Microeconomics II Lecture 3

Constrained Envelope Theorem

Consider the problem:

$$\max_x f(x)$$

s.t. $g(x, a) = 0$

The Lagrangian is:

$$L(x, \lambda, a) = f(x) - \lambda g(x, a)$$

Necessary FOC are:

$$f'(x^*) - \lambda^* \frac{\partial g(x^*, a)}{\partial x} = 0$$

$$g(x^*(a), a) = 0$$
Substituting $x^*(a)$ and $\lambda^*(a)$ in the Lagrangian we get:

$$L(a) = f(x^*(a)) - \lambda^*(a) \ g(x^*(a), a)$$

Differentiating we get:

$$\frac{dL(a)}{da} = \left[f'(x^*) - \lambda^* \frac{\partial g(x^*, a)}{\partial x} \right] \frac{dx^*(a)}{da} - g(x^*(a), a) \frac{d\lambda^*(a)}{da} - \lambda^*(a) \frac{\partial g(x^*, a)}{\partial a}$$

$$= -\lambda^*(a) \frac{\partial g(x^*, a)}{\partial a}$$

by the necessary FOC.

In other words — to the first order — only the direct effect of a on the Lagrangian function matters.
3. Roy’s identity:

\[x_i(p, m) = -\frac{\partial V/\partial p_i}{\partial V/\partial m} \]

By the constrained envelope theorem and the observation that:

\[V(p, m) = u(x(p, m)) - \lambda(p, m) \left[p \ x(p, m) - m \right] \]

we shall obtain:

\[\frac{\partial V}{\partial p_i} = -\lambda(p, m) x_i(p, m) \leq 0 \]

and

\[\frac{\partial V}{\partial m} = \lambda(p, m) \geq 0 \]

which is the marginal utility of income.
(Notice that the sign of the two inequalities above prove property 1 of the indirect utility function $V(p, m)$.)

We conclude the proof substituting

$$\frac{\partial V}{\partial m} = \lambda(p, m)$$

into

$$\frac{\partial V}{\partial p_i} = -\lambda(p, m) \ x_i(p, m)$$

and solving for $x_i(p, m)$. ■

4. _Adding up_ results. From the identity:

$$p \ x(p, m) = m \quad \forall p, \quad \forall m$$
Differentiation with respect to p_j gives:

$$x_j(p, m) + \sum_{i=1}^{L} p_i \frac{\partial x_i}{\partial p_j} = 0$$

or, more interestingly, with respect to m gives:

$$\sum_{i=1}^{L} p_i \frac{\partial x_i}{\partial m} = 1$$

There does not exist a clear cut comparative-static property with the exception of:

$$0 \geq \sum_{i=1}^{L} p_i \frac{\partial x_i}{\partial p_h} = -x_h(p, m)$$

which means that at least one of the Marshallian demand function has to be downward sloping in p_h.
Effect of a change in income on the level of the Marshallian demand:

$$\frac{\partial x_l}{\partial m}$$

In the two commodities graph the set of tangency points for different values of m is known as the *income expansion path*.

In the commodity income graph the set of optimal choices of the quantity of the commodity is known as *Engel curve*.
We shall classify commodities with respect to the effect of changes in income in:

- **normal goods:**
 \[
 \frac{\partial x_l}{\partial m} > 0
 \]

- **neutral goods:**
 \[
 \frac{\partial x_l}{\partial m} = 0
 \]

- **inferior goods:**
 \[
 \frac{\partial x_l}{\partial m} < 0
 \]

Notice that for every level of income \(m \) at least one of the \(L \) commodities is normal:

\[
\sum_{l=1}^{L} p_l \frac{\partial x_l}{\partial m} = 1
\]
If the Engel curve is \textit{convex} we are facing a \textit{luxury good} in other case a \textit{necessity}.
Expenditure Minimization Problem

The dual problem of the consumer’s utility maximization problem is the expenditure minimization problem:

\[
\begin{align*}
\min_{\{x\}} \quad & p x \\
\text{s.t.} \quad & u(x) \geq U
\end{align*}
\]

Define the solution as:

\[
x = h(p, U) = \left(\begin{array}{c}
h_1(p_1, \ldots, p_L, U) \\
\vdots \\
h_L(p_1, \ldots, p_L, U)
\end{array} \right)
\]

the Hicksian (compensated) demand functions.

We shall also define:

\[
e(p, U) = p \ h(p, U)
\]

as the expenditure function.
Properties of the expenditure function:

1. Continuous in \(p \) and \(U \).

2. \(\frac{\partial e}{\partial U} > 0 \) (2.1) and \(\frac{\partial e}{\partial p_l} \geq 0 \) (2.2) for every \(l = 1, \ldots, L \).

Proof: (2.1): Suppose not: there exist \(U' < U'' \) (denote \(x' \) and \(x'' \) the corresponding solution to the e.m.p.) such that \(p \ x' \geq p \ x'' > 0 \).

If the latter inequality is strict we have an immediate contradiction of \(x' \) solving e.m.p.;

if on the other hand \(p \ x' = p \ x'' > 0 \) then by continuity and strict monotonicity of \(u(\cdot) \) there exists \(\alpha \in (0, 1) \) close enough to 1 such that \(u(\alpha \ x'') > U' \) and \(p \ x' > p \ \alpha x'' \) which contradicts \(x' \) solving e.m.p..
(2.2): consider \(p' \) and \(p'' \) such that \(p''_l \geq p'_l \) but \(p''_k = p'_k \) for every \(k \neq l \).

Let \(x'' \) and \(x' \) be the solutions to the e.m.p. with \(p'' \) and \(p' \) respectively.

Then by definition of \(e(p, U) \)

\[
e(p'', U) = p'' x'' \geq p' x'' \geq p' x' = e(p', U).
\]

3. Homogeneous of degree 1 in \(p \).

Proof: The feasible set of the e.m.p. does not change when prices are multiplied by the factor \(k > 0 \).

Hence \(\forall k > 0 \), minimizing \((k \ p) \ x \) on this set leads to the same answer. Let \(x^* \) be the solution, then:

\[
e(k \ p, U) = (k \ p) \ x^* = k \ e(p, U).
\]

Proof: let $p'' = t \ p + (1 - t) \ p'$ for $t \in [0, 1]$. Let x'' be the solution to e.m.p. for p''. Then

$$e(p'', U) = p'' \ x'' = t \ p \ x'' + (1 - t) \ p' \ x''$$

$$\geq t \ e(p, U) + (1 - t) \ e(p', U)$$

since $u(x'') \geq U$ and by definition of $e(p, U)$. ■

Properties of the Hicksian demand functions:

$$h(p, U)$$

$$\frac{\partial e(p, U)}{\partial p_l} = h_l(p, U)$$

Proof: by constrained envelope theorem. ■
2. Homogeneity of degree 0 in \(p \).

Proof: by Shephard’s lemma and the fact that the following theorem.

Theorem. If a function \(F(x) \) is homogeneous of degree \(r \) in \(x \) then \((\partial F/\partial x_l) \) is homogeneous of degree \((r - 1) \) in \(x \) for every \(l = 1, \ldots, L \).

Proof: Differentiating the identity that defines homogeneity of degree \(r \):

\[
F(k \ x) = k^r \ F(x) \quad \forall k > 0
\]

with respect to \(x_l \) we obtain:

\[
k \frac{\partial F(k \ x)}{\partial x_l} = k^r \frac{\partial F(x)}{\partial x_l}
\]
The latter equation corresponds to the definition of homogeneity of degree \((r - 1)\):

\[
\frac{\partial F(kx)}{\partial x_l} = k^{(r-1)} \frac{\partial F(x)}{\partial x_l}.
\]

Euler Theorem. If a function \(F(x)\) is homogeneous of degree \(r\) in \(x\) then:

\[
r F(x) = \nabla F(x) \cdot x
\]

Proof: Differentiating with respect to \(k\) the identity:

\[
F(kx) = k^r F(x) \quad \forall k > 0
\]
we obtain:

$$\nabla F(kx) \cdot x = rk^{(r-1)} F(x)$$

for $k = 1$ we obtain:

$$\nabla F(x) \cdot x = r F(x). \blacksquare$$

3. The matrix of cross-partial derivatives (Substitution matrix) with respect to p

$$S = \begin{pmatrix}
\frac{\partial h_1}{\partial p_1} & \cdots & \frac{\partial h_1}{\partial p_L} \\
\vdots & \ddots & \vdots \\
\frac{\partial h_L}{\partial p_1} & \cdots & \frac{\partial h_L}{\partial p_L}
\end{pmatrix}$$

is negative semi-definite and symmetric. (Main diagonal non-positive).
Proof: Symmetry follows from Shephard’s lemma and Young Theorem.

Indeed:

\[\frac{\partial h_l}{\partial p_i} = \frac{\partial}{\partial p_i} \left(\frac{\partial e(p, U)}{\partial p_l} \right) = \frac{\partial}{\partial p_l} \left(\frac{\partial e(p, U)}{\partial p_i} \right) = \frac{\partial h_i}{\partial p_l} \]

While negative semi-definiteness follows from the concavity of \(e(p, U) \) and the observation that \(S \) is the Hessian of the function \(e(p, U) \). \(\blacksquare \)
Identities:

\[V[p, e(p, U)] \equiv U \]
\[x_l[p, e(p, U)] \equiv h_l(p, U) \quad \forall l \]
\[e[p, V(p, m)] \equiv m \]
\[h_l[p, V(p, m)] \equiv x_l(p, m) \quad \forall l \]

Slutsky decomposition:

start from the identity

\[h_l(p, U) \equiv x_l[p, e(p, U)] \]

if the price \(p_i \) changes the effect is:

\[\frac{\partial h_l}{\partial p_i} = \frac{\partial x_l}{\partial p_i} + \frac{\partial x_l}{\partial m} \frac{\partial e}{\partial p_i} \]
Notice that by Shephard’s lemma:

\[
\frac{\partial e}{\partial p_i} = h_i(p, U) = x_i[p, e(p, U)]
\]

then

\[
\frac{\partial h_l}{\partial p_i} = \frac{\partial x_l}{\partial p_i} + \frac{\partial x_l}{\partial m} x_i.
\]

or

\[
\frac{\partial x_l}{\partial p_i} = \frac{\partial h_l}{\partial p_i} - \frac{\partial x_l}{\partial m} x_i.
\]

Own price effect gives *Slutsky equation*:

\[
\frac{\partial x_l}{\partial p_l} = \frac{\partial h_l}{\partial p_l} - \frac{\partial x_l}{\partial m} x_l.
\]
Slutsky decomposition:

\[
\frac{\partial x_l}{\partial p_i} = \frac{\partial h_l}{\partial p_i} - \frac{\partial x_l}{\partial m} x_i.
\]

Slutsky equation:

\[
\frac{\partial x_l}{\partial p_l} = \frac{\partial h_l}{\partial p_l} - \frac{\partial x_l}{\partial m} x_l.
\]

This latter equation corresponds to the distinction between substitution and income effect:
Substitution effect:

\[\frac{\partial h_l}{\partial p_l} \]

Income effect:

\[\frac{\partial x_l}{\partial m} x_l \]
We know the sign of the *substitution effect* it is non-positive.

The sign of the income effect depends on whether the good is normal or inferior.

In the case that:

\[
\frac{\partial x_l}{\partial p_l} > 0
\]

we conclude that the good is *Giffen*.

This is not a realistic feature, inferior good with a big income effect.