∂cu/∂∆vh remain valid once ∆v and cu are replaced by ∆vh and ch.

13See Frey and Stutzer [2002] for a survey.

25



In theory, however, it is possible that z < 0. In that case, unemployed workers would enjoy

nonpecuniary benefits—a benefit could be additional time for leisure.

When unemployed workers suffer a nonpecuniary cost, the optimal UI formula becomes

R =
l

εm
∆v
w

[
1

v′(ce)
− 1

v′(cu)

]
+

1
1+ ε f

[
1− εM

εm

][
∆v+ z

wφ
+
(

1+ ε
f
)

R− η

1−η
τ(θ)

]
.

Hence, formula (20) carries over; the only modification required by the nonpecuniary cost of

unemployment is to change the utility gain from work from ∆v to ∆v+ z in the efficiency term.

The nonpecuniary cost from unemployment affects only the efficiency term in the formula,

where the utility gap between employment and unemployment becomes ∆v+ z. A first impli-

cation is that, since the Baily-Chetty rate is independent of the nonpecuniary cost suffered by

unemployed workers, the Baily-Chetty rate does not depend on the overall level of well-being of

unemployed workers. A second implication is that when unemployed workers suffer a nonpe-

cuniary cost (z > 0), the efficiency term and thus the efficient labor market tightness are higher.

Using the logic in Table 1, it follows that when unemployed workers suffer a nonpecuniary cost,

the optimal replacement rate is higher if the elasticity wedge is positive, but it is lower if the

elasticity wedge is negative.

VI. The Economics of the Elasticity Wedge

Section IV showed that the optimal level of UI depends critically on the effect of UI on tightness,

measured by the elasticity wedge, but it remained vague on the economic mechanisms through

which UI affects tightness. In this section, we consider four matching models that differ by their

wage mechanism and production function to describe possible mechanisms. Table 2 presents

the models and summarizes their properties. In these models UI has two possible effects on

tightness: a job-creation effect that lowers tightness, and a rat-race effect that raises tightness.

A. The Elasticity Wedge in a Standard Model

The standard model shares the main features of the model in Pissarides [2000] and Shimer

[2005]. The production function is linear: y(n) = n. When they are matched, worker and firm
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Table 2: Effect of UI on labor market tightness in matching models

Model

Standard Rigid-wage Job-rationing Aggregate-demand

Production function linear linear concave linear
Wage mechanism bargaining rigid rigid rigid
Type of UI effect job-creation no effect rat-race rat-race
Effect of UI on tightness − 0 + +
Elasticity wedge − 0 + +

Notes: This table summarizes Propositions 4, 5, 6, and 9. The job-creation and rat-race effects are depicted in
Figure 3. The elasticity wedge is 1− εM/εm.

bargain over the wage. The outcome of this bargaining is that the match surplus is shared,

with the worker keeping a fraction β ∈ (0,1) of the surplus.14 The parameter β is the worker’s

bargaining power.15

We need to derive the labor demand to analyze the model. We begin by determining the

bargained wage. The worker’s surplus from a match with a firm is W = ∆v. The firm’s surplus

from a match with a worker is F = 1−w because once a worker is recruited, she produces 1

unit of good and receives a real wage w. Since worker and firm split the total surplus from the

match, W /β = F/(1−β ). Hence, the bargained wage satisfies

w = 1− 1−β

β
·∆v.

Increasing UI raises the bargained wage. The reason is that the outside option of jobseekers

increases after an increase in UI, so they are able to obtain a higher wage.

We combine the wage equation with (3) and y′(n) = 1 to obtain the labor demand:

τ(θ)

1+ τ(θ)
=

1−β

β
·∆v. (28)

This equation defines a perfectly elastic labor demand curve in a (l,θ) plane, as depicted in

14In a seminal paper, Diamond [1982] also assumed a surplus-sharing solution to the bargaining problem. If
workers and firms are risk neutral, the surplus-sharing solution coincides with the generalized Nash solution.
Under risk aversion, these two solutions generally differ. We use the surplus-sharing solution for its simplicity.

15To obtain a positive wage, we impose that β/(1−β )> ∆v.
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Panel A of Figure 3. The labor demand shifts downward when UI increases. The reason is that

when UI increases, wages rise so it becomes less profitable for firms to hire workers.

Having obtained the labor demand, we can describe the effect of UI on tightness:

PROPOSITION 4. Increasing UI lowers tightness: dθ/d∆v > 0. The elasticity wedge is

1− εM

εm =− l
1− l

· 1−η

η
· 1+ ε f

εm < 0.

Proof. We differentiate (28) with respect to ∆v. Since the elasticities of τ(θ) and 1+τ(θ) with

respect to θ are η · (1+τ(θ)) and η ·τ(θ), we obtain (∆v/θ) · (dθ/d∆v) = 1/η . It follows that

dθ/d∆v > 0. Using (18) then immediately yields the expression for the wedge.

Panel A of Figure 3 illustrates the proposition. After an increase in UI, jobseekers search

less, shifting the labor supply curve inward by a distance A–B. In addition, bargained wages

increase, shifting the labor demand curve downward, and further reducing employment by the

horizontal distance B–C. The total reduction in employment is given by the horizontal distance

A–C. Since A–C is larger than A–B, the macroelasticity is larger than the microelasticity.

The standard model nicely captures two effects of UI: the moral-hazard effect and the job

creation effect. The moral-hazard effect is the reduction in employment caused by the reduc-

tion in search effort, which is not observable and thus a source of moral hazard. The distance

A–B measures this effect. The job-creation effect is the reduction in employment caused by

the reduction in hiring following the increase in wages. The distance B–C measures this ef-

fect. The job-creation effect is the reason why tightness falls when UI increases, and why the

macroelasticity is larger than the microelasticity.

The proposition implies that optimal UI is higher than the Baily-Chetty level when tightness

is inefficiently high and lower when tightness is inefficiently low. For example, when tightness

is inefficiently low, reducing UI lowers wages and increases tightness, which improves welfare

beyond the insurance-incentive trade-off.
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Figure 3: Effect of UI on labor market tightness and employment in matching models

B. The Elasticity Wedge in a Rigid-Wage Model

The rigid-wage model shares the main features of the model developed by Hall [2005]. The

production function is linear: y(n) = n. The wage is fixed: w = ω , where ω ∈ (0,1). We

combine the wage schedule with equation (3) to obtain the labor demand:

1 = ω · (1+ τ(θ)) . (29)

This equation defines a perfectly elastic labor demand in a (l,θ) plane, as depicted in Panel B

of Figure 3. The labor demand is unaffected by UI because the wage does not respond to UI.

Having obtained the labor demand, we can describe the effect of UI on tightness:
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PROPOSITION 5. Increasing UI has no effect on tightness. The elasticity wedge is 0.

Proof. Equilibrium tightness is determined by (29). This equation is independent of ∆v.

Panel B of Figure 3 illustrates the result. Since the labor demand curve is horizontal and

independent of UI, UI has no effect on tightness. The only effect at play is the moral-hazard

effect, as in the Baily-Chetty framework. The rigidity of wages with respect to UI eliminates the

job-creation effect that was present in the standard model. The proposition implies that optimal

UI is always given by the Baily-Chetty formula even if the efficiency condition does not hold.

Tightness may be inefficient but this inefficiency does not affect optimal UI because UI has no

effect on tightness.

C. The Elasticity Wedge in a Job-Rationing Model

The job-rationing model shares the main features of the model developed by Michaillat [2012].

The production function is concave: y(n) = a ·nα , where a is technology and α ∈ (0,1) parame-

terizes diminishing marginal returns to labor. The wage is independent of UI and partially rigid

with respect to technology: w = ω ·aγ , where γ ∈ [0,1) parameterizes the rigidity with respect

to technology. If γ = 0, the wage is fixed: it does not respond to technology. If γ = 1, the wage

is fully flexible: it is proportional to technology.

We combine the wage schedule with equation (3) to obtain the labor demand:

ld(θ ,a) =
(

ω

α
·aγ−1

)− 1
1−α · (1+ τ(θ))−

α

1−α . (30)

The labor demand is unaffected by UI because the wage does not respond to UI. The labor de-

mand is decreasing with θ . When the labor market is tighter, hiring workers is less profitable as

it requires a higher share of recruiters, τ(θ). Hence, firms choose a lower level of employment.

The labor demand is also increasing in a. When technology is lower, the wage-technology ratio,

w/a = ω · aγ−1, is higher as wages are somewhat rigid, and hiring workers is less profitable.

Hence, firms choose a lower level of employment. In the (l,θ) plane of Panel C in Figure 3, the

labor demand curve is downward sloping, and it shifts inward when technology falls.

Having characterized the labor demand, we describe the effect of UI on tightness:
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PROPOSITION 6. Increasing UI raises tightness: dθ/d∆v < 0. The elasticity wedge is

1− εM

εm =

(
1+

η

1−η
· α

1−α
· 1

1+ ε f · τ(θ)
)−1

> 0. (31)

Proof. The elasticity of 1+ τ(θ) with respect to θ is η · τ(θ). From (30), we infer that the

elasticity of ld(θ ,a) with respect to θ is −η · τ(θ) ·α/(1−α). By definition, εM is l/(1− l)

times the elasticity of l with respect to ∆v. Since l = ld(θ ,a) in equilibrium, we infer that

ε
M =− l

1− l
·η · α

1−α
· τ(θ) · ∆v

θ
· dθ

d∆v

We plug the expression for (∆v/θ) · (dθ/d∆v) given by (18) into this equation and obtain

ε
M =

η

1−η
· α

1−α
· 1

1+ ε f · τ(θ) ·
(
ε

m− ε
M)

.

Dividing this equation by εm and re-arranging yields (31).

Panel C of Figure 3 illustrates the proposition. After an increase in UI, jobseekers search

less, shifting the labor supply curve inward by a distance A–B. Since the labor demand curve

is downward sloping and does not respond to UI, the initial reduction in employment is attenu-

ated by a horizontal distance B–C. The total reduction in employment is given by the horizontal

distance A–C. Since A–C is smaller than A–B, the macroelasticity is smaller than the microe-

lasticity.

In addition to the moral-hazard effect, the job-rationing model features the rat-race effect,

which is not present in the standard model. The rat-race effect is the increase in employment

caused by the increase in tightness following the increase in UI. Intuitively, the number of

jobs available is somewhat limited because of diminishing marginal returns to labor. Hence,

when workers search less, they reduce their own probability of finding a job but mechanically

increases others’ probability of finding one of the few jobs available. By discouraging job

search, UI alleviates the rat race for jobs and increases the job-finding rate per unit of effort and

labor market tightness.16 The distance B–C measures employment gained through the rat-race

16The formal argument is as follows. Consider an increase in UI. Imagine that tightness, θ , remained constant.
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effect. The rat-race effect is the reason why tightness rises when UI increases, and why the

macroelasticity is smaller than the microelasticity.

Proposition 6 implies that optimal UI is lower than the Baily-Chetty level when tightness

is inefficiently high and higher than the Baily-Chetty level when tightness is inefficiently low.

For instance, when tightness is inefficiently low, increasing UI raises tightness by alleviating

the rat-race for jobs, which improves welfare beyond the insurance-incentive trade-off. The

proposition also shows that the sign of the elasticity wedge does not depend at all on the rigidity

of wages with respect to technology. Even if the wage were completely flexible with respect to

technology (γ = 1), the job-rationing model would feature a positive elasticity wedge and thus

a rat-race effect. In a way this is obvious because the response of tightness to UI is independent

of the response of tightness to technology. What is critical to obtain a positive elasticity wedge

is the rigidity of the wage with respect to UI.

The properties of the labor demand imply that equilibria with low technology are slumps,

and equilibria with high technology are booms.

PROPOSITION 7. For a given utility gain from work, an equilibrium with lower technology has

lower tightness and lower employment: ∂θ/∂a
∣∣
∆v > 0 and ∂ l/∂a

∣∣
∆v > 0.

Proof. The equilibrium condition is ld(θ ,a) = ls(θ ,∆v), where ld is given by (30) and ls by (8).

Implicit differentiation of this condition yields ∂θ/∂a=
(
∂ ld/∂a

)
·
(
∂ ls/∂θ −∂ ld/∂θ

)−1. We

have seen that ∂ ld/∂a > 0, ∂ ls/∂θ > 0, and ∂ ld/∂θ < 0. Thus ∂θ/∂a > 0. The other result

follows since l = ls(θ ,∆v) and ∂ ls/∂θ > 0.

The proposition says that when technology is low, tightness and employment are low, as

in a slump. Conversely, tightness and employment are high when technology is high, as in a

boom. The mechanism is simple. When technology is low, the wage-technology ratio is high

by wage rigidity, which depresses labor demand and therefore tightness and employment. In

Then the marginal recruiting cost, τ(θ), would remain constant. As the wage, w, remains constant, the marginal
cost of labor, w · (1+ τ(θ)), would remain constant. Simultaneously, firms would employ fewer workers because
workers search less. Hence, the marginal product of labor would be higher because of the diminishing marginal
returns to labor. Firms would face the same marginal cost but a higher marginal product of labor, which would not
be optimal. Thus, firms post more vacancies and the new equilibrium has higher labor market tightness.
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Figure 4: Countercyclicality of the elasticity wedge, 1− εM/εm, in the job-rationing model
Notes: This figure illustrates Proposition 8. A slump corresponds to an equilibrium with low technology. A boom
corresponds to an equilibrium with high technology.

Figure 4, Panel A plots the labor demand curve for a low technology, which represents a slump,

and Panel B plots it for a high technology, which represents a boom.

Furthermore, the properties of the labor demand imply that jobs are rationed in slumps.

When technology is low enough (a < (α/ω)
1

γ−1 ), then ld(θ = 0,a) < 1 and jobs are rationed:

firms would not hire all the workers even if workers searched infinitely hard and tightness was

zero. In Panel C of Figure 3, the labor demand curve crosses the x-axis at l < 1.

To conclude, we discuss how that the rat-race effect varies over the business cycle. The

following proposition establishes that the elasticity wedge is higher in slumps than in booms:

ASSUMPTION 1. The matching function and the marginal disutility of search effort are isoe-

lastic: m(e,v) = ωh · eη · v1−η and k′(e) = ωk · eκ for η ∈ (0,1), κ > 0, ωh > 0, and ωk > 0.

PROPOSITION 8. Under Assumption 1, an equilibrium with lower technology has a higher

elasticity wedge: ∂
[
1− εM/εm]/∂a

∣∣
∆v < 0.

Proof. This result follows from combining Proposition 7 with (31), the fact that τ(θ) is increas-

ing with θ , and the fact that ε f = 1/κ and η are constant under Assumption 1.

The proposition shows that the elasticity wedge is higher in slumps than in booms. This

implies the rat-race effect is stronger in slumps than in booms. This result appears in Figure 4
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by comparing the boom in Panel A to the slump in Panel B. The wedge between εM and εm is

driven by the slope of the labor supply relative to that of the labor demand. In a boom, the labor

supply is steep at the equilibrium point because the matching process is congested by the large

number of vacancies. Hence, εM is close to εm. Conversely, in a slump, the labor supply is flat

at the equilibrium point because the matching process is congested by search efforts. Hence,

εM is much lower than εm. Formally, let ε ls ≡ (θ/l) · (∂ ls/∂θ) and ε ld ≡ −(θ/l) ·
(
∂ ld/∂θ

)
be the elasticities of labor supply and labor demand with respect to tightness (ε ld is normalized

to be positive). We could rewrite the elasticity wedge as 1− εM/εm = 1/
[
1+(ε ld/ε ls)

]
. The

elasticity wedge is countercyclical because ε ld/ε ls is procyclical.17

D. The Elasticity Wedge in an Aggregate-Demand Model

The aggregate-demand model does not appear elsewhere in the literature, but it is useful to

establish the robustness of the rat-race effect. This model shows that diminishing marginal

returns to labor are not required to obtain a rat-race effect. Here the rat-race effect is present

even though the marginal returns to labor are constant. We will see that this effect is present

because the general-equilibrium labor demand is downward sloping in a (l,θ) plane, such that

the number of jobs is limited for a given tightness. This model also shows that technology

shocks combined with real wage rigidity is not the only mechanism that can generate slumps and

booms. In this model, slumps and booms are generated by money-supply shocks and nominal

wage rigidity.

We make the following assumptions on the production function and wage schedule. The

production function is linear: y(n) = n. The nominal wage is independent of UI and partially

rigid with respect to the price level P: W = µ ·Pζ , where ζ ∈ [0,1) parameterizes the rigidity

of the nominal wage with respect to the price level. The real wage is w =W/P = µ ·Pζ−1.

Because of nominal wage rigidity, it is necessary to define the price-setting mechanism.

As in Mankiw and Weinzierl [2011], we assume that workers are required to hold money to

17The cyclicality of the elasticity wedge is closely connected to the cyclicality of the public-employment mul-
tiplier in Michaillat [2014]. Both rely on the cyclicality of the ratio ε ld/ε ls. The difference is that the elasticity
wedge describes the response to a shift in labor supply whereas the multiplier describes the response to a shift in
labor demand.
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purchase consumption goods and that the money market is described by a quantity equation:

M = P · y. The parameter M > 0 is the money supply. The quantity equation says that nominal

consumer spending is equal to the money supply.18 Since y = n, the quantity equation implies

that P = M/n. A high number of producers implies high output and, for a given money supply,

a low price. In general equilibrium, the real wage therefore satisfies

w = µ ·
( n

M

)1−ζ

.

When the money supply falls or the number of producers rises, the price falls and the real wage

rises.

The product market is perfectly competitive; hence, firms take the price as given and (3)

remains valid. We combine the wage equation with (3) and l = (1+ τ(θ)) · n to obtain the

general-equilibrium labor demand:

ld(θ ,M) = M ·µ−
1

1−ζ · (1+ τ(θ))
− ζ

1−ζ .

This is a general-equilibrium demand because it takes into account the quantity equation de-

scribing the money market. Labor demand decreases with θ , as in the job-rationing model.

But the mechanism is different. Higher employment implies more production, lower prices in

the goods market, and higher real wages by nominal wage rigidity. Firms are willing to hire

more workers only if tightness is lower, which reduces recruiting costs and compensates for

the higher real wage. Moreover, the labor demand increases with M: After a negative money-

supply shock, prices fall. Nominal wage rigidity combined with a lower price level leads to a

higher real wage and a higher marginal cost of labor, which leads to lower hiring and higher

unemployment. The labor demand slopes downward in a (l,θ) plane, as depicted in Panel C

of Figure 3. The labor demand shifts inward when the money supply decreases, but the labor

demand does not shift after a change in UI. Jobs are also rationed in slumps. If money supply is

low enough (M < µ1/(1−ζ )), then ld(θ = 0,M)< 1 and jobs are rationed: firms would not hire

all the workers even if workers searched infinitely hard.

18We implicitly assume that the velocity of money is constant and normalized to 1.
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It is clear by now that the aggregate-demand model has exactly the same properties as the

job-rationing model, except that money-supply shocks and not technology shocks generate fluc-

tuations in tightness and employment. To conclude, we list all the properties of the aggregate-

demand model. The interpretations and proofs are the same as in the job-rationing model.

PROPOSITION 9. Increasing UI raises tightness: dθ/d∆v < 0. The elasticity wedge is

1− εM

εm =

(
1+

η

1−η
· ζ

1−ζ
· 1

1+ ε f · τ(θ)
)−1

> 0.

PROPOSITION 10. For a given utility gain from work, an equilibrium with lower money supply

has lower tightness and lower employment: ∂θ/∂M
∣∣
∆v > 0 and ∂ l/∂M

∣∣
∆v > 0.

PROPOSITION 11. Under Assumption 1, an equilibrium with lower money supply has higher

elasticity wedge: ∂
[
1− εM/εm]/∂M

∣∣
∆v < 0.

VII. Optimal Unemployment Insurance over the Business Cycle

A common view is that unemployment is efficient on average, but because of macroeconomic

shocks, unemployment is inefficiently high in slumps and inefficiently low in booms. This view

implies that the efficiency term in our optimal UI formula systematically changes sign over the

business cycle. If the elasticity wedge is nonzero, this view therefore implies that optimal UI

fluctuates over the business cycle.

In this section we explore this view. We provide empirical evidence that the elasticity wedge

is positive, and that the efficiency term is positive in slumps but negative in booms. Our theory

therefore suggests that the optimal replacement rate of UI is higher in slumps than in booms.

We also find that the fluctuations of the optimal replacement rate over the business cycle are

sizable.

A. Estimates of the Elasticity Wedge

To assess empirically whether increasing UI raises or lowers the labor market tightness, we

need an estimate of the elasticity wedge. The ideal experiment to estimate the elasticity wedge
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is a design with double randomization : (i) some randomly selected areas are treated and some

are not, and (ii) within treated areas, all but a randomly selected and small subset of jobseekers

are treated. The treatment is to offer higher or longer UI benefits. The elasticity wedge can be

estimated by comparing the unemployment durations of non-treated jobseekers in non-treated

areas to that of non-treated jobseekers in treated areas. We discuss two recent studies that

estimate this wedge.

Lalive, Landais and Zweimüller [2013] use a natural experiment that offers the desired

design: the Regional Extended Benefit Program implemented in Austria in 1988–1993. The

treatment was an increase in benefit duration from 52 to 209 weeks for eligible unemployed

workers in a subset of regions. They estimate a positive elasticity wedge, 1− εM/εm = 0.3.

Marinescu [2014] follows another route to assess the sign and magnitude of the elasticity

wedge: she directly estimates the effect of a change in UI on labor market tightness. The

changes in UI that she considers are the long UI extensions implemented in the US from 2009

to 2013. Using detailed information on vacancies and job applications from CareerBuilder.com,

the largest American online job board, she computes the effect of a change in UI on aggregate

search effort, measured by the number of job applications sent, and on vacancies. At the state

level, she finds that an increase in UI has a negative effect on job applications but no effect on

vacancies. Since labor market tightness is the ratio of vacancies to aggregate search effort, these

results imply that an increase in UI raises tightness and thus that the elasticity wedge is positive.

Given the measured response of tightness to changes in UI, Marinescu estimates an elasticity

wedge of 1− εM/εm = 0.3, exactly as Lalive, Landais and Zweimüller.

The two previous studies find a positive elasticity wedge when the rat-race and job-creation

effects are accounted for. Many papers study these effects in isolation. Several papers find that

an increase in the search effort of some jobseekers, induced for example by placement programs,

has a negative effect on the job-finding probability of other jobseekers [for example, Crepon

et al., 2013]. These findings are consistent with rat-race effects. Several studies use microdata

to investigate whether more generous UI benefits affect the re-employment wage. Most studies

find no effect on wages or even slightly negative effects [for example, Card, Chetty and Weber,

2007]. Since the job-creation effect operates when an increase in UI raises wages, the absence
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of effect on re-employment wages suggests that the job-creation effect is likely to be small.19 To

conclude, the absence of evidence of job-creation effect together with the evidence of rat-race

effect is further evidence of a positive elasticity wedge.

In sum, the available evidence suggests that the elasticity wedge is positive, with a best

estimate of 0.3. We use this estimate to quantity the cyclical fluctuations of optimal UI.

B. An Estimate of the Efficiency Term

To determine empirically whether the labor market tightness is inefficiently high or low, we

measure the efficiency term in US data. In the dynamic environment with home production and

a nonpecuniary cost of unemployment, the efficiency term is

v(ce
t )− v

(
ch

t
)
+ zt + k(et)+ x(ht)

wt ·φt
+
(

1+ ε
f
)
·Rt−

η

1−η
· τt

ut
.

We start by measuring [η/(1−η)] · τt/ut . We set η = 0.7, in line with empirical evidence

[Petrongolo and Pissarides, 2001]. We measure the unemployment rate ut with the seasonally

adjusted monthly unemployment rate constructed by the Bureau of Labor Statistics (BLS) from

the Current Population Survey (CPS). The challenging part is to measure the recruiter-producer

ratio τt . We measure τt in three steps.

First, we measure the number rect of employees in the recruiting industry. We set rect to

the seasonally adjusted monthly number of workers in the recruiting industry computed by the

BLS from Current Employment Statistics (CES) data. The recruiting industry is the industry

with North American Industry Classification System (NAICS) code 56131. Its official name is

“employment placement agencies and executive search services”. It comprises firms primarily

engaged in listing employment vacancies and referring or placing applicants for employment,

and firms providing executive search, recruitment, and placement services. The series is avail-

19More generous benefits induce longer unemployment durations that may have a negative effect on wages if the
duration of unemployment spells affects the productivity of unemployed workers or is interpreted by employers
as a negative signal of productivity. It is difficult to disentangle this negative effect from the positive effect of UI
on wages through bargaining, which is the relevant effect for our analysis. Schmieder, von Wachter and Bender
[2013] attempt such a decomposition in German data by controlling for the duration of the unemployment spell.
They find a negative effect of UI on wages through longer unemployment durations but zero effect through wage
bargaining.
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Figure 5: A method to measure the fluctuations of the efficiency term
Notes: The time period is January 1990–February 2014. In Panel A the unemployment rate, ut , is the seasonally
adjusted monthly unemployment rate constructed by the BLS from the CPS. The recruiter-producer ratio is con-
structed as τt = σ · rect/(lt −σ · rect), where rect is the seasonally adjusted monthly number of workers in the
recruiting industry (NAICS 56131) computed by the BLS from CES data, lt is the seasonally adjusted monthly
number of workers in all private industries computed by the BLS from CES data, and σ = 8.4 is a scaling factor
ensuring that the level of the recruiter-producer ratio matches the evidence in Villena Roldan [2010]. In Panel B
the solid blue line is [η/(1−η)] · τt/ut with η = 0.7.

able from January 1990 to February 2014. This industry comprises 279,800 workers on average.

Second, we scale up rect by a factor 8.4 to measure the total amount of labor devoted to

recruiting in the economy. Of course, the employees in the recruiting industry constitute only

a small fraction of the workers devoted to recruiting. Scaling up is necessary to account for

the numerous workers in firms outside of the recruiting industry who spend a lot of time and

effort to recruit workers for their own firm. The scaling factor ensures that the average share of

labor devoted to recruiting in 1997 is 2.5%. We obtain this amount from the National Employer

Survey (NES) conducted in 1997 by the Census Bureau. The survey gathered employer data on

employment practices, especially recruiting. In the 1997 survey, 4500 establishments answered

detailed questions about the methods used to recruit applicants. Villena Roldan [2010] analyzes

this survey and finds that firms spend 2.5% of their total labor cost in recruiting activities. In

other words, 2.5% of the workforce is devoted to recruiting.20

20In monetary terms, firms spent on average $4200 per recruited worker in 1997.
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Third, we construct τt as

τt =
8.4 · rect

lt−8.4 · rect
, (32)

where lt is the seasonally adjusted monthly number of workers in all private industries computed

by the BLS from CES data. Panel A of Figure 5 displays the recruiter-producer ratio τt and the

unemployment rate ut . The series τt is very procyclical. Panel B of Figure 5 displays the term

[η/(1−η)] · τt/ut . This term is extremely procyclical: it is four times higher at the peak of the

2001 expansion (when τt = 1.74) than at the bottom of the 2009 recession (when τt = 0.41).21

Next we measure
(
1+ ε f ) ·Rt . UI benefits replace between 50% and 70% of the pre-tax

earnings of a worker. Following Chetty [2008] we set the benefit rate to 50%. Since earnings are

subject to a 7.65% payroll tax, we set the average replacement rate to R = 0.5+0.0765 = 58%.

We do not have direct evidence on the discouraged-worker elasticity, ε f , but ε f is closely related

to the microelasticity for which we have a lot of evidence. We show in Online Appendix A that

a reasonable estimate is ε f = 0.021. Finally, (1+ε f ) ·Rt is somewhat countercyclical in the US

as the generosity of UI increases in recessions, but its fluctuations are usually relatively small.

We therefore assume that
(
1+ ε f ) ·Rt remains constant at (1+0.021)×0.58 = 0.59.

We assume that the utility of consumption is log: v(c) = ln(c). This assumption implies a

coefficient of relative risk aversion ρ = 1, consistent with labor supply behavior [Chetty, 2006b].

This coefficient of relative risk aversion is maybe on the low side of available estimates, but us-

ing log utility simplifies the analysis. With log utility, v(ce
t )−v

(
ch

t
)
= ln(ce

t /ch
t ), where ch

t /ce
t is

the consumption drop upon unemployment. For food consumption ϕ , Gruber [1997] estimates(
ϕe−ϕh)/ϕe = 0.068. As emphasized by Browning and Crossley [2001], total consump-

tion is more elastic than food consumption to an income change. The estimates of Hamermesh

[1982] imply that the elasticity of food consumption with respect to aggregate income for unem-

21A limitation of our measure of τt is that it is only valid as long as the share of recruitment done through
recruiting firms is stable over the business cycle. In Online Appendix B, we construct an alternative measure of
τt that does not rely on this assumption, but instead relies on the assumption that the cost of posting a vacancy is
constant over the business cycle. This alternative measure is constructed using the number of vacancies and new
hires computed by the BLS from JOLTS. This alternative measure is available from December 2000 to February
2014. We find that the two measures behave similarly over the business cycle (their correlation is 0.43).
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ployed workers is 0.36.22 Accordingly we expect that
(
ce− ch)/ce =

[(
ϕe−ϕh)/ϕe]/0.36 =

0.068/0.36 = 0.19 and ch/ce = 0.81. Furthermore, Kroft and Notowidigdo [2011] show that

the ratio ce/ch is broadly constant over the business cycle. In sum, we consider that ln(ce
t /ch

t )

remains constant at ln(1/0.81) = 0.21.

We then measure 1/(φt ·wt). With l ≈ 1 and log utility, we find that 1/(φt ·wt)≈ 1/(v′(ce
t ) ·

wt)≈ ce
t /wt . Neglecting firms’ profits that may be rebated to employed workers, ce

t /wt is just 1

minus the payroll tax rate; the payroll tax does not vary over the business cycle so we consider

that 1/(φt ·wt) remains constant at 1−0.0765 = 0.92.

Finally, the term zt + k(et)+ x(ht) includes the nonpecuniary cost from unemployment, the

cost from job search, and the cost from home production. Di Tella, MacCulloch and Oswald

[2003] and Blanchflower and Oswald [2004] find that the nonpecuniary cost from unemploy-

ment is large: controlling for income and other personal characteristics, losing one’s job is as

costly as divorcing in terms of well-being.23 Despite much research, a precise value for the

nonpecuniary cost of unemployment remains unavailable. In the absence of a precise estimate

for zt , we assume that k(et)+ x(ht)+ zt remains constant at 0.17; this calibration ensures that

on average, the efficiency term is zero and the labor market is efficient.

Available evidence does not indicate that the term
(
v(ce

t )− v
(
ch

t
)
+ k(et)+ x(ht)+ zt

)
/(φt ·

wt)+(1+ε f ) ·Rt varies much over the business cycle; if anything, this term is perhaps slightly

countercyclical. On the other hand, the term [η/(1−η)] · τt/ut , displayed in Panel B of Fig-

ure 5, is subject to wide procyclical fluctuations over the business cycle. We conclude that the

efficiency term is subject to wide countercyclical fluctuations over the business cycle. If the non-

pecuniary cost of unemployment of 0.17, then the efficiency term is zero on average, implying

22This estimate includes food consumed at home and food away from home. Hamermesh [1982] estimates
that for unemployed workers the permanent-income elasticity of food consumption at home is 0.24 while that
of food consumption away from home is 0.82. He also finds that in the consumption basket of an unemployed
worker, the share of food consumption at home is 0.164 while that of food consumption away from home is
0.041. Therefore the aggregate income elasticity of food consumption is 0.24× [0.164/(0.164+0.41)]+ 0.82×
[0.041/(0.164+0.41)] = 0.36.

23In standard matching models of the labor market, it is typical to assume that unemployed workers enjoy
some positive utility; however, this positive utility usually stands for UI benefits that are not modeled explicitly
[for example, Shimer, 2005]. It is true that some scholars explicitly model the UI system and assume that in
addition to the consumption utility afforded by UI benefits, unemployed workers enjoy nonpecuniary benefits
from unemployment, usually referred to as “value from leisure”. But this assumption has never been justified on
empirical grounds; it is usually only introduced to increase the rigidity of Nash bargained wages and thus generate
larger business cycle fluctuations.
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that the efficiency term is positive in slumps and negative in booms. If the nonpecuniary cost of

unemployment is different, we cannot delimit precisely periods when the efficiency term is pos-

itive and negative. Nevertheless, given the amplitude of the fluctuations in [η/(1−η)] · τt/ut ,

the efficiency term was likely negative in the 1991–1994 and 2009–2013 periods and positive

in the 1998–2001 period; the rest of the time, the efficiency term was likely close to zero.

C. Exploration of the Fluctuations of Optimal Unemployment Insurance

We use the empirical evidence on the elasticity wedge and efficiency term to explore the fluctu-

ations of optimal UI over the business cycle.

Evaluation of a Small Reform Around the Current System. Our optimal UI formula is

useful to assess the desirability of a small reform around the current system. The statistics in

the Baily-Chetty formula—microelasticity and coefficient of risk aversion—are well measured

and are commonly used to estimate the Baily-Chetty rate [for example, Gruber, 1997]. If the

current replacement rate is less than the right-hand-side term of the formula, increasing UI

increases welfare, and conversely, if the current replacement rate is more than the right-hand-

side term, decreasing UI increases welfare. Since the replacement rate of UI in the US is very

close to the Baily-Chetty rate, we can assume that the evidence provided above about the signs

of the elasticity wedge and efficiency term are valid with a replacement rate of UI equal to the

Baily-Chetty rate.24 This evidence indicates that the elasticity wedge is positive, and that the

efficiency term is positive in slumps but negative in booms. Using the argument in Table 1, we

infer that the optimal replacement rate of UI is more countercyclical than the Baily-Chetty rate.

We can also use the formula to get a sense of the amplitude of the cyclical fluctuations of

optimal UI. With standard estimates of the microelasticity and risk aversion, a replacement rate

of R = 50% roughly satisfies the Baily-Chetty formula [Chetty, 2006a]. Available evidence

indicates that the elasticity wedge is positive, maybe around 0.3. Our measure of the efficiency

term indicates that the between a boom and a slump, the efficiency term increases by 1.4. (We

obtain the amplitude of 1.4 by comparing the through and the peak of the series [η/(1−η)] ·
24With the calibration in Table 3, the current US replacement rate of R = 58% exactly satisfies the Baily-Chetty

formula. We establish this result in Online Appendix A.
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τt/ut in Panel B of Figure 5.) Hence, if the labor market tightness is efficient on average, the

efficiency term increases by 1.4/2 = 0.7 in slumps and falls by 1.4/2 = 0.7 in booms. This

means that the correction term maybe increases by 0.3× 0.7 = 0.2 in slumps and falls by 0.2

in booms. Compared to a Baily-Chetty rate of 0.5, these fluctuations in the correction term are

quantitatively significant; they require the optimal replacement rate of UI to depart markedly

from the Baily-Chetty rate.

Calibration and Simulation of the Job-Rationing Model. To quantify more precisely the

fluctuations of optimal UI over the business cycle, we calibrate and simulate a dynamic version

of the job-rationing model of Section VI. We choose this model because it generates a positive

elasticity wedge, consistent with available evidence.25 Existing evidence does not suggest that

the availability of self-insurance and the nonpecuniary cost of unemployment vary much over

the business cycle. Hence, we keep the calibration and simulation simple by abstracting from

self-insurance and setting the nonpecuniary cost of unemployment to zero.26

We represent the business cycle as a succession of steady states with different values for

technology. Formally, the simulations provide a comparative steady-state analysis. This anal-

ysis provides a good approximation to a dynamic simulation because matching models of the

labor market reach their steady state quickly.27 We compute a collection of steady states span-

ning all the stages of the business cycle, from slumps with high unemployment to booms with

low unemployment. We first compute a collection of steady states in which the replacement

rate of UI remains constant at its average value of 58%. We then compute a collection of steady

states in which the replacement rate of UI is at its optimal level given by formula (27).

We calibrate the model to US data, as summarized in Table 3. The calibration procedure is

standard so we relegate it to Online Appendix A. Here we only explain how we calibrate the

25The aggregate-demand model also generates a positive elasticity wedge. We simulate the job-rationing model
because it is more conventional than the aggregate-demand model.

26As more evidence becomes available, cyclical fluctuations in self-insurance and the nonpecuniary cost of
unemployment could be incorporated into the simulation model to quantify more precisely the fluctuations of
optimal UI over the business cycle.

27Shimer [2005] and Pissarides [2009] argue that in a standard matching model, the steady-state equilibrium with
technology a approximates well the equilibrium in a stochastic environment when the realization of technology is
a. Their main reason is that the rates of inflow to and outflow from unemployment are large. Michaillat [2012]
validates this approximation with simulations.
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model to match empirical evidence on the microelasticity and elasticity wedge.

A large body of work has estimated the microelasticity εm.28 The ideal experiment to es-

timate εm is to offer higher or longer UI benefits to a randomly selected and small subset of

jobseekers within a labor market and compare unemployment durations between treated and

non-treated jobseekers. In practice, εm is estimated by comparing individuals with different

benefits in the same labor market at a given time, while controlling for individual characteristics.

Most empirical studies do not estimate the microelasticity εm of unemployment with respect to

∆v but estimate instead the microelasticity of unemployment with respect to the replacement

rate, which we denote εm
R . In US administrative data from the 1980s, the classic study of Meyer

[1990] finds an elasticity εm
R = 0.6 using state fixed-effects. In a larger US administrative dataset

for the same years, and using a regression kink design to identify the elasticity, Landais [2015]

finds an elasticity εm
R = 0.3. Overall, εm

R = 0.5 is a reasonable estimate. Using (12), we translate

this estimate into an estimate εm = 0.3.

To obtain a search behavior consistent with the empirical evidence on the microelasticity,

we assume a disutility of effort k(e) = ωk · eκ+1/(κ + 1)−ωk/(κ + 1), and we set κ = 3.1 to

match the microelasticity of εm = 0.3. We do not have direct evidence on the discouraged-

worker elasticity, ε f , but ε f is closely related to εm. We find that our estimate εm = 0.3 implies

an estimate ε f = 0.021.

To match the estimate of the elasticity wedge 1−εM/εm = 0.3, we calibrate the production-

function parameter α . This parameter determines the magnitude of the elasticity wedge and

of the rat-race effect. We calibrate α to match the estimate of the elasticity wedge provided

by Lalive, Landais and Zweimüller [2013]: 1− εM/εm = 0.3. Extending (31) to the dynamic

environment without discounting yields

1− εM

εm =

(
1+

η

1−η
· α

1−α
· 1

1+ ε f ·
τ(θ)

u

)−1

.

We set 1−εM/εm = 0.3, η = 0.7, ε f = 0.021, τ(θ) = 2.2%, and u= 6.6% and obtain α = 0.75.

Figure 6 displays the simulations of the job-rationing model. Each steady state is indexed by

28See Krueger and Meyer [2002] for a comprehensive survey.
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Table 3: Parameter values in the simulation of the job-rationing model

Description Value Source

Panel A. Average values used for calibration
u unemployment rate 6.6% CPS, 2000–2014
θ labor market tightness 0.37 JOLTS and CPS, 2000–2014
τ(θ) recruiter-producer ratio 2.2% Villena Roldan [2010] and CES, 2000–2014
εm microelasticity 0.3 literature
e search effort 1 normalization
R replacement rate 58% Chetty [2008]

Panel B. Calibrated parameters
η unemployment-elasticity of matching 0.7 Petrongolo and Pissarides [2001]
ρ relative risk aversion 1 Chetty [2006b]
γ technology-elasticity of real wage 0.5 Haefke, Sonntag and van Rens [2008]
s monthly job-destruction rate 3.5% JOLTS, 2000–2014
κ convexity of disutility of search 3.1 matches εm = 0.3
α marginal returns to labor 0.75 matches 1− εM/εm = 0.3
ωm matching efficacy 0.67 matches average values
r recruiting cost 0.84 matches average values
ωk level of disutility of search 0.38 matches average values
ω level of real wage 0.75 matches average values for a = 1

technology, a ∈ [0.94,1.06]. Because of wage rigidity, the steady states with low a have a high

wage-technology ratio and therefore high unemployment: they represent slumps. Conversely,

the steady states with high a have a low wage-technology ratio and low unemployment: they

represent booms. As showed in Panel A, unemployment falls from 12.9% to 4.6% when a

increases from 0.94 to 1.06 and UI remains constant. This numerical results implies that even

a modest amount of wage rigidity, in line with the empirical findings of Haefke, Sonntag and

van Rens [2008], generates realistic fluctuations in unemployment. Indeed, the elasticity of

unemployment with respect to technology implied by the simulations is 9.5, larger than the

elasticity of 4.2 measured in US data.29

It is not the unemployment rate that matters for optimal UI, but the efficiency term, depicted

in Panel F. In a slump, the efficiency term is positive. The efficient term is 0 for a = 1.02 and

an unemployment rate of 6.0%. In booms, the efficiency term is negative. In fact, the efficiency

29The elasticity is obtained by considering a small change in technology around the average. At a = 1, u =
6.56%. At a = 0.99, u = 7.18%. Hence the elasticity is (1/6.56) · (7.18− 6.56)/(1− 0.99) = 9.5. Michaillat
[2012] shows that the elasticity of unemployment with respect to technology in the US is 4.2.
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Figure 6: Optimal UI over the business cycle in the job-rationing model

term is constructed as the difference between (∆v+ k(e))/(w ·φ) + (1+ ε f ) ·R, depicted in

Panel E, and [η/(1−η)] · τ(θ)/u, depicted in Panel D. The former is broadly constant at 1.1

for any value of technology; the latter increases steeply from 0.07 to 2.80 when technology

increases from a = 0.94 to a = 1.06; hence the efficiency term decreases from 1.03 to -1.70

when technology increases from a = 0.94 to a = 1.06.

Panel B displays the elasticity wedge. The wedge is positive, which implies that the optimal

replacement rate of UI should be below the Baily-Chetty rate in booms and above it in slumps.

In fact, in an average situation with a = 1, the wedge is 0.3 and matches exactly the empirical

evidence; this is due to our calibration of the production-function parameter, α . The wedge is

also countercyclical, consistent with the results of Proposition 8: from a slump with a = 0.94 to

a boom with a = 1.06, the wedge falls from 0.83 to 0.11.

Panel C shows that the optimal replacement rate and the technology parameter driving

business cycles are negatively correlated: the optimal replacement rate falls from 77% when

a = 0.94 to 53% when a = 1.06. Thus, the optimal replacement rate is sharply countercyclical.
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Of course, the unemployment rate responds to the adjustment of the replacement rate from

its original level of 58% to its optimal level. In slumps, the optimal replacement rate is much

higher than 58% so the unemployment rate increases above its original level: at a = 0.94 the

unemployment rate increases by 0.6 percentage point from 12.9% to 13.5%. UI has little in-

fluence on unemployment in slumps because the macroelasticity is very low: for a = 0.94,

εM = 0.05. In booms, the optimal replacement rate is slightly below 58% so the unemployment

rate falls below its original level: at a = 1.06 the unemployment rate falls by 0.2 percentage

point from 4.6% to 4.4%. UI has a strong influence on unemployment in booms because the

macroelasticity is large: for a = 1.06, εM = 0.27.

To conclude, we would like to emphasize two points. First, diminishing marginal returns to

labor are not necessary to obtain a countercyclical optimal UI. What is necessary is a positive

elasticity wedge, which is obtained with any downward-sloping labor demand and any wage

mechanism that does not respond too much to UI. Second, technology shocks are not necessary

to obtain large unemployment fluctuations. In fact, when we simulate the aggregate-demand

model, calibrated in the same fashion as the job-rationing model, we find the same quantitive

results as those displayed in Figure 6. In the aggregate-demand model, however, marginal

returns to labor are constant and unemployment fluctuations are driven by monetary shocks.

VIII. Conclusion

This paper proposes a macroeconomic theory of optimal UI. The optimal replacement rate of UI

is the sum of the conventional Baily-Chetty rate, which solves the trade-off between insurance

and job-search incentives, and a correction term, which is positive when UI brings the labor

market tightness closer to its efficient level. Therefore, the optimal replacement rate of UI is

more generous than the Baily-Chetty rate if tightness is inefficiently low and UI raises tightness,

or if tightness is inefficiently high and UI lowers tightness.

The paper also develops an empirical criterion to determine whether the labor market tight-

ness is inefficiently high or low, and another empirical criterion to determine whether UI raises

or lowers tightness. Empirical evidence suggests that tightness is inefficiently low in slumps

and inefficiently high in booms, and that UI raises tightness. Our theory combined with this
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evidence indicates that the optimal replacement rate of UI is above the Baily-Chetty rate in

slumps but below the Baily-Chetty rate in booms.

Finally, the paper simulates the job-rationing model of Michaillat [2012]. Unlike other

matching models of the labor market, the job-rationing model is consistent with available em-

pirical evidence because it predicts that UI raises tightness. In the simulations, the optimal

replacement rate of UI is strongly countercyclical, increasing from below 55% to above 75%

when the unemployment rate rises from 5% to 13%.

While available empirical evidence suggests that the optimal replacement rate of UI is coun-

tercyclical, more empirical evidence would be valuable to cement our conclusion about the

cyclicality of the optimal replacement rate, and to quantify more precisely the fluctuations of

the optimal replacement rate over the business cycle. Our theory provides guidance for future

empirical work by defining the empirical statistics that are relevant for optimal UI. For instance,

the theory implies that measuring by itself the macroelasticity of unemployment with respect

to UI, as some macroeconomists do, is not directly relevant for the policy debate; it is only in

conjunction with the microelasticity that the macroelasticity matters for the design of UI.

Our theory indicates that if UI has an influence on the labor market tightness, UI should be

adjusted to bring tightness closer to its efficient level. Yet, our theory does not imply that UI is

the best tool to stabilize the labor market and that other stabilization policies are superfluous.

What the theory implies is that if the macroeconomic stabilization policies in place, such as

monetary policy or government spending, are unable to stabilize the labor market perfectly,

then UI can contribute to stabilizing the labor market. Of course, if the existing stabilization

policies are able to stabilize the labor market perfectly, then the labor market tightness will

always be at its efficient level, the correction term will be zero in our formula, and optimal UI

will be given by the conventional Baily-Chetty formula. But if the existing stabilization policies

do not work perfectly, then it is optimal to use UI to contribute to stabilizing the labor market.
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Online Appendices

Online Appendix A: Calibration

This appendix describes the calibration of the job-rationing model simulated in Section VII. All
the derivations pertain to the steady state of the dynamic model without discounting. We first
present the average values targeted in the calibration—some are normalizations and some are
based on empirical evidence for the US. We then explain how we calibrate the parameters.

Normalizations. We normalize the average technology to a = 1. We normalize the average
search effort to e = 1 and the disutility of effort such that k(e = 1) = 0. This normalization
implies that on average, the costs of search while unemployed are of same magnitude as the
costs of work while employed (which are not modeled).

Average Values of Labor Market Variables. We focus on the December 2000–February
2014 period. We compute the average value of key labor market variables in the data constructed
by the BLS from the Job Openings and Labor Turnover Survey (JOLTS) and from the Current
Population Survey (CPS). We take the average of the seasonally adjusted monthly total sepa-
ration rate in all nonfarm industries from the JOLTS; we find that this average job-destruction
rate is s = 3.5%. We take the average of the seasonally adjusted monthly unemployment rate
from the CPS; we find that this average unemployment rate is u = 6.6%. We take the average
of the seasonally adjusted monthly vacancy level in all nonfarm industries from the JOLTS, and
divide it by the average of the seasonally adjusted monthly unemployment level from the CPS;
we find that this average labor market tightness is θ = 0.37 (average effort is normalized to 1).

Average Value of the Recruiter-Producer Ratio. We take the average over the December
2000–February 2014 period of the recruiter-producer ratio given by (32) and plotted in Panel A
of Figure 5. We find that the average recruiter-producer ratio is τ(θ) = 2.2%.

Average Value of the Replacement Rate. UI benefits replace between 50% and 70% of the
pre-tax earnings of a worker. Following Chetty [2008] we set the benefit rate to 50%. Since
earnings are subject to a 7.65% payroll tax, we set the average replacement rate to R = 0.5+
0.0765 = 58%.

Calibrating Utility of Consumption. We assume that the utility of consumption is log: v(c)=
ln(c). This assumption implies a coefficient of relative risk aversion ρ = 1, consistent with la-
bor supply behavior [Chetty, 2006b]. This coefficient of relative risk aversion is maybe on
the low side of available estimates, but using log utility simplifies other part of the calibration.
Naturally, the higher risk aversion, the more generous optimal UI.

Measuring εm. Using (12), we can translate the estimate εm
R = 0.5 obtained in the literature

into an estimate of εm. With log utility, and since ce− cu = (1−R) ·w, we have ∆v/(v′(cu) ·R ·
w) = (1−R) · ln(ce/cu)/ [R · (ce/cu−1)].
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The next step is to express ce/cu as a function of known quantities. The production function
is y(n) = nα so the firm’s optimality condition, given by (2), implies that y(n) = w · l/α . We
can therefore rewrite the government’s budget constraint, given by (4), as ce− u · (ce− cu) =
w · (1− u)/α , where u = 1− l is the unemployment rate. We divide this budget constraint by
∆c = ce− cu. We get (ce/cu)/(ce/cu− 1) = u+(1− u)/ [(1−R) ·α]. After some algebra we
obtain

ce

cu =
1+α · (1−R) ·u/(1−u)

1−α · (1−R)
, (A1)

On average, u = 6.6% and R = 58%. But α is unknown for the moment. However, for a
broad range of α , the value for εm implied by εm

R = 0.5 does not change much. With α = 1,
ce/cu = 1.79, and εm = 0.27. With α = 0.66, ce/cu = 1.42, and εm = 0.31. We therefore take
εm = 0.30 as a calibration target. This is the value of εm implied by εm

R = 0.5 and α = 0.75
which is the value we use in our simulation.

Linking ε f to εm. Let εe
∆
≡ (∆v/e) · (∂es/∂∆v), κ ≡ (e/k′(e)) · k′′(e), and L(x) ≡ x/(s+ x).

The elasticity of L(x) is 1−L(x). The effort supply es( f ,∆v) satisfies k′(es) = (L(es · f )/es) ·
(∆v+ k(es)). Differentiating this condition with respect to ∆v yields

κ · εe
∆ = (1− l) · εe

∆− ε
e
∆ +

∆v
∆v+ k(e)

+ ε
e
∆ ·

e · k′(e)
∆v+ k(e)

.

In equilibrium, (e · k′(e))/(∆v+ k(e)) = l. Therefore, εe
∆
= (1/κ) ·∆v/(∆v+ k(e)). Since the

labor supply satisfies ls( f ,∆v) = L(es( f ,∆v) · f ), the elasticity of ls(θ ,∆v) with respect to ∆v
is (1− l) · εe

∆
. By definition, εm is l/(1− l) times the elasticity of ls(θ ,∆v) with respect to ∆v.

Thus,

ε
m =

1−u
κ
· ∆v

∆v+ k(e)
. (A2)

Similarly, differentiating the effort supply condition with respect to f yields

κ · ε f = (1− l) · (ε f +1)− ε
f + ε

f · e · k′(e)
∆v+ k(e)

,

which implies that

ε
f =

u
κ
.

Combining this equation with (A2), we find that when e = 1 and thus k(e) = 0,

ε
f =

u
1−u

· εm.

With εm = 0.3 and u = 6.6%, we get ε f = 0.021.
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Calibrating Matching Parameters. We use a Cobb-Douglas matching function m(e ·u,o) =
ωm · (e ·u)η ·o1−η . We set η = 0.7, in the range of available estimates reported by Petrongolo
and Pissarides [2001]. To calibrate ωm, we exploit the steady-state relationship u · e · f (θ) =
s · (1−u), which implies ωm = s ·θ η−1 · (1−u)/(u · e). With s = 3.5%, u = 6.6%, e = 1, and
θ = 0.37, we get ωm = 0.67.

To calibrate r we exploit the steady-state relationship τ(θ) = r · s/ [om ·θ−η − r · s], which
implies r = om ·θ−η · τ(θ)/ [s · (1+ τ(θ))]. With ωm = 0.67, s = 3.5%, θ = 0.37, and τ(θ) =
2.2%, we obtain r = 0.84.

Calibrating α and Related Quantities. As explained in Section VII, we set α = 0.75. Us-
ing (A1), u = 6.6%, R = 58% and α = 0.75, we obtain ce/cu = 1.50 and ∆v = ln(ce/cu) = 0.41.
With log utility and k(e) = 0, we have (∆v+ k(e))/(φ ·w) = (1−R) · ln(ce/cu) · (u+(1− u) ·
ce/cu)/(ce/cu− 1). With R = 58%, u = 6.6%, and ce/cu = 1.50, we obtain (∆v+ k(e))/(φ ·
w) = 0.51.

Calibrating Disutility of Search. We use a disutility of search k(e) = ωk · eκ+1/(κ + 1)−
ωk/(κ +1). To calibrate κ , we use (A2). On average, u = 6.6%, k(e) = 0, and εm=0.3 so κ =
3.1. To calibrate ωk, we exploit the steady-state relationship k′(e) = [(1−u)/e] · (∆v+ k(e)).
This implies ωk = (1−u) ·∆v when e = 1. With u = 6.6% and ∆v = 0.41, we obtain ωk = 0.38.

Calibrating the Wage Schedule. To calibrate ω , we exploit the steady-state relationship α ·
nα−1 = ω ·aγ−1 ·(1+τ(θ)). With a = 1, τ(θ) = 2.2%, α = 0.75, and n = (1−u)/(1+τ(θ)) =
0.915, we obtain ω = 0.75.

We calibrate γ from microeconometric estimates of the elasticity for wages in newly created
jobs—the elasticity that matters for job creation [Pissarides, 2009]. In panel data following
production and supervisory workers from 1984 to 2006, Haefke, Sonntag and van Rens [2008]
find that the elasticity of new hires’ earnings with respect to productivity is 0.7 (Table 6, Panel
A, Column 4). If the composition of the jobs accepted by workers improves in expansion, 0.7 is
an upper bound on the elasticity of wages in newly created jobs. A lower bound is the elasticity
of wages in existing jobs, estimated between 0.1 and 0.45 [Pissarides, 2009]. Hence we set
γ = 0.5, in the range of plausible values.

Solving the Baily-Chetty Formula. With log utility the Baily-Chetty formula, given by (21),
can be written as

R
1−R

= (1−u) · ∆v(R)
εm

where

∆v(R) = ln
(

ce

cu

)
= ln

(
1+α · (1−R) ·u/(1−u)

1−α · (1−R)

)
.

The expression from ∆v(R) comes from (A1). Setting εm = 0.3, α = 0.75, and u = 6.6% and
solving the Baily-Chetty formula for R, we obtain R = 58%.
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Figure A1: The recruiter-producer ratios constructed from CES data and from JOLTS
Notes: The time period is December 2000–February 2014. The recruiter-producer ratio depicted by the solid blue
line is constructed from (32) using the number of workers in the recruiting industry computed by the BLS from
CES data. The recruiter-producer ratio depicted by the dashed green line is constructed from (A3) using the number
of vacancies and new hires computed by the BLS from JOLTS. Both time series are scaled to match the evidence
on recruiting costs provided by Villena Roldan [2010]. The second time series is smoothed using a 5-point moving
average to remove monthly volatility.

Online Appendix B: Another Measure of the Recruiter-Producer Ratio

A limitation of the measure of the recruiter-producer ratio proposed in Section VII and displayed
in Panel A of Figure 5 is that it is only valid as long as the share of recruitment done through
recruiting firms is stable over the business cycle. In this appendix, we propose an alternative
measure of the recruiter-producer ratio that does not rely on this assumption. This alternative
measure is available from December 2000 to February 2014, which is the period when the data
from the JOLTS are available.

The measure τt of the recruiter-producer ratio that we construct here relies on the assumption
that the cost of posting a vacancy is constant over the business cycle. To construct τt , we use
the result that in the dynamic model, the recruiter-producer ratio satisfies

τt =
s · r

qt− s · r
, (A3)

where qt is the rate at which vacancies are filled, s is the job-destruction rate, and r is the
flow cost of posting a vacancy, assumed to be constant over time. We measure qt in the data
constructed by the BLS from the JOLTS. Our measure is qt = mt/vt , where vt is the seasonally
adjusted monthly vacancy level in all nonfarm industries, and mt is the seasonally adjusted
monthly number of hires in all nonfarm industries. Next, we set s = 3.5% as explained in
Online Appendix A. Last, we set r = 0.81 such that the average value of τt is 2.2%, the same as
the average value of the original recruiter-producer ratio between December 2000 and February
2014. Figure A1 plots the alternative measure τt and compares it with the original measure
displayed in Panel A of Figure 5. We find that the two measures behave similarly over the
business cycle: their correlation between December 2000 and February 2014 is 0.43.
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