Economic Policy Analysis: Lecture 6 Social Insurance

Camille Landais

Stanford University

February 14, 2011

Outline

What is Social Insurance?

Rationale for Social Insurance

Costs of Social Insurance

What is social insurance?

Social insurance is government provision of insurance for certain inherent risks in life.

e.g. unemployment, injury on the job, and disability

- why does government need to provide insurance?
- what is the optimal level and structure of social insurance?

Examples of SI Programs

- social security insurance against income loss in retirement
- disability insurance career ending disability
- unemployment insurance (unemployment)
- workers comp (on the job accidents)

Figure 1: Federal Public Spending in the US

Features of SI Programs

- 1. participation is mandatory
- 2. eligibility and benefits depend on contributions by individual/employer
- 3. benefits are tied to an event
 - retirement
 - unemployment
 - injury
- 4. benefits are not tied to financial distress
 - not means-tested
 - everyone gets benefits, no matter how rich they are

Outline

What is Social Insurance?

Rationale for Social Insurance

Simple Model of Insurance Decisions

Adverse Selection

Externalities

Economies of Scale / Market Power

Paternalism

Costs of Social Insurance

Why social insurance?

- Private markets for risk clearly exist
 e.g.: well functioning markets for life insurance, property &
 casualty insurance
- ▶ But there are problems with some markets for risk which may cause private insurance to fail

Simple Model of Insurance Decisions

- two states of the world: s & h
- you get disease with probability q
- ightharpoonup your income is W, regardless of disease
- lacktriangleright if you get disease you incur a medical cost δ
- you can buy insurance, with premium p
- ▶ insurance will pay you net payout *b* if you get disease

Expected utility

- your goal is to maximize your expected utility, where your choice variable is your income in each of the states
- Like a model with two goods
 - just like you maximize over your choice of the two goods, you maximize over your choice of expected utility in a state
 - function of probability that the state occurs

$$EU = (1 - q) * U[W - p] + q * U[W - \delta + b]$$

Actuarially Fair Insurance

- ▶ Perfect competition in the insurance market
 - insurance companies must earn zero expected profits

$$E\Pi = (1-q) * p - q * b = 0$$

Actuarially Fair Insurance

$$\Rightarrow b = (1-q)/q * p$$

Optimal Insurance Decision

$$Max_p EU = (1 - q) * log(W - p) + q * log(W - \delta + (1 - q)/q * p)$$

FOC:

$$(1-q)/(W-p) + (q*(1-q)/q)/(W-\delta + (1-q)/q*p) = 0$$

$$\to W - p = (W-\delta + (1-q)/q*p)$$

Optimal decision= full insurance

$$\Rightarrow p* = q\delta$$

$$EU = log(W - q\delta) + log(W - \delta + (1 - q)/q * q\delta)$$
$$= log(W - q\delta) + log(W - q\delta)$$

Optimal Insurance Decision

General Result

- Optimal to smooth consumption across states of the world
- With diminishing marginal utility: full insurance

Heterogeneity

Two types of individuals: healthy (h) and Jack-in-the-Box fan (s)

- $ightharpoonup q_h < q_s$
- If types are perfectly observable:
 - Two different actuarially fair policies:

$$b = (1 - q_s)/q_s * p$$
 for Jack-in-the-Box type $b = (1 - q_h)/q_h * p$ for healthy type

▶ Higher premium for Jack-in-the-Box type for a given *b*

Adverse Selection (1)

If types are not observable by the insurance company:

- Insurance company can try to keep two different prices
 - Two types are going to buy the "healthy" type policy
 - Negative profits for the firm

$$E\Pi = (1-q_h)*p-q_h*rac{(1-q_h)}{q_h}*p=0$$
 for healthy type $E\Pi = (1-q_s)*p-q_s*rac{(1-q_h)}{q_h}*p<0$ for JiB type

▶ Insurance companies go out of business

Adverse Selection (2): Pooling

If types are not observable by the insurance company:

- Insurance company can try to offer average price for both types
 - Average risk: $q_s > q_a > q_h$
 - Pb: healthy guys might not buy insurance at this price
 - Compare:

$$EU = (1 - q_h) * log(W - p) + q_h * log(W - \delta + \frac{(1 - q_a)}{q_a} * p) \text{ if insured}$$

$$EU = (1 - q_h) * log(W - p) + q_h * log(W - \delta) \text{ if uninsured}$$

▶ Depending on q_a , q_h , utility function, healthy guys might be better off not buying insurance at all

Adverse Selection

Adverse selection = market failure

- Insurance market can completely disappear
- ▶ Fundamental pb= assymetric info \rightarrow Single price for heterogeneous goods
- ▶ Possible solution: preference revealing mechanism ⇒ two different policies at two different prices
 - Expensive full coverage at non healthy guy market odds
 - Cheap partial coverage at healthy guy market odds
- Example: HMO vs PPO
- Self selection cannot bring back full efficiency here (full insurance for healthy guys)

Externalities

Insurance may have some external effects

- ► Flu shots → if you do not insure, I get sick
- Room for public intervention

Economies of Scale / Market Power

- If administrative costs, or market power for firms in the insurance market
 - Prices higher than actuarially fair prices
 - Less than full insurance
- Administrative costs in the US:
 - 12% of premiums on average in private HI market
 - 3.2% for Medicare/Medicaid
- lackbox Large pools more efficient ightarrow mandating insurance can lead to efficiency gains

Paternalism

- People might not be fully rational
 - Myopic
 - Inattentive, etc.
- ▶ People might end up underinsuring themselves

Figure 2: Distribution of 401(k) Contributions Rates for Participants (Madrian & Shea 2001)

Outline

What is Social Insurance?

Rationale for Social Insurance

Costs of Social Insurance

Why not full SI?

 Insuring adverse events may also encourage inefficient behaviors;

Moral Hazard

- Ul leads people to search less for a job
- HI leads people to overconsume medical goods
- DI leads people to report more fake injuries...etc
- Because of asymetric information, moral hazard is a big cost to SI

Figure 3: Monday Effect in Workers Comp

Source: Card and McCall 1996

General Formula for Social Insurance

- Contrary to externalities, market failures arising because of asymetric info lead to fundamental trade-off for economic policies
 - Reducing market failure ineffiency increases moral hazard inefficiency
 - Hi leads people to overconsume medical goods
- General formula (Chetty 2005):
 - Balances consumption-smoothing benefits and moral hazard effects
 - Consumption smoothing benefits depend on consumption drop when shock occurs and risk aversion

Figure 4: Total Social Insurance Spending vs GDP per capita around the world (1996)

Figure 5:

Effect of Unemployment on Food Consumption in Indonesia

Source: IFLS 1993-2000

Figure 6:

Effect of Unemployment on Food Consumption in the US

Source: PSID 1980-1993

Figure 7: Consumption Drop Estimates

EFFECT OF UNEMPLOYMENT ON FOOD CONSUMPTION

Dependent variable: Food cons. growth rate (change in log food consumption)

	Full sample		Unemployed Exactly Once	
	US	Indonesia	US	Indonesia
Unemployed dummy	-0.106	-0.078	-0.095	-0.098
	(0.010)***	(0.022)***	(0.017)***	(0.038)**
Demographics	Yes	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes	Yes
Province/state dummies	Yes	Yes	Yes	Yes
Observations	50763	11284	7894	1231

Optimal Level of Social Insurance Around the World

- Unemployment leads to 10% consumption drop in both countries
- Surprising given U.S. has large UI system; Indonesia has none
- ► Some economists concluded that private insurance (via families, villages, etc.) is sufficient in developing economies
- $ightharpoonup \Delta c/c$ could be small for two reasons:
 - Easy to insure fluctuations privately ⇒ SI crowds out private insurance
 - Risk aversion very high: agents very averse to reducing consumption,so maintain smooth path by costly actions in unemployed state ⇒ SI could have large welfare benefits.
 - Additional evidence that risk aversion is large: Households rely on costly smoothing methods in developing countries (Miguel 2005)
- But moral hazard effects could be also larger in developing countries