Subcontractors for tractors: Theory and evidence on flexible specialization, supplier selection, and contracting

Tahir Andrabi a, Maitreesh Ghatak b, Asim Ijaz Khwaja c,*

a Pomona College, United States
b London School of Economics, United Kingdom
c Harvard University, United States

Accepted 24 January 2006

Abstract

Buyer–Seller networks are pervasive in developing economies yet remain relatively understudied. Using primary data on contracts between the largest tractor assembler in Pakistan and its suppliers we find large variations in prices and quantities across suppliers of the same product. Surprisingly, “tied” suppliers – those that choose higher levels of specific investments – receive lower and more unstable orders and lower prices. These results are explained by developing a simple model of flexible specialization under demand uncertainty. A buyer faces multiple suppliers with heterogeneous types to supply customized parts. Specific investments raise surplus within the relationship but lower the seller’s flexibility to cater to the outside market. Higher quality suppliers have a greater likelihood of selling outside and so this cost is greater for them. Therefore even if a buyer typically prefers high types, some low type suppliers might be kept as

This paper is dedicated with great admiration to Pranab Bardhan, whose pioneering work in development economics combining economic theory and econometric analysis with rich institutional detail has been an inspiration to us all. We thank Abhijit Banerjee, George Baker, Robert Gibbons, Oliver Hart, Alexander Karaivanov, Michael Kremer, Rocco Macchiavello, W. Bentley MacLeod, Kaivan Munshi, Canice Prendergast, Tomas Sjöström, Jeffrey Williamson, Chris Udry, two anonymous referees, the editor, Mark Rosenzweig and several seminar audiences for helpful feedback. We are grateful for all the support and information provided by the Lahore University of Management Sciences and Millat Tractors Ltd. All errors are our own.

* Corresponding author.
E-mail addresses: tandrabi@pomona.edu (T. Andrabi), m.ghatak@lse.ac.uk (M. Ghatak), akhwaja@ksg.harvard.edu (A.I. Khwaja).

0304-3878/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.jdeveco.2006.01.012
marginal suppliers because of their greater willingness to invest more in buyer-specific assets. Further empirical examination shows that the more tied suppliers are indeed of lower quality.

© 2006 Elsevier B.V. All rights reserved.

JEL classification: D23; L14; L62; O12; O14

Keywords: Subcontracting; Asset specificity; Flexible specialization; Buyer–seller networks

1. Introduction

Many industries, particularly in developing countries, are characterized neither as vertically integrated firms nor as a set of independent buyers and suppliers but as networks. Suppliers provide specialized inputs to several buyers selling related but different products and buyers have more than one supplier for the same input. The resulting investment pattern on the part of suppliers has been one of flexible specialization and is considered to be an optimal response to demand uncertainty and costly capacity-building or inventory-holding.\(^1\) In such environments, there is considerable variation in the terms of the contracts faced by a set of sellers who differ in terms of how specific their assets are with respect to the main buyer.\(^2\)

While there is a large literature on the determinants of the boundaries of the firm that highlights the importance of relationship-specific investments, we know very little about how relationship-specific investments affect contracts when the boundaries of the firm are given.\(^3\) Moreover, the existing literature treats specificity as being driven purely by technology. In a network or cluster setting, given that investment is characterized by flexible specialization, the degree of asset specificity with respect to any particular buyer is also partly a matter of choice.

In this paper we address these questions both theoretically and empirically. We use primary data to examine a particular buyer–seller network in Pakistan characterized by high uncertainty, weak contracting, and costly capacity building. This description fits the industrial sector of most developing countries quite well, although the relevance of the framework is not limited to these countries. Our initial analysis of the network reveals several interesting and somewhat puzzling facts. We find that there is substantial variation in how suppliers are treated – prices differ by as much as 25% and quantities by a factor of three across different suppliers supplying the same product in the same year. Upon further examination we find that surprisingly, it is the “tied” suppliers (those that choose higher levels of specific investments) that are treated as second preference suppliers, not only in terms of receiving more unstable and lower orders but lower prices as well.\(^4\)

We then develop a theoretical model to understand these findings. We take the existence of buyer–seller networks as given and address two main questions: do suppliers of the same product who differ in how specific their assets are with respect to the same buyer, receive

\(^1\) See Piore and Sabel (1984) for a discussion of flexible specialization, and Kranton and Minehart (2000) for a formal analysis of when such networks are optimal relative to vertical integration.

\(^2\) See, for example, Asanuma (1989) for a case study of the Japanese auto-manufacturing industry. In Section 2 we review other studies on this topic.

\(^3\) See Hart (1995) and Holmström and Roberts (1998) for excellent reviews of the transactions costs and property rights literature on the boundaries of the firm.

\(^4\) Asanuma (1989) uses the same terms in his case study of the Japanese auto-industry where he reports a similar hierarchy of subcontractors in terms of distribution of orders.
different prices and distribution of orders? What governs the variation in how specific a supplier’s assets are in relation to one buyer?5

Our theoretical model has three key ingredients. First, relationship-specific investments (as opposed to general investments) increase the surplus within the relationship but lower the flexibility of a seller to cater to the outside market. This decrease in flexibility is costly when demand is uncertain. Second, suppliers are of different “types” i.e., ex ante qualities. Holding the level of investment constant, higher types generate a higher level of surplus both within the relationship and in the outside market. Third, higher types are more likely to find a buyer in the outside market. Because of the first and the third features, higher types face a greater marginal cost of undertaking relation-specific investments. Thus for the same level of orders, higher types invest less than lower types. Therefore the model predicts that even if the assembler prefers high types in general, some low type vendors might be kept as marginal suppliers because of their greater willingness to invest in assets specific to the buyer, especially when demand is very uncertain.

The model generates further implications that are examined using the primary data set we collected on a sample of annual vendor-product specific contracts between Millat Tractors Ltd. (MTL) and its sellers (locally referred to as vendors) for a period of 10 years. The MTL data is attractive for several reasons. First, the focus on a single large buyer ensures that the comparison between contracts is meaningful. Second, we have detailed contractual outcomes including prices paid to a supplier for a given product (tractor part) and quantities scheduled every quarter for each product (henceforth “part”) from the vendor for over a decade. Finally, given the assembler has multiple vendors supplying the same part, we are able to make cleaner comparisons by contrasting contracts between two vendors with different degrees of specificity but which supply the same part. Unlike a majority of the empirical literature on relationship-specific investments, our comparisons are therefore not confounded with other effects that may be specific to a product yet not related to relationship-specificity. Our measure of specificity is the vendor’s response to what fraction of its machinery will go to waste if MTL stops buying from it and this measure is confirmed through various means such as relating it to a vendor’s production processes.

In addition to the differential treatment results, we find that tied vendors indeed have lower unit production costs, though this makes it even more surprising that they are treated as second preference vendors. However, cost is not the only consideration of the assembler. It cares a great deal about timely and defect-free delivery. This suggests that, as in the model, ex ante quality (type) differences between vendors can explain why MTL does not treat the cheaper tied vendor as its first preference vendor. Indeed, further empirical results show that vendors with greater asset-specificity perform worse both in terms of timely and defect-free delivery. In terms of our theoretical model, low type vendors act as capacity buffers because they are more willing to both undertake higher levels of specific investment and face greater uncertainty.

Our work is related to the theoretical literature on property-rights. The key distinction is that in our setup only the vendors undertake investments, and so optimal ownership is not the key question. Also, unlike our model, in this literature, specific investment is purely technology driven, and firm heterogeneity and selection issues are not emphasized.

5 Kranton and Minehart (2000) analyze the choice between vertical integration and networks of suppliers in model with flexible specialization, and the strategic investment incentives of individual firms that lead to their formation. Our paper shares with this paper the focus on the advantage of having flexible assets in the presence of demand uncertainty and costliness in maintaining capacity but focuses on a different and complementary set of questions.
Our work is closely related to the empirical literature on asset specificity and how it affects the nature of contracting. In this literature, the effect of asset specificity is typically shown either on contract duration (e.g., Joskow, 1987) or on certain contract provisions (e.g., Lyons, 1994 on the use of formal contracts, Gonzales et al., 2000 on extent of subcontracting, Woodruff, 2002 on the likelihood of vertical integration, and Baker and Hubbard (2004) on the pattern of asset ownership). While we too study the effect of asset specificity on contracts, our focus is on prices and quantities of orders, and their variability over time and across subcontractors. More generally, our work is related to the recent empirical literature on contracting where controlling for unobserved heterogeneity is an important theme (Chiappori and Salanie, 2003).

Finally, we view our work as a contribution to the emerging literature on contracting and organizational choice in the industrial sector in developing countries. The presence of significant uncertainty and transactions costs in these economies provide a fertile ground for testing many predictions of the theory of contracts and organizations. While a rich and growing empirical literature on contracting and organizational choice exists in the context of agriculture in developing countries, there is relatively little work in the context of industry (exceptions include Banerjee and Duflo, 2000; McMillan and Woodruff, 1999; Banerjee and Munshi, 2004).7

The plan of the paper is as follows. In Section 2 we discuss the key features of the environment drawing on several case studies on subcontracting in buyer–seller networks from different parts of the world. In Section 3 we present the theoretical model. In Section 4 we examine the case of MTL and its supplier network and interpret our empirical findings in terms of the theoretical model. Section 5 concludes.

2. Buyer–supplier networks: key features and puzzles

In this section we discuss key features of a particular buyer–seller network in Pakistan. The network presents some potential puzzles that motivated the model developed in the next section. We also document that these features hold more generally in other buyer–seller networks.

2.1. Multiplicity

Our examination of Millat Tractors in Pakistan shows that on average this buyer (assembler) has 2.3 suppliers for each product. This is not uncommon in such networks as a buyer typically has multiple suppliers for the same product. Such networks are well documented in the auto industry particularly in East Asian economies. Chung (1999) mentions that in the Korean automobile industry, “each component was supplied by an average of 3.3 subcontractors in 1998”. Such multiplicity is also fairly common in developed economies. Milgrom and Roberts (1997), and Forker (1997) discuss the presence of multiple subcontractors in auto and aerospace industries, respectively.

2.2. Differential treatment

The multiple sellers for each product are treated differently by the buyer both in terms of price obtained and quantity supplied. Such differentials can be quite large. Using the data from MTL and its suppliers and restricting to cases where two vendors are supplying a given part in the

6 Chiappori and Salanie (2003) and Shelanski and Klein (1995) provide reviews of this literature.
7 See Mookherjee (1999) for a survey.
same year, we find that on average one vendor gets a 25% higher price than the other. Doing the same for quantity supplied shows that on average a vendor is scheduled three times as much as another vendor supplying the same part in the same year. Similarly, there are differences in the stability of orders over time. Computing the coefficient of variation (CV) for the quarterly quantity supplied by vendors for each part shows that the CV ranges from 0.5 to 2. This suggests that not only is there considerable variation in orders over time but that this varies across suppliers with some receiving more stable orders than others.

A broader examination of buyer–seller networks suggests that such differential treatment is common and often linked to varying supplier quality. Case studies of the Japanese auto industry (Asanuma, 1989) discuss different tiers of suppliers with “first” and “second” preference ones. Several case studies document that sellers face different quantity orders. In Korea, Chung (1999, 2001) notes that the brunt of the industry’s uneven demand is borne by the smaller suppliers. Most of the shocks are passed onto the smaller suppliers. Asanuma (1989) notes that American automakers retained a large number of marginal suppliers and gave them orders only intermittently.

Differential supply is particularly relevant in developing economies as they face high demand uncertainty. Hanson (1995) points out in the Mexican apparel industry that uncertainty associated with shifting tastes and resulting order changes was important in the rise of subcontracting networks. Chung (1999) documents how these network relationships were key to the automakers’ response to dealing with the huge uncertainty in the aftermath of the Asian financial crisis. In our examination of the tractor industry in Pakistan, we find large yearly fluctuations in tractor sales in the economy (see Fig. 1). Moreover, these demand shocks are generally driven by a variety of idiosyncratic factors. In the Pakistani tractor industry, they include unexpected changes in the interest rates on government loans to farmers to fund tractor purchases, tariff and pricing policy changes, and weather shocks.

The differential treatment often also represents a quality-price trade-off. Park et al. (2001) give a detailed account of how assemblers in the Korean automotive industry develop elaborate ratings of the suppliers. Callahan (2000) examines Canadian and Mexican suppliers in a variety of industries in the US and notes that while Mexican suppliers were seen as less capable, less cooperative and lower in quality performance, “nevertheless, the low cost of the Mexican parts made them cost-effective”.

2.3. Relationship-specific investments

An important feature of MTL’s network is that vendors not only report that they incur relationship-specific investments relative to MTL (see Section 4 for details) but that the degree of “tiedness” to MTL varies across vendors, with some reporting no such investments to others reporting 100% of their investments tied to MTL. Such investments are fairly typical of buyer–seller networks and include both physical capital and human capital specificity. They are thought to lead to lower costs and improved quality within a relationship, but some loss of flexibility in selling to other buyers.

Physical capital specificity appears in the type of machinery used – general-purpose machines vs. special purpose machines, specific tooling dies vs. general purpose assets like presses (Milgrom and Roberts, 1997) – and the choice of the manufacturing process, e.g., how a machine is “tooled”. General-purpose equipment has to be “tooled” in certain ways before producing a specific part. In machining, tooling is essentially calibrating a machine so that it produces the finished part according to particular specifications. In cases where computerized
machinery is uncommon such as in the Pakistani auto industry and the case of MTL’s suppliers, such tooling is done manually through trial and error and involves considerable time and effort, and learning-by-doing. Moreover, since specialized machine manufacturers do not always exist locally in developing economies, at times a supplier has to develop a specialized machine.8

Human capital specificity takes the form of relationship-specific skills. For MTL’s vendors, this consists of skilled labor embodied in tooling machines to produce particular products, and the sellers’ making their operations and organizational setup compatible to MTL’s. In the Japanese auto-industry (Asanuma, 1989), these are skills that the supplier needs to develop to respond efficiently to the specific needs of a particular buyer. Forker (1997) in his aerospace example points out that less tangible aspects of the relationship such as friendships with purchasing personnel are all forms of asset specificity.

An aspect of such relation-specific investments that is apparent in case studies but has received little theoretical attention is that such specificity is not only driven by technology, but is

8 For example, one of the sellers we interviewed in the Pakistani auto industry had developed a special press just to create a specific part for its main buyer.
Table 1
Differential treatment of tied and untied vendors

<table>
<thead>
<tr>
<th>Variables</th>
<th>Panel A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LHS: Vendor scheduled quantity (logs)</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Specificity</td>
<td>−0.0013**</td>
</tr>
<tr>
<td></td>
<td>(0.0006)</td>
</tr>
<tr>
<td>Log total scheduled (Q)</td>
<td>0.7619***</td>
</tr>
<tr>
<td></td>
<td>(0.0284)</td>
</tr>
<tr>
<td>Specificity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>LogAge</td>
<td>0.2125**</td>
</tr>
<tr>
<td></td>
<td>(0.0951)</td>
</tr>
<tr>
<td>LogSize</td>
<td>0.0658</td>
</tr>
<tr>
<td></td>
<td>(0.0386)</td>
</tr>
<tr>
<td>LogDistance</td>
<td>−0.3142***</td>
</tr>
<tr>
<td></td>
<td>(0.0379)</td>
</tr>
<tr>
<td>City</td>
<td>−0.5891**</td>
</tr>
<tr>
<td></td>
<td>(0.1595)</td>
</tr>
<tr>
<td>Fixed effects</td>
<td>Part***</td>
</tr>
<tr>
<td></td>
<td>Quarter***</td>
</tr>
<tr>
<td>Observations</td>
<td>558</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Panel B

<table>
<thead>
<tr>
<th>Variables</th>
<th>LHS: Coefficient of variation of vendor scheduled quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(5)</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.0017*</td>
</tr>
<tr>
<td></td>
<td>(0.0008)</td>
</tr>
<tr>
<td>Age</td>
<td>−0.0118</td>
</tr>
<tr>
<td></td>
<td>(0.0160)</td>
</tr>
<tr>
<td>Size</td>
<td>0.0015</td>
</tr>
<tr>
<td></td>
<td>(0.0029)</td>
</tr>
<tr>
<td>Distance</td>
<td>0.0122***</td>
</tr>
<tr>
<td></td>
<td>(0.0039)</td>
</tr>
<tr>
<td>City</td>
<td>0.1835</td>
</tr>
<tr>
<td></td>
<td>(0.2090)</td>
</tr>
<tr>
<td>Fixed effects</td>
<td>Part</td>
</tr>
<tr>
<td>Observations</td>
<td>55</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses.
Errors clustered at the vendor level.

Columns (1)–(2) use a log–log specification to examine whether tied vendors get different quantity orders using quarterly vendor and total quantity scheduled data for each vendor and part. Columns (3)–(6) examine whether there is differences in variability of orders to tied vendors. Columns (3)–(4) do so by running the same specification as in Columns (1)–(2) but introducing the extra specificity interaction term. Columns (5)–(6) also uses the quarterly scheduled quantity data but collapses the time dimension to obtain a coefficient of variation of quantity scheduled for each vendor for a specific part and using this as the dependent variable. Finally, Columns (7)–(8) present results on differences in price paid to tied versus other vendors by using annual data for the negotiated price for a given part and vendor.

* Significantly different from zero at 10%.
** Significantly different from zero at 5%.
*** Significantly different from zero at 1%.

often a choice of the supplier and can vary even in producing the same product. We will return to
this in more detail below and incorporate it in the model developed. An example from MTL
suppliers is a multi-drill boring unit. While this machinery can only be used to produce a
restricted range of parts, according to the suppliers we interviewed, it increases accuracy by up to
35% as compared to using the more general purpose standard single-drill boring units.

2.4. How are tied suppliers treated?

The surprising empirical fact is that, along a variety of dimensions, tied suppliers – those that
undertake greater MTL-specific investments, receive less favorable treatment by MTL. Table 1
presents the results of examining a variety of outcomes. While we will discuss the data and
empirical results in detail later, we highlight some of these results here because they underline
the importance of understanding the role of investment specificity and seller heterogeneity.

Columns (1)–(2) show that tied vendors receive a lower level of order. A standard deviation
increase in tiedness is associated with a 5.5%–13.4% drop in the quantity scheduled from the
vendor. While the magnitude is much larger with city and distance controls, the standard errors
also increase.

Columns (3)–(6) examine preferential treatment in terms of the stability of orders given to
vendors. Columns (3)–(4) make use of the time dimension of the data and ask how MTL passes
on its overall demand variability to its vendors. It does so by computing the elasticity of each
vendor’s scheduled quantity to MTL’s total demand for the given part. It shows that a standard
deviation increase in tiedness is associated with a 3.7 percentage points increase in elasticity (i.e.
from an elasticity of 0.739 to 0.776). Columns (5)–(6) collapse the data to the vendor-part level
by computing the coefficient of variation for the quarterly quantity ordered for each part from a
given vendor over time. The results show that tied vendors are given a more unstable order. A
standard deviation increase in vendor specificity is associated with a 4.1–5.4% higher coefficient
of variation. Tied vendors face a more fluctuating order i.e. are treated as second preference.

Finally, Columns (7)–(8) show that tied vendors also get a lower price. An increase in the
measure of specificity from 0 to 100 decreases price by 19%; a standard deviation increase in
tiedness results in a 7.9% lower price level.9 These regressions assume that the quality of the lot
supplied does not affect current prices. This is reasonable as the price of each part to be supplied
by a vendor is agreed upon for the entire year before delivery begins.

Why are more dedicated suppliers given less favorable treatment? A priori one would expect
the exact opposite – given that relation-specific investments are likely to raise joint surplus, those
suppliers who undertake such investments should be treated more favorably. If they are not, ex
ante they would not choose to be undertaken such tied investments. However, this makes an
important assumption that is implicit in the property rights literature – i.e. suppliers are ex ante
identical. An important component of the theoretical model developed is to relax this assumption
and allow for ex ante supplier heterogeneity. Once we recognize that specific investments may
partly be a matter of choice, this raises questions regarding the circumstances under which such a
choice is made and whether certain types of suppliers are more likely to choose specific
investments.

9 Since we have an unbalanced panel (i.e. for all years the sets of parts are not the same) a concern is that our results are
based only on a comparison of the same part for two vendors across different years. However, we can check for this by
allowing for interacted part-year dummy variables. Doing so gives similar results allaying our concern, although, as
expected, the standard errors are higher.
More often than not specificity choices are affected by the degree of uncertainty in the environment – stable demand allows the use of dedicated machinery. In contrast, when faced with volatility in demand (both volume and product mix), suppliers prefer flexible manufacturing processes that allow them to produce smaller volumes and a larger product mix. German and Roth (1997) discuss such choices facing automotive engine valve suppliers in Argentina who face a more uncertain environment than some of their global competitors. These suppliers prefer a process that is more flexible in that tooling and other fixed costs are lower. So it is easier to shift from one product to another, but variable costs are higher (e.g., it requires more machining work to achieve the desired level of precision). The latter type of suppliers choose processes that require a large investment in tooling (i.e., large fixed costs), but are very efficient for producing large volumes.

In addition to uncertainty, suppliers of different quality may also choose different levels of specific investments. Forker (1997) points out that while suppliers that are more dependent on their main customer are cheaper, they often have problems with quality of the components produced. Similarly, Chung (1999) suggests that in the Korean automobile case it is the lower rung suppliers who are more dedicated. While such a trade-off is not surprising, what is less apparent is why buyers choose to have both low and high quality suppliers for the same part rather than just prefer one type. The model developed, and our subsequent analysis of MTL’s network of suppliers, will explore these issues further.

3. The model

3.1. The environment

The model focuses on the relationship between a single assembler, and its vendors. Everyone is assumed to be risk-neutral. The assembler is unable to make some parts in-house and needs to outsource. Vendors produce parts that are then converted into output using some technology by the assembler. For simplicity, we assume that there is only one part that the assembler needs from vendors. The production technology involves the assembler using one unit of this part to produce one unit of the final good.

An assembler and a vendor can establish a relationship. This allows the vendor to produce a customized part to the assembler. Alternatively, the vendor can sell generic parts in the outside market to any buyer that may knock on its door. Similarly, an assembler can buy generic parts from the outside market.

The assembler faces uncertain demand: with probability \(x \in [0, 1] \) demand is high (=2 units) and with probability \(1 - x \), demand is low (=1 unit). Each vendor has the capacity to produce one unit of the part. Given our specification of demand facing the assembler, this directly implies that it would need multiple (in the current setting, two) vendors if it wishes to supply the full amount that is demanded in each state of the world. Therefore, the answer to the question as to why there are multiple vendors follows directly from the assumption of a particularly simple form of decreasing returns to scale in our model.

Vendors are of two types, high or low, i.e., \(\theta_i \in \{ \bar{\theta}, \tilde{\theta} \} \) where \(1 \geq \tilde{\theta} > \bar{\theta} \geq 0 \). Let \(\Delta \theta = \bar{\theta} - \bar{\theta} \). We will use the normalization \(\theta + \bar{\theta} = 1 \) which is without loss of generality. We assume that the type of vendor \(i \), \(\theta_i \), is known and observable to all parties, i.e., there is no learning or adverse selection. There are many vendors of both types in the population. The higher the type of the vendor, the higher is the surplus within the vendor–assembler relationship. Also, higher type vendors have a higher expected outside option since they are more versatile and can cater to different types of buyers.
A vendor who has established a relationship with the assembler can undertake some relationship-specific investment (henceforth, investment) that enhances the value of trade within the relationship, in the form of higher quality and/or lower costs. Let $x \in [0, 1]$ denote the level of investment undertaken by a vendor. We interpret x as the percentage of its total capacity that a vendor keeps tooled up for producing the customized part to the assembler on demand. The rest of the capacity is kept flexible so that it can be used to produce generic parts.

The (ex post) joint surplus from trade between the assembler and a vendor of type θ is $S(x, \theta) = a + b\theta + x$ where $a > 1$, and $b > 0$. For our analysis it does not make any difference as to whether the investment improves quality or reduces costs or both. It is easy to modify the above set up slightly to allow for a separate quality-enhancement and a cost reduction effect. For example, for a vendor of type θ who has undertaken an investment level of x, suppose the unit cost of production is $\gamma(x) = 1 - \gamma x$ where $\gamma \in (0, 1)$. Correspondingly, suppose that the (expected) revenue of the assembler is $R(x) = a + 1 + b\theta + (1 - \gamma)x$. This ensures that $S(x, \theta) = R(x, \theta) - \gamma(x)$.

That is, joint surplus is increasing in the quality of the vendor as well as the extent of relationship-specific investment undertaken by it. The (ex ante) cost of undertaking the specific investment is $c(x) = (1/2)x^2$.

The assembler has the option of buying a generic part from the market. In this market the assembler as well as the vendors are price takers. One unit of a generic part procured from the outside market yields an expected net surplus of σ to the assembler where $\sigma \in (0, 1/2)$.

A vendor, whether or not it has established a relationship with the assembler, has the option of selling generic parts in the outside market. This provides vendors with an outside option in their dealings with the assembler.

Vendors can earn an exogenously given expected surplus of λ per unit of sales in the outside market where $\lambda \in (0, 1/2)$. In particular, θ is the probability a vendor of type θ finds a buyer in the market for generic parts. Therefore, the ex ante (i.e., before undertaking any relationship-specific investment) outside option of a vendor is $\lambda\theta$. Higher quality vendors face higher expected returns in the market for generic parts because they can produce a wider range of generic parts and as a result, are more likely to find a prospective buyer.

The ex post outside option faced by a vendor of type θ whose investment vis-à-vis the assembler is x, is $u(x, \theta) = \lambda\theta(1 - x)$. A vendor who has established a relationship with the assembler and has made some relationship-specific investments has a disadvantage in selling the generic part in the outside market relative to an “unattached” vendor because a part of its capacity is not flexible, and is less suitable to produce generic parts on demand. In particular, it can produce $1 - x$ units of the generic part using the flexible part of its capacity.

As $a > 1$, it is more efficient for an assembler to establish a relationship with a vendor and get a customized part (which yields a joint surplus which is at least as large as a per unit) rather than relying on the outside market for a generic part (which yields a joint surplus of $\sigma + \lambda$ per unit which is less than 1).

We assume that investment is contractible and is chosen to maximize the expected joint surplus of the assembler and the vendor. In a previous version of the paper, we also analyzed in detail the case where investment is non-contractible and is subject to a usual hold-up problem. Allowing for non-contractibility does not qualitatively alter our results and in fact makes it more likely that low types vendors choose higher investment levels even when treated as second preference vendors. However, for the sake of brevity, we will only present the contractible investment case in this paper, and briefly mention what happens in the non-contractible case.

10 In general, λ could depend on θ.
Also, in line with the institutional environment where there is a unique assembler and many vendors, it is assumed that competition between vendors drives their share of the surplus to the level of their (competitive) outside options. Since x is contractible, the assembler is able to commit to making a net expected payment of $\lambda \theta x$ to a vendor of type θ who has undertaken investment x since that ensures an overall expected payoff of $\lambda \theta$.

Before analyzing the model we should address the issue of vertical integration since this would matter if investments were non-contractible i.e. why doesn’t the assembler own the asset instead of the vendors owning it? In the model, we are assuming that the assembler does not undertake any significant specific investments with a specific vendor, the ex ante choice of which could be affected by ex post bargaining. This is justified by the institutional setting. MTL makes tractors based on blueprints provided by MTL’s foreign partner, Massey–Ferguson and gives the vendor an imported sample of a relevant part. Any technological support provided is not specific to a particular vendor, but to all vendors that supply that part. Given this, under the non-contractibility case ownership by the assembler will only help to reduce the vendor’s share of ex post surplus, which would dampen its investment incentives.

3.2. Analysis

Let $\beta \leq 1$ be the demand faced by a vendor from the assembler, to be chosen endogenously. This can be either a certain demand of β units, or the probability that it is called to supply one whole unit. We will use the latter interpretation. If x is contractible and the assembler plans to buy β units of the customized part from a vendor of type θ, x will be chosen to maximize ex ante expected joint surplus between the vendor and the assembler. Under the first-best how the assembler and the vendor split this surplus among themselves has no allocational implications. If demand from the assembler is not forthcoming (which has probability $1 - \beta$) then a vendor sells generic parts in the outside market. Therefore, the ex ante expected joint surplus between the vendor and the assembler is:

$$s(x) = \beta S(x, \theta) + (1 - \beta)u(x, \theta) - c(x).$$

which yields the following optimal choice of x:

$$x^*(\beta, \theta) = \max\{\beta - (1 - \beta)\lambda \theta, 0\}.$$

As $\beta \leq 1$, $x^*(\beta, \theta) < 1$. Let $\hat{\beta}(\theta)$ be the critical value of β such that $x^* = 0$, i.e., $\hat{\beta}(\theta) = \frac{\lambda \theta}{1 + \lambda \theta}$. Notice that $\hat{\beta}(\theta) < 1$ and that it is increasing in θ. Our first result follows immediately upon inspecting (1):

Proposition 1.

(i) The level of investment is increasing in the level of orders.

(ii) The higher is the type of the vendor, the lower is the level of investment for the same level of order.

(iii) For the range of orders where both types of vendors invest this gap decreases as the level of orders increases and disappears when the level of orders is 1.

The first part of the result follows from the fact that the specific investment is useful only when the asset is used to produce for the assembler, and so the level of specific investment is increasing in the level of orders. The second part follows from the fact that the marginal social
return from relationship-specific investment is lower the higher is a vendor’s type. These vendors are more likely to get an outside offer and therefore the marginal cost of constraining themselves to one particular buyer is higher for them. The fact that low type vendors invest more for the same expected order than high type vendors make them potentially attractive. The third part follows from the fact that as the level of orders \(\beta \) increases, the outside option gets lower and lower weight, and so the gap between the investment of a high type and a low type vendor shrinks so long as they are both choosing positive levels of investment. When \(\beta = 1 \) because the outside option gets no weight in the choice of investment, this gap disappears.

Next we characterize how an assembler allocates its orders among vendors. To do so, we need to find out how the net surplus between the assembler and a vendor depends on the level and distribution of orders. By being outside the relationship and serving only the outside market a vendor can earn \(u(h) = \max_x u(x,h) - c(x) = \lambda \theta \). This is the outside option of a vendor of type \(h \).

Given the equilibrium value of \(x_i \), the equilibrium value of the net ex ante expected surplus from the relationship is the expected surplus in the relationship net of the outside option and cost of undertaking the investment:

\[
s^*(\beta, \theta) = \left\{ \beta S(x^*(\beta, \theta), \theta) + (1 - \beta)u(x^*(\beta, \theta), \theta) - \frac{1}{2} (x^*(\beta, \theta))^2 \right\} - u(\theta).
\]

This is the maximum expected net surplus that is generated if a vendor of type \(\theta \) and the assembler decide to enter into a relationship. By our assumptions concerning the parameters \(a \) and \(b \), \(S(x, \theta) > u(x, \theta) \) and so it directly follows that \(s^*(\beta, \theta) > 0 \). Now we are ready to state:

Proposition 2. The assembler would give one vendor a certain order of 1, and the other vendor an order of 1 with probability \(\alpha \) and 0 with probability \(1 - \alpha \).

Proof. See the Appendix.

This result is driven by the fact that \(s^*(\beta, \theta) \) is increasing and convex in \(\beta \). Under our assumptions it is more profitable for a vendor to trade with the assembler than with the outside market. An increase in orders increases the weight attached to trade with the assembler relative to trade with the outside market, and hence increases expected joint surplus within the relationship. There is also an indirect effect of increasing orders via the level of specific investment, \(x \), for the range of \(\beta \) for which there is an interior solution. But under the first-best, \(x \) is chosen to maximize joint surplus and so this effect is zero by the envelope theorem. Next let us consider the second-order effect of increasing orders on \(s^*(\beta, \theta) \). The first-order effect of increasing orders is equal to the (per unit) ex post surplus from trade between the vendor and the assembler (i.e., \(S(x, \theta) - u(x, \theta) \)). This itself is increasing in \(\beta \) for the range of \(\beta \) for which there is an interior solution and so here \(s^*(\beta, \theta) \) is strictly convex in \(\beta \). For the range of \(\beta \) for which there is a corner solution, this is a constant and so \(s^*(\beta, \theta) \) is linear (and so weakly convex) in \(\beta \).

Since the expected surplus within a relationship is convex in the level of orders, it is efficient to distribute the orders among the minimum possible number of vendors. Given that the maximum demand is for two units of the part, and each vendor has a capacity of one, we can restrict attention to two vendors. Since these vendors can in principle be of different types, we introduce the following function:

\[
s^*(\beta) = \max \left\{ s^*(\beta, \theta) \right\}.
\]

11 Analytically, this property is similar to the profit function of a competitive firm being convex in the output price.
This is the upper envelope of the net ex ante expected surplus from the relationship when the type of vendor of the vendor can be chosen for any given level of order β.

We will refer to the vendor with a high and stable order as the “first-preference” vendor and the vendor with a lower and fluctuating order as the “second-preference” vendor. This result shows is that it is in fact optimal to have a “first-preference” and a “second-preference” vendor as opposed to spreading the orders between the vendors in a more equal manner. This is depicted in Fig. 2. Since the type specific joint surplus functions are increasing and convex, so must be their upper envelope $s^*(\beta)$. This is the relevant net joint surplus function given that the assembler can choose different types of vendors for different ranges of orders. Therefore the assembler should try to place as much order with one vendor as possible, and pass the residual order to another vendor. Since each vendor has a capacity constraint of one unit of output, in equilibrium the assembler buys from more than one vendor – otherwise it would buy everything from one vendor.

Our next result characterizes the choice of the type of vendor:

Proposition 3. There exists $\tilde{b} > \lambda$ such that:

(i) For $b \leq \lambda$ both the first and second-preference vendors are going to be low types.

(ii) For $b > \tilde{b}$ both the first and second-preference vendors are going to be high types.

(iii) For $b \in (\lambda, \tilde{b})$ the first-preference vendor is going to be a high type vendor. The second preference vendor is going to be a high type vendor if α is very low or very high but a low type vendor otherwise.

Proof. See the Appendix.

The key parameter in this characterization is b, which is the marginal return from higher quality inside the relationship. The marginal return from higher quality outside the relationship is λ. When b is lower than λ, while higher quality is preferred both inside the relationship and outside, it is more valuable outside. As a result, it is not efficient for the assembler to try to attract high type vendors. Indeed, as we noted earlier, in this case even if we ignore investment, low types would be preferred. But since they invest at least as much as the high types for any given level of orders (Proposition 1) considering investment reinforces the preference for low

![Fig. 2. Net ex ante expected surplus for type θ vendor.](image-url)
type vendors. With $b > \lambda$ there is a trade off. Now the marginal social return from higher quality, ignoring investment, is higher inside the relationship than outside. But high types invest less for the same level of orders than low types. When b is high enough (i.e., $b \geq \tilde{b}$) the first effect dominates and the high types are always preferred. But for intermediate values of b (namely, $b \in (\lambda, \tilde{b})$) it is possible that low types become attractive since they invest more. Recall from Proposition 1 that the gap between the investment levels of the high type and the low type decreases as the level of orders increases. For very low levels of orders neither type of vendors invest, and so for $b > \lambda$ the high types would be preferred. For high levels of orders, the gap between the investments of high and low types is very small, and so once again the high types would be preferred. For intermediate levels of orders the gap between the investments of high and low types is large, and low types will be preferred when $b \in (\lambda, \tilde{b})$.

Recall from Proposition 2 that one vendor is going to be given a certain order (the “first-preference” vendor) and the other vendor is going to be given the residual order a (the “second-preference” vendor). So for $b \leq \lambda$ both the first-preference and the second-preference are going to be low types, and similarly, for $b \geq \lambda$, both the first-preference and the second-preference are going to be high types. For intermediate values of b, the first-preference vendor is going to be a high type. If α is high, the second-preference vendor is going to be a high type and the same is true if α is low. But if α takes an intermediate value, the second-preference vendor will be a low type vendor. Since α is the probability of the high demand state, and we are considering a binary distribution, the variance is $\alpha(1 - \alpha)$ which is high for intermediate values of α and low for high or low values of α. So this result tells us that the presence of greater uncertainty makes having a mixed portfolio of vendors more likely.

Now we proceed to characterize the investment levels undertaken by first and second-preference vendors:

Proposition 4. The first-preference vendor will always undertake a higher level of investment than the second-preference vendor.

Proof. See the Appendix.

If both first-preference and second-preference vendors happen to be the same type, naturally the former will invest more than the latter. However, if the first-preference vendor is high type, and the second-preference vendor is low type then the comparison is not straightforward – for the same order the high type invests less than the low type, but it happens to get a higher order. It turns out that in this particular instance, the comparison is actually straightforward. Being first-preference means you always receive an order of 1, and the outside option gets no weight in the choice of investment under the first-best. Indeed, when the order is 1, the investment of a high type and a low type are the same (Proposition 1). But we know that a low type vendor with order $\alpha < 1$ invests less than a low type vendor with order 1. So even when the first-preference vendor is a high type and the second-preference vendor is a low type, in the first-best the former will invest more than the latter.

Finally, we characterize the prices received by the first and second-preference vendors.

Proposition 5. The first-preference vendor will receive (weakly) a higher price than the second-preference vendor.

Proof. See the Appendix.

This follows straightforwardly from the fact that the net expected payment for a vendor is $\lambda 0 x$. Since they receive an order with probability 1 or α, the price that the assembler would be
able to commit upfront will be $\lambda \theta x$ to the first-preference vendor and $\frac{\lambda \theta x}{z}$ to a second-preference vendor.12 The type of the first-preference vendor is going to be (weakly) higher than the second-preference vendor (by Proposition 3). Also, $x=1$ for the first-preference vendor and $x-(1-z)\lambda \theta$ for the second-preference vendor. Since $\frac{x-(1-z)\lambda \theta}{z} < 1$, the result follows.

3.3. Extensions

So far we assumed that the specific investment and the type of the vendor are substitutes in the outside option. Suppose we allow the specific investment and the type of the vendor to be substitutes or complements within the relationship. Does this qualitatively affect our results? Let us modify the above model such that $S(x, \theta) = a + b\theta + (1 - k\theta) x$ where the parameter k allows x and θ to be complements ($k<0$) or substitutes ($k>0$) as opposed to being independent ($k=0$) which is what we assumed in the benchmark model. This yields the following optimal choice of x:

$$x^*(\beta, \theta) = \max \{ \beta (1-k\theta) - (1-\beta)\lambda \theta, 0 \}.$$

Clearly, if the investment and the type of the vendor are complements (substitutes) then the investment advantage of the low types decrease (increase) compared to the above model but the basic classification of alternative cases remain valid. However, when the investment and the type of the vendor are substitutes ($k>0$) there is an interesting implication for the case where both high types and low types are chosen in equilibrium. Now the first-preference vendor (a high type) will choose an investment level of $1 - k\theta$. However, the second-preference vendor (a low type) will choose an investment level of $x(1-k\theta) - (1-x)\lambda \theta$. This raises the interesting possibility that the second-preference vendor might invest more although it has a lower demand. This will be the case if the difference between θ and $\tilde{\theta}$ is large. For example, let $\tilde{\theta} = 1$ and $\theta = 0$. Then the required condition for this becomes $(1-x) < k$ which is possible given our assumptions about the parameters. However, even if this is the case, so long as the difference between $\tilde{\theta}$ and θ is large enough, Proposition 5 would continue to hold ($\tilde{\theta} (1-k\theta) > x(1-k\theta) - (1-x)\lambda \theta$) even if $(1-k\tilde{\theta}) < x(1-k\tilde{\theta}) - (1-x)\lambda \tilde{\theta}$ which is obviously true in the limiting case $\tilde{\theta} = 1$ and $\theta = 0$.

Next we consider what happens if x is subject to hold-up problems as in Grossman–Hart–Moore property-rights framework.13 Let us assume that x is observable but not verifiable. The price for a vendor is negotiated after the investments are sunk, and the parties are assumed to adopt the Nash bargaining solution. The assembler bargains with each vendor separately and independently. If bargaining breaks down with a particular vendor after the investment is undertaken, the vendor is able to walk out of the relationship and earn its ex post outside option $u(x, \theta)$.

The assembler can, in principle, find another vendor and buy the customized part from it. There are several costs of doing this. For example, there are costs of screening and training a

12 We are assuming any costs that arise in the process of undertaking relationship-specific investments are compensated for at the beginning of the relationship which is consistent with the assumption of maximizing joint surplus. We are also assuming that any cost-savings or quality-enhancement effect of investments are not reflected in per-period prices and are adjusted for at the beginning of the relationship.

13 While the choice of a machine (general or special purpose) can in principle be contracted upon, it is harder to contract on how machines are to be tooled, etc. Moreover, in developing country environments where such networks are quite prevalent, contracts are typically incomplete partly due to the high costs of formal contracting.
new vendor (which we have not modeled), the new vendor would not have had the time to invest, and there will be some loss of surplus due to delay in delivering to the final consumer. For simplicity we have assumed that these costs are significant and so if bargaining breaks down, the assembler has to buy a generic part from the outside market which yields a surplus of \(\gamma \) per unit.\(^{15}\)

The gross ex post surplus within the relationship if trade takes place is \(S(x, \theta) \). The vendor’s share of the ex post surplus from dealing with the assembler per unit of the part conditional on trade taking place (which can be interpreted as the price) using the standard Nash-bargaining formula is:

\[
\pi = \frac{S(x, \theta) + u(x, \theta) - \gamma}{2}. \tag{2}
\]

The assembler’s share of the ex post surplus in its relationship with the vendor per unit of the part conditional on trade taking place is:

\[
\Pi = \frac{S(x, \theta) - u(x, \theta) + \gamma}{2}. \tag{3}
\]

The vendor would choose \(x \) to maximize: \(\beta \pi + (1 - \beta)u(x, \theta) - c(x) \).

The vendor’s optimal choice of \(x \) is therefore given by:

\[
x^{SB}(\beta, \theta) = \max \left\{ \frac{\beta}{2} - \left(1 - \frac{\beta}{2} \right) \hat{\theta}, 0 \right\}. \tag{4}
\]

where the superscript SB indicates that this is the optimal second-best allocation. The most interesting contrast with the case of contractible investment is, now a first-preference vendor will not completely tie itself to the assembler, i.e., even if \(\beta = 1 \), a vendor will keep some capacity flexible because that enhances its bargaining power by boosting up the outside option. This implies that the first-preference vendor may undertake a lower level of investment than the second-preference vendor, which will be the case when the first-preference vendor is a high-type, and the second-preference vendor is a low type. Also, so long as the difference between \(\bar{h} \) and \(h_\bar{\bar{\theta}} \) is large enough (e.g., \(\bar{\theta} = 1 \) and \(\bar{\theta} = 0 \)), Proposition 5 would continue to hold.

3.4. Discussion and empirical implications

The theoretical analysis above establishes how one obtains equilibrium order patterns that involve giving relatively stable (certain in our model) and higher orders to one vendor and variable and lower orders to another vendor. The observed pattern of assemblers having first-preference and second-preference vendors emerge endogenously in our model with heterogeneous types of vendors, and optimally chosen investment levels. In addition, Proposition 3 shows that the first-preference vendor is going to be (weakly) higher quality than the second-

\(^{14}\) According to Williamson’s (1985) notion of relationship-specificity, even if one party does not undertake any up front expenditures at all, his ex ante relationship-specific investment could just be the choice of a partner or a standard or anything else that limits his later options. See Williamson (1985).

\(^{15}\) This ex post bargaining power of the vendor is perfectly consistent with ex ante competition among vendors to be able to trade with the assembler, and is a consequence of relationship specificity.
preference vendor. We then show that the first-preference undertakes a higher level of investment as compared to the second-preference vendor in the basic model. However, in the extension section we showed that if x and θ are strong substitutes within the relationship or if there is a hold-up problem, the second preference vendor may undertake a higher level of investment.

Since we do not directly observe type h, the empirical implications of the above analysis involve a set of predictions about investment x^* (which is observed) and the following: level and variability of orders, unit costs, price per unit, and quality (or performance). Without taking into account selection effects, we would expect x^* to be positively related to the level of orders, price per unit, and quality (or performance), and negatively related to variability of orders and unit costs. However, once we recognize the selection effects, some of these conclusions will have to modified, as our analysis shows above.

4. Empirical evidence

The motivating empirical results presented in Section 2 showed that not only is there supplier multiplicity and differential treatment of MTL suppliers but that somewhat surprisingly, suppliers that choose to invest specifically for MTL receive less favorable treatment in terms of price and quantity levels and the variability of orders. The model developed above presented a theoretical framework which shows that this puzzle can be resolved once we allow for ex ante supplier heterogeneity. It shows that in equilibrium it is possible that the lower quality suppliers are willing to choose greater levels of relationship-specific investments and that MTL buys from both the low and high quality suppliers. While the data is not detailed enough to uncover the structural parameters in the model, and to test the parameters values under which different model cases occur, we can examine the empirical implications suggested by the model in order to reconcile why tied vendors are second preference – specifically, that tied vendors are of lower quality/type.

4.1. Data

MTL is licensed to produce two models of Massey–Ferguson tractors and does so by mostly outsourcing (only 7 out of the 500 tractor parts are manufactured in-house) to a rich and stable base of 200 local vendors with very little turnover in these vendors. The vendors are selected by MTL after a rigorous examination of their technological capability and MTL is therefore aware of each vendor’s strengths and weaknesses i.e. vendor type, as in the model above, is known to MTL. MTL mostly has multiple vendors for each part, while each vendor typically also supplies to several buyers, including other tractor assemblers, the market for replacement parts, and automobile manufacturers.

Once a vendor is approved to supply a particular product – a tractor part – MTL negotiates a price for the part and issues a tentative quantity order. While the price agreed upon for the period

16 While we do not explicitly talk about unit costs, as we mention in the model set up, a part of the benefit of investment could be in reducing unit costs. So if unit cost of production is $\gamma(x)=1-\gamma x$ then it would be decreasing in x. Similarly, if there is a separate quality enhancement component of investment, we would expect that to be increasing in x.

17 A medium sized tractor assembled by MTL requires around 900 components, of which 400 are imported. A component normally comprises of several parts (e.g., a set of bolts required for one wheel is treated as a component by MTL). The vast majority of local vendors produce metalwork parts. In 1994, 54% of the total value of parts procured by MTL was from local vendors. See Amir et al. (1995) and Ghani (1997).
of the contract (generally a year) is binding for both parties, there is no commitment on quantity.18 The supply schedule is issued each quarter and is determined by demand conditions. As such, in our empirical analysis we will focus not only on the negotiated price but also on both the quantity scheduled each quarter and the quantity that the vendor delivers.

There are two aspects of a vendor’s supply that MTL is concerned about – part and delivery quality. A key quality issue is a part failing to meet measurement specifications. The incorrect measurements result either from vendor error or from using equipment beyond their acceptable lifetime. As such MTL has elaborate part-quality control mechanisms ranging from tests of random samples for each batch supplied to assembly-line fitting and field problems. Timely delivery of the quantity ordered is the other major concern for MTL. This is especially important since MTL requires all parts to assemble its final product and so, inventories aside, a single vendor may hold up MTL’s production line if it delays delivery.

An important feature is the high degree of uncertainty in yearly sales the tractor industry in Pakistan faces. Fig. 1 shows this high degree of volatility during 1989–99. There are several reasons for this uncertainty, ranging from erratic government policy (concerning the financing of tractor purchases by government banks, imports, taxes) to demand fluctuations driven by unstable agricultural output growth.

We employ two data sources. The primary data set consists of part-specific contracts between MTL and its vendors during 1989–99 and additional part level information from the archives at MTL. The data provides negotiated price and quarterly quantity scheduled and received by vendor for each part. The parts are representative, ranging from low priced simple products such as tractor clips (Rs. 0.2) to high priced complex products such as a transmission case (Rs. 5306). This data-set is merged with a survey of the automobile industry vendors conducted by the Lahore University of Management Sciences (LUMS) in 1997 to construct vendor attributes. This leaves us with a sample of 28 MTL vendors.

We further restrict our analysis to parts for which MTL buys from more than 1 of the 28 vendors in our sample. This restriction allows us to address the main question of interest, namely how prices and quantities vary across vendors supplying the same part. Otherwise we would be comparing vendors that supply different products, and even though we allow for a part-specific intercept, we would not be able to separate out the effect of a firm’s characteristics from choices such as its degree of relationship-specificity. The drawback is the smaller sample size – we are left with 19 of the 28 vendors supplying 39 different parts – produces potentially higher standard errors.

Table 2 gives the definitions and summary statistics for the main variables used. The primary outcomes of interest are the annual price for each part and vendor, and the quantity ordered and subsequently received from each vendor. Note that we do not have any direct measure of the type of the vendor (i.e. θ in the model). As such the primary explanatory variable is the degree of relationship-specific investments (x in the model) undertaken by the vendor. This is measured as the percentage of the vendor’s physical assets/equipment that would become idle i.e. would have to be scrapped if MTL stopped buying from it.19

Given the importance of specificity, it is important that our measure capture the degree of specific investments and not an omitted factor such as a vendor’s dependence on MTL or

18 Price renegotiations within the contract period happen rarely unless there is some large unexpected change in input prices (e.g., a hike in raw steel prices).

19 Alternately this measure can be thought of as the level of quasi-rents (see Williamson, 1985) generated by the specific-investment. Andrabi et al. (2004) consider this alternate interpretation and find that it leads to a similar but more involved explanation of the empirical findings.
We provide several checks for this. First, using MTL engineers ranking of technological processes, we show that our measure is higher for processes that are more likely to require dedicated investments. Vendors involved in machining and forging, both high-specificity processes, declared specificity measures of 62% and 66% whereas those that

Table 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Observations</th>
<th>Mean</th>
<th>S.D.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor specificity (%)</td>
<td>18</td>
<td>43</td>
<td>43</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Vendor age (in 1995)</td>
<td>18</td>
<td>15</td>
<td>7</td>
<td>3</td>
<td>34</td>
</tr>
<tr>
<td>Vendor size (number of employees)</td>
<td>19</td>
<td>72</td>
<td>128</td>
<td>4</td>
<td>550</td>
</tr>
<tr>
<td>Distance to MTL (km)<sup>a</sup></td>
<td>19</td>
<td>334</td>
<td>548</td>
<td>7</td>
<td>1400</td>
</tr>
<tr>
<td>City (<i>1=Karachi</i>)</td>
<td>19</td>
<td>0.21</td>
<td>0.42</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Part order data					
Annual average part price (<i>P</i>)^b	273	243	741	0.2	4188
Log annual part price	273	3.30	2.20	−1.61	8.34
Quarterly vendor scheduled quantity (<i>Q_s</i>)^c	758	2350	3750	0	31,500
Quarterly total scheduled quantity (<i>TQ_s</i>)	907	4601	6723	0	53,100
Quarterly vendor received quantity (<i>Q_R</i>)	790	3186	5383	0	81,242
Quarterly total received quantity (<i>TQ_R</i>)	907	6161	9580	0	11,7026
Log quarterly vendor scheduled <i>Q</i>	558	7.55	0.96	4.61	10.36
Log quarterly total scheduled <i>Q</i>	740	8.19	0.92	5.30	10.88
Log quarterly vendor received <i>Q</i>	628	7.69	1.13	1.61	11.31
Log quarterly total received <i>Q</i>	819	8.28	1.04	5.01	11.67
Quarterly vendor scheduled <i>Q</i> − Quarterly vendor received <i>Q</i>	802	−399	4253	−24,888	25,812
Under-supply	390	1569	3347	0	25,812
Over-supply	449	2231	3914	0	24,888
Vendor scheduled <i>Q</i> coefficient of variation	56	0.99	0.38	0.49	2
Log cost (log <i>C</i>)^d	64	4.53	1.43	2.15	8.37
Percentage of parts rejected (<i>R</i>)^e	411	1	2.7	0	29

Sources: Lahore University of Management Sciences (LUMS) survey 1997, Millat Tractors Limited (MTL) database. Variable descriptions: <i>P</i>=agreed contract price for a given vendor and contract year; <i>C</i>=MTL engineer’s estimate of cost of production of a particular part for a given vendor in a given year; <i>Q_s</i>=quantity scheduled from the vendor during a quarter; <i>Q_R</i>=quantity received from the vendor during a quarter; <i>TQ_s</i>=total quantity scheduled for a given part from all MTL vendors (including those not in our sample) during a quarter; <i>TQ_R</i>=total quantity received for a given part from all MTL vendors (including those not in our sample) during a quarter; Under-supply/Over-supply=non-negative/non-positive values of scheduled quantity minus received quantity for a vendor; <i>R</i>=fraction of the vendor’s quarterly received quantity that is rejected by the MTL quality inspection section; Age=vendor age; Specificity=the percentage of the vendor’s physical assets/equipment that would become idle (i.e. would have to be scrapped) if MTL stopped buying from it; Size=size of the vendor’s labor force (in 1995); Distance=distance of the vendor (km) from MTL; City=a dummy variable that equals 1 if the vendor is located in Karachi and 0 if in Lahore.

^a In all regressions, Distance will be set to 0 if the vendor is in Karachi as there is no variation in distance for Karachi vendors. Thus together with the City dummy (=1 if vendor in Karachi), Distance should be interpreted as the Distance of non-Karachi vendors (i.e. “local distance”).

^b All annual data refers to the calendar (as opposed to fiscal) year.

^c The price and quantity data have different number of observations since they come from different MTL sources. The former comes from the Order Information Database and the latter from the Schedule-Receipts Database.

^d The cost data comes from a smaller data-set which had internal “cost” estimates made by MTL engineers. These estimates are not only accounting costs but also include a standard markup.

^e The rejections data is only available for the years 2000 and 2001. Proportion of rejections is defined as the number of rejected parts divided by the total number of parts supplied and is defined per quarter.

Confidence in its own abilities. We provide several checks for this. First, using MTL engineers ranking of technological processes, we show that our measure is higher for processes that are more likely to require dedicated investments. Vendors involved in machining and forging, both high-specificity processes, declared specificity measures of 62% and 66% whereas those that
only did casting, a low-specificity process, had much lower specificity measures. Second, we check for an obvious misinterpretation with “sales reliance” on MTL and find that a vendor’s percentage sales to MTL and its declared specificity are not correlated, suggesting that this misinterpretation is not an issue.20

4.2. Empirical specification

Our data restriction to parts with multiple sample vendors allows us to use part and time fixed effects to contrast contractual outcomes for two different vendors supplying the same part in the same year. This is the tightest restriction we can apply, though at the cost of reducing sample size. Part fixed effects control for potentially important and confounding aspects specific to the part (such as its technological nature, how critical it is, the number of vendors supplying it provided that this does not change over the sample period, etc.) and time fixed effects control for common period-specific shocks such as inflation, demand, and government policy changes. We will be estimating equations of the form:

\[C_{ijt} = \alpha_i + \tau_t + \sum_j \beta_j X_j + \text{error}. \]

One caveat is that this specification treats vendor characteristics as time invariant. At a practical level this is dictated by the fact that we have information on some vendor characteristics such as specificity for only 1 year. However, we are not unduly concerned since these attributes do not change substantially over the short time period under study (11 years, with 96% of the data coming from the period 1993–1999) as supported in cases where we have another year of vendor characteristics (correlations between vendor size observations in 1985, 1990 and 1995 are all above 0.95 and highly significant). Moreover, even if they do change, as long as they change uniformly i.e. vendors do not keep switching rank there is unlikely to be any systematic bias in our results.

The functional form used was dictated by the particular dependent variable being considered. For regressions in which the dependent variable is price/cost, we use a log-linear specification because prices/costs across different products tend to have a fairly skewed distribution that resembles a log-normal rather than normal distribution. In contrast, in specifications where the dependent variable is quantity, the distribution is much less skewed. While we could run these regressions as linear, we choose a log–log specification both because we feel it is more appropriate and because the coefficients have natural elasticity interpretations (the two exceptions to this are two tables that have quantity coefficient of variation and percentage

20 One might expect that a vendor that has less dedicated assets to MTL will have fewer sales to MTL and vice versa. Neither relation is necessarily true. First, a vendor could be making all its sales to MTL but it could be using generic machinery to produce the parts and as such have low specificity. As a result, if MTL stops buying from it, it could switch to another buyer. Indeed, in our field interviews we found a vendor involved in machining that makes all its sales to MTL, but since it uses lathe machines that can easily be switched to produce parts for another buyer, it reported a specificity of zero. Now consider the converse. It would seem that a vendor that has a high specificity should be making most of its sales to MTL. However, this is not necessarily the case. A vendor could be very tied to MTL but could still be making most of its sales for the part it produces for MTL in the replacement market instead of directly to MTL.
rejections as the dependent variables – there we stick with the simpler linear level specification). However, we should note that our results are qualitatively robust to using only one (linear) specification form.

While we are primarily interested in vendor specificity, we also include other vendor attributes as robustness checks. For example, controlling for firm age and size allows us to take into account learning-by-doing effects or economies of scale affects. For all regression tables, the first specification reports the result with a smaller set of basic controls (specificity, age, size) and the second adds more controls (the distance from MTL, a city dummy). The estimated coefficients below are from the latter unless noted otherwise.

4.3. Results

We have already discussed results in Table 1 that show tied suppliers are treated less favorably by MTL. To recap: (i) Tied vendors receive lower orders – a standard deviation increase in tiedness is associated with a 5.5%–13.4% drop in the quantity scheduled from the vendor (Table 1, Columns (1)–(2)); (ii) Tied vendors face more unstable orders (Table 1, Columns (3)–(6)) – a standard deviation increase in tiedness is associated with a 4.1–5.4% higher coefficient of variation and a 3.7 percentage points increase in elasticity of each vendor’s scheduled quantity to MTL’s total demand for the given part; (iii) Tied vendors get a lower price. A standard deviation increase in tiedness results in a 7.9% lower price level (Table 1, Columns (7)–(8)). We now turn to some further empirical result suggested by the model.

One of the important assumptions in the model is that relationship-specific investments not only exist but generate surplus. One way to see whether this assumption has empirical merit is to check whether investments in relationship-specific assets lead to greater surplus in terms of lower production costs. Fortunately, for a sub-sample of parts we have internal cost estimates generated by MTL engineers. These estimates calculate how much it costs a particular vendor to produce the given part. Since MTL engineers are intimately familiar with the machines and production processes used by each vendor, these cost estimates vary for the same part across different vendors and provides a way for us to test whether vendors with lower specificity have lower production costs. Table 3 shows that this is indeed the case: An increase in specificity from 0 to 100% decreases level costs by 15%. Alternatively, a standard deviation increase in specificity lowers costs by 6.6%. Production costs also fall in the age and size of the vendor suggesting learning by doing and scale economies and lending further credibility to the cost results.

Now let’s turn to reconciling the apparently puzzling results in Table 1 – that tied vendors are treated as second preference vendors when, if anything, MTL should prefer and hence better treat vendors that choose to invest in specific assets. Recall that, as illustrated in the model, once

\[21\] We also have data on years of relationship. It is highly correlated with the age of a vendor and our results are similar if we use this variable instead of age.

\[22\] A concern is whether firm size belongs as a regressor. While omitting it does not qualitatively affect our results, we prefer to keep it in for the following reasons: First, these firms are not only serving one buyer. While MTL is often their main buyer, it is not the exclusive one, with suppliers making sales to other assemblers and the replacement market. As such vendor size, measured by number of employees, while a function of quantity sold to the main assembler, is not its only determinant (in fact, bigger suppliers do not sell proportionately more to their main assembler i.e. percentage sales to main assembler is not significantly correlated with firm size). Second, strictly speaking, our model compares two vendors with the same capacity constraints, being treated differentially. To the extent that vendor size is a proxy for production capacity, controlling for it is more along the lines of the theoretical framework.

\[23\] In general, the magnitude of the effect is calculated from a one standard deviation increase in specificity starting at 0 specificity. The percentage change is then evaluated at mean of the dependent variable.
we admit there is vendor heterogeneity, the choice of how much specific-investments to make may also reflect a vendor’s type i.e. all else being equal, low type vendors choose to be more tied to MTL. Under high final product uncertainty (which MTL faces – recall Fig. 1) we can also get that low type vendors may choose a higher level of specific-investments despite getting a lower

Table 3
Cost comparison of tied and untied vendors

<table>
<thead>
<tr>
<th>Variables</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specificity</td>
<td>−0.0010***</td>
<td>−0.0016***</td>
</tr>
<tr>
<td></td>
<td>(0.0002)</td>
<td>(0.0001)</td>
</tr>
<tr>
<td>Age</td>
<td>−0.0038***</td>
<td>−0.0035***</td>
</tr>
<tr>
<td></td>
<td>(0.0012)</td>
<td>(0.0010)</td>
</tr>
<tr>
<td>Size</td>
<td>−0.0004</td>
<td>−0.0004**</td>
</tr>
<tr>
<td></td>
<td>(0.0003)</td>
<td>(0.0002)</td>
</tr>
<tr>
<td>Distance</td>
<td></td>
<td>0.0022**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0008)</td>
</tr>
<tr>
<td>City</td>
<td></td>
<td>0.0841***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0177)</td>
</tr>
<tr>
<td>Fixed effects</td>
<td>Part***</td>
<td>Part***</td>
</tr>
<tr>
<td></td>
<td>Year***</td>
<td>Year***</td>
</tr>
<tr>
<td>Observations</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>R^2</td>
<td>0.9980</td>
<td>0.9980</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses. Errors clustered at the vendor level.

This table examines whether tied vendors have lower costs of production. It uses a smaller data set that includes annual internal “cost” estimates made by MTL engineers. The dependent variable is logarithm of this cost estimate.

** Significantly different from zero at 5%.
*** Significantly different from zero at 1%.

we admit there is vendor heterogeneity, the choice of how much specific-investments to make may also reflect a vendor’s type i.e. all else being equal, low type vendors choose to be more tied to MTL. Under high final product uncertainty (which MTL faces – recall Fig. 1) we can also get that low type vendors may choose a higher level of specific-investments despite getting a lower

Table 4
Vendor quality measure I – rate of rejection

<table>
<thead>
<tr>
<th>Variables</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specificity</td>
<td>0.002</td>
<td>0.011***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Size</td>
<td>−0.008***</td>
<td>−0.003**</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Age</td>
<td>0.139***</td>
<td>0.152***</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>Distance</td>
<td></td>
<td>0.049</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.032)</td>
</tr>
<tr>
<td>City</td>
<td></td>
<td>−0.292</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.239)</td>
</tr>
<tr>
<td>Fixed effects</td>
<td>Part***</td>
<td>Part***</td>
</tr>
<tr>
<td></td>
<td>Quarter</td>
<td>Quarter</td>
</tr>
<tr>
<td>Observations</td>
<td>397</td>
<td>397</td>
</tr>
<tr>
<td>R^2</td>
<td>0.39</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses. Errors clustered at the vendor level.

This table examines one dimension of vendor quality – the percentage of parts supplied by the vendor that are rejected due to poor quality.

** Significantly different from zero at 5%.
*** Significantly different from zero at 1%.
order (Propositions 3 and 5). While we do not have direct measures of vendor type, we can check whether this explanation is consistent with the empirical evidence by looking at the final quality of the tied vendors. Since, all else being equal, investing in more dedicated assets should raise quality, if the final quality of tied vendors is in fact lower, this lends strong support that vendors of lower type (i.e. initial quality) are more likely to choose specific investments and is able to reconcile our previous empirical results in light of the model. Our results below show that this is indeed the case.

Table 4 shows that tied vendors’ supply is of lower quality. A standard deviation increase in tiedness is associated with a 43.6% increase in the proportion of a vendor’s order that is rejected because it fails to meet MTL’s quality standards. However it should be noted that

<table>
<thead>
<tr>
<th>Variables</th>
<th>LHS: Vendor received quantity (logs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specificity</td>
<td>0.0124** (0.0052)</td>
</tr>
<tr>
<td>Log scheduled Q</td>
<td>0.4434*** (0.0918)</td>
</tr>
<tr>
<td>Log scheduled Q* specification</td>
<td>0.0017*** (0.0006)</td>
</tr>
<tr>
<td>Log total scheduled Q</td>
<td>0.2931*** (0.0917)</td>
</tr>
<tr>
<td>Log total scheduled Q* specification</td>
<td>0.0022*** (0.0004)</td>
</tr>
<tr>
<td>LogAge</td>
<td>0.1447 (0.2033)</td>
</tr>
<tr>
<td>LogSize</td>
<td>0.1523* (0.0706)</td>
</tr>
<tr>
<td>LogDistance</td>
<td>0.2452 (0.1527)</td>
</tr>
<tr>
<td>City</td>
<td>1.7908*** (0.3505)</td>
</tr>
<tr>
<td>Fixed effects</td>
<td>Part*** Quarter***</td>
</tr>
<tr>
<td>Observations</td>
<td>479 518</td>
</tr>
<tr>
<td>R^2</td>
<td>0.85 0.78</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses. Errors clustered at the vendor level.

This table uses quarterly data on quantity received for each vendor and part to examine how responsive a vendor is to its own scheduled quantity (Columns (1)–(2)) and to the total scheduled quantity for the part (Columns (3)–(4)). The dependent variable is the logarithm of quarterly quantity received. The observations differ slightly due to missing vendor-part scheduled quantity data.

* Significantly different from zero at 10%.
** Significantly different from zero at 5%.
*** Significantly different from zero at 1%.

In general, it is not easy to separate the effects of vendor type from its choice of specificity without a direct measure of the former. Using vendor fixed effects is unlikely to help since both quality and asset-specificity are likely to be time-invariant. Having an instrument for vendor type may not solve the problem since, as the model shows, this would also affect the choice of specificity.
this proportion is generally quite low, with a mean value of 1% (the increase is from 1% to 1.43%) suggesting that in general MTL’s quality control is fairly effective.

MTL is also concerned about delivery performance i.e. does a vendor deliver the amount that is ordered and is this delivery on time. We can examine this question since, in addition to the quantity ordered from the vendor, we also have the quantity that the vendor delivered in response to the order. Tables 5 and 6 take a closer look at delivery performance and reveal that tied vendors perform worse on this dimension as well.

Columns (1)–(2) in Table 5 show that a tied vendor is less responsive to the quantity MTL orders from it. A standard deviation increase in tiedness is associated with a 8.7 percentage points decrease (from 0.474 to 0.387) in elasticity of the quantity a vendor delivers with respect to the quantity that MTL asked of it (Column (2)). A possible concern could be that since tied vendors are given a more unstable order this is to be expected. However, as Columns (3)–(4) confirm, tied vendors are also less responsive to MTL’s overall demand for a given part.

Table 6 provides further evidence for the poorer delivery performance of tied vendors. It shows that tied vendors are more likely to both under-supply (Columns (1)–(2)) and over-supply (Columns (3)–(4)) quantity i.e. the quantity received is less/more than what MTL ordered. Column (2) shows that a standard deviation increase in tiedness is associated with a

<table>
<thead>
<tr>
<th>Variables</th>
<th>Under-supply</th>
<th>Over-supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specificity</td>
<td>3.9253***</td>
<td>5.8274***</td>
</tr>
<tr>
<td></td>
<td>(0.7187)</td>
<td>(1.6637)</td>
</tr>
<tr>
<td>Age</td>
<td>33.6682***</td>
<td>47.9560</td>
</tr>
<tr>
<td></td>
<td>(8.2361)</td>
<td>(31.2845)</td>
</tr>
<tr>
<td>Size</td>
<td>5.5829</td>
<td>6.4638</td>
</tr>
<tr>
<td></td>
<td>(3.3875)</td>
<td>(5.8287)</td>
</tr>
<tr>
<td>Distance</td>
<td>13.2401*</td>
<td>18.5537</td>
</tr>
<tr>
<td></td>
<td>(6.5339)</td>
<td>(21.7324)</td>
</tr>
<tr>
<td>City</td>
<td>−17,512.3531*</td>
<td>25,090.6336</td>
</tr>
<tr>
<td></td>
<td>(8489.4411)</td>
<td>(28,211.0151)</td>
</tr>
<tr>
<td>Fixed effects</td>
<td>Part***</td>
<td>Part***</td>
</tr>
<tr>
<td>Obs</td>
<td>378</td>
<td>443</td>
</tr>
<tr>
<td>R^2</td>
<td>0.63</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses.
Errors clustered at the vendor level.
This table uses the quarterly quantity data to examine another dimension of vendor quality – whether the vendor under or over-supplies relative to the scheduled quantity order. The LHS variable in Columns (1)–(2) is non-negative values of amount under-supplied (i.e. quarterly vendor scheduled quantity less quarterly vendor received quantity for cases where the former is greater or equal to the latter). Thus a positive coefficient on Specificity means that tied vendors tend to under-supply. The LHS variable in Columns (3)–(4) is non-negative values of amount over-supplied (i.e. the absolute value of quarterly vendor scheduled quantity less quarterly vendor received quantity for cases where the former is less than or equal to the latter). Thus a positive coefficient on Specificity means that tied vendors tend to under-supply/over-supply.

* Significantly different from zero at 10%.
** Significantly different from zero at 5%.
*** Significantly different from zero at 1%.
24% increase in the quantity that is under-supplied by the vendor. Column (3) shows that a standard deviation increase in specificity is associated with a 10% increase in quantity over-supplied, although this result is not robust to city and distance controls. A point worth clarifying is that while under-supplying is clearly a problem for MTL, it is not obvious why over-supply is a problem. Discussions with MTL revealed that due to inventory costs and management reasons MTL disliked over-supply. From the vendors’ point of view, for parts with significant fixed production costs (e.g., tooling a machine), batch production is preferred and so the vendor may bring in a larger order than they are asked to in a given month. Also recall that due to high final demand uncertainty MTL does not commit on annual quantity orders, but issues quarterly orders which often change from month to month. Thus over-supply can also be due to MTL asking the vendor to supply less than what it did in the previous quarter. A vendor that is not able to do so, is performing poorly from MTL’s perspective.

While Tables 4–6 show that tied vendors have lower quality in terms of part rejections and delivery performance, ideally one would have liked to test whether vendors of a lower type i.e. ex ante quality choose greater relationship-specific investments. Unfortunately the data does not provide any obvious measure of ex ante vendor quality. One could imagine using age of vendor as one such measure but in a regression of specificity on age and other characteristics, age and vendor size do not seem to matter. What does matter is city-vendors in Karachi have higher specificity levels. Similarly, we asked the assembler to rate its vendors and while this measure is potentially driven by ex post rather than ex ante quality measures and fairly subjective (which is why we prefer not to use it in our main empirical specifications), it is the case that higher quality vendors have lower specificity levels.

4.4. Alternative explanations

The MTL case reveals that vendors choosing greater specific investments are treated as second preference. This result can be explained by the theoretical model which shows that low type vendors may be more willing to undertake specific investments. Moreover, as the model illustrates, under demand uncertainty MTL deals with such low types not only because they invest in specific-assets, but because they are willing to act as capacity buffers i.e. MTL passes on more of its shock to them. Thus in equilibrium we see MTL buying from both types – high quality but less tied and low quality but more tied vendors. While the empirical case is not meant as a test of the model, it is nevertheless worth asking whether there are simpler alternative explanations of the MTL findings.

Can an explanation be provided without relying on the role of specific investments? Since tied vendors are willing to be treated as marginal vendors, an explanation would still require that they are of lower ex ante quality i.e. lower type. We have already addressed a concern that our specificity measure may not reflect specific-investments but that lower type vendors report a higher measure because their outside options are worse. The fact that our measure is correlated with the specificity expected under different manufacturing processes used by vendors and that it is not correlated to their sales to MTL, suggests that this concern is unwarranted. Even if this were true, a further argument would be needed to explain why MTL deals with both high and low quality vendors. Vendor shortage or type unobservability

25 It is costly to hold additional parts not only because of direct inventory costs but also, since these parts cannot be utilized by themselves, an over-supplied part complicates the inventory management problem of figuring out how to alter future orders for both the over-supplied and other tractor parts.
is unlikely since MTL carefully selects its pool of 200 active vendors out of a population of over 2000 vendors. Moreover, even for its existing high quality vendors, our data show that neither are their sales exclusively to MTL, nor are they producing near plant capacity,26 further suggesting that MTL chooses not to have them supply more.27

Does one require that specific investments hurt outside options? What if we only assume this investment and vendor type are substitutes within the relationship? In this case, while high types invest less than low types as before, the investment gap between the high and low types is now decreasing in the level of orders. This means if low types are hired at all, they are more likely to be used as first-preference vendors which is inconsistent with our empirical findings.

Finally, what if there is no ex ante vendor heterogeneity (i.e. only one vendor type) but being tied has the exact opposite effect from what we have assumed i.e. it lowers ex post quality? This seems implausible both because it is contrary to the literature and because our data suggests there are direct gains from being tied in terms of lower production costs. Moreover, if being tied did lead to a worsening of a vendor’s quality, why would it ever choose to be tied, especially since it is treated worse in terms of prices and quantities ordered if it becomes tied. There is no evidence that MTL provides any other assistance to tied vendors such as loans, etc.28

5. Conclusion

The relationship between a tractor assembling firm in Pakistan and its subcontractors offers important insights about contracting and asset specificity within a buyer–supplier network. The presence of demand uncertainty makes undertaking relationship-specific investments costly on the part of suppliers. This cost is likely to be more, the more able and versatile the supplier. Therefore, there is a chance for low quality suppliers to survive because of their greater willingness to undertake specific investments and this may explain why there continues to be vendor heterogeneity and differential treatment in buyer–seller networks. In the case of MTL tractors, this explains the puzzle we observe that the buyer treats suppliers with greater asset-specificity as marginal suppliers although they are cheaper.

Our work also suggests that asset specificity should not always be viewed as purely technology-driven, which has been the dominant view in the organizations literature, but may partly be a matter of choice. If so, one has to be careful in interpreting the effect of asset-specificity on contractual and performance outcomes since such effects may also reflect heterogeneity across the firms that choose different asset-specificity levels.

26 While most vendors produce below capacity, a regression (not shown) of capacity utilization on vendor specificity shows that tied vendors are significantly more likely to have lower capacity utilization. A standard deviation increase in tiedness is associated with 21 percentage points lower plant capacity utilization.

27 Alternatively, one could make restrictive assumptions on the demand function facing MTL such that it demands both low and high quality parts from its vendors. For instance, MTL might be selling two different qualities of the same tractor with more variable demand from customers who value quality less. However, this seems quite unlikely since MTL can only sell tractors at uniform prices predetermined by the government and it is implausible that it can consistently “fool” less quality conscious consumers to buy inferior tractors at the same price. Also, there is no evidence that MTL employs any non-price mechanisms of discriminating among different types of customers.

28 The data show that MTL provides little financial support to vendors and there is no correlation between financial assistance received and the extent of specificity.
Appendix A

Proof of Proposition 2. We prove this in two steps. First we show that $s^*(\beta, \theta)$ is an increasing and convex function of β. Next, we show that given this property, the assembler would give one vendor a certain order of 1, and the other vendor an order of 1 with probability α and 0 with probability $1 - \alpha$.

Step 1: Recall that $s^*(\beta, \theta) = \beta(a + b\theta + x^*(\beta, \theta)) + (1 - \beta)\lambda\theta(1 - x^*(\beta, \theta)) - (1/2)x^*(\beta, \theta)^2 - \lambda\theta$. Now $\beta x^*(\beta, \theta) - (1 - \beta)\lambda\theta x^*(\beta, \theta) - (1/2)x^*(\beta, \theta)^2 = \{\beta - (1 - \beta)\lambda\theta\}x^*(\beta, \theta) - (1/2)x^*(\beta, \theta)^2$ using (1). Therefore, the expected joint surplus function can be written as

$s^*(\beta, \theta) = \beta(a + b\theta) - \lambda\theta$ for $\beta \leq \hat{\beta}(\theta)$

$= \beta(a + b\theta) - \lambda\theta + \frac{1}{2}\{\beta - (1 - \beta)\lambda\theta\}^2$ for $\beta \geq \hat{\beta}(\theta)$.

For $\beta \leq \hat{\beta}(\theta)$, $\frac{d}{\partial \beta} s^* = (a + b\theta) - \lambda\theta$. As $a \geq 1$, $b > 0$, $\theta < 1$ and $\lambda < 1$, this expression is strictly positive. Also, it is independent of β. For $\beta \geq \hat{\beta}(\theta)$, using the envelope theorem, $\frac{d}{\partial \beta} s^* = (a + b\theta) - \lambda\theta + \{\beta - (1 - \beta)\lambda\theta\}(1 + \lambda\theta) > 0$. Differentiating with respect to β again we find that $s^*(\beta, \theta)$ is strictly convex in β: $\frac{d^2}{\partial \beta^2} s^* = (1 + \lambda\theta)^2 > 0$.

Step 2: By Step 1 the function $s^*(\beta, \theta)$ is convex and strictly so for $\beta > \hat{\beta}(\theta)$. As $s^*(\beta) = \max\{s(\beta, \theta), s(\beta, \hat{\theta})\}$, it too is a convex function of β. If demand is high (with probability α), then each vendor will get an order of one unit and there is no allocation decision to make. If demand is low (with probability $1 - \alpha$) then there is only one unit of order, and this needs to be distributed among the two vendors in some manner. Let one vendor get an order of one unit with probability d and let the other vendor get an order of one unit with probability $1 - \delta$. Therefore for one vendor the probability of getting an order of one unit is $\alpha + (1 - \alpha)\delta$ and for the other vendor, this probability is $\alpha + (1 - \alpha)(1 - \delta)$. We will show that δ will be chosen as 1. The total net surplus in dealing with these two vendors is $s^*(\alpha + (1 - \alpha)\delta) + s^*(\alpha + (1 - \alpha)(1 - \delta))$. We claim $s^*(\alpha + (1 - \alpha)\delta) + s^*(\alpha + (1 - \alpha)(1 - \delta)) \leq s^*(1) + s^*(\alpha)$. This is equivalent to the inequality $s^*(\alpha + (1 - \alpha)\delta) - s^*(\alpha) \leq s^*(\alpha) - s^*(\alpha + (1 - \alpha)(1 - \delta))$. Observe that $\alpha + (1 - \alpha)\delta - \alpha = 1 - \{\alpha + (1 - \alpha)(1 - \delta)\} = (1 - \alpha)\delta$. Given this the above inequality directly follows from the fact that $s^*(\cdot)$ is a convex function. □

Proof of Proposition 3. The net expected joint surplus consists of two components. One is independent of investment, namely, $\beta\{(a + b\theta) - \lambda\theta\}$. The other component depends on the investment, namely, $1/2\{\beta - (1 - \beta)\lambda\theta\}^2$. The latter component is relevant only when demand exceeds some threshold level, i.e., $\beta \geq \hat{\beta}(\theta)$. As far as the former component is concerned, the difference between a high type and a low type vendor is $\beta\{(a + b\theta) - \lambda\theta\} - \beta\{(a + b\theta) - \lambda\theta\} = \beta(b - \lambda)\Delta\theta$ (using the fact that $\theta + \hat{\theta} = 1$) which is positive, zero, or negative according as $b > \lambda$, $b = \lambda$, and $b < \lambda$.

Since low type vendors always invest more than high type vendors, if $b = \lambda$ then high type vendors will never be strictly preferred. From Proposition 2 we know that the first-preference
vendor is going to be given a certain order of 1 and the second-preference vendor the residual order z. In this case both these vendors will be low type vendors.

Now we consider the case where $b > \lambda$. We need to consider three subcases depending on the level of orders, β.

Case 1: Low ranges of orders, i.e., $\beta \leq \hat{\beta}(\tilde{\theta})$.

In this case $x^* = 0$ for both high and low type vendors and since $b > \lambda$ high type vendors would be chosen.

Case 2: Intermediate ranges of orders, i.e., $\hat{\beta}(\tilde{\theta}) < \beta \leq \hat{\beta}(\hat{\theta})$.

In this case a high type vendor chooses a zero level of investment, but a low type vendor chooses a positive level of investment. Let $g(\beta) = (1/2)\{\beta - (1 - \beta)\lambda\hat{\theta}\}^2 - \beta(b - \lambda)\Delta\theta$. This is just the negative of the difference in surplus between high type vendors and low type vendors. Since $(1/2)(\beta - (1 - \beta)\lambda\hat{\theta})^2$ is increasing and convex in β, while $\beta(b - \lambda)\Delta\theta$ is linear, the maximum value of $g(\beta)$ is attained at $\hat{\beta}(\tilde{\theta}) = \frac{\lambda}{1 + \lambda \Delta \theta}$ and is equal to $\frac{1}{2}\left(\frac{\lambda\Delta \theta}{1 + \lambda \Delta \theta}\right)^2 - \frac{\lambda\Delta \theta}{1 + \lambda \Delta \theta} (b - \lambda)\Delta \theta$. The condition for this expression to be positive, in which case low types are preferred, is $b < \lambda + \frac{1}{2}\frac{\lambda}{1 + \lambda \Delta \theta}\frac{\Delta \theta}{\bar{\theta}} = \bar{b}$. In contrast, if $b \geq \bar{b}$ high types would be chosen.

Case 3: High ranges of orders, i.e., $\beta \geq \hat{\beta}(\hat{\theta})$.

Here $x^* > 0$ for both types of vendors. As low type vendors invest more than high type vendors for the same β, they generate a higher surplus if we consider only the part of joint surplus that is due to investment. This difference is equal to $(1/2)\{\beta - (1 - \beta)\lambda\hat{\theta}\}^2 - (1/2)\{\beta - (1 - \beta)\lambda\tilde{\theta}\}^2 = (1 - \lambda)\beta \{\beta - (1-\beta)\lambda\} \Delta \theta$ (using the normalization $\bar{\theta} + \hat{\theta} = 1$). Let us compare this with the difference in surplus if we consider the part of joint surplus that is independent of investment, i.e., $\beta(b - \lambda)\Delta \theta$.

Let $f(\beta) = (1 - \beta)\lambda\{\beta - (1/2)(1 - \beta)\lambda\} \Delta \theta - \beta(b - \lambda)\Delta \theta$. It is straightforward to check that $f(\beta)$ is a concave function of β, that it is increasing for $\beta \geq \hat{\beta}(\tilde{\theta})$, decreasing for $\beta > \frac{\lambda + \beta}{2 + \lambda} - \frac{b - \lambda}{\lambda(2 + \lambda)}$, and achieves an (unconstrained) optimum at $\beta = \beta^* = \frac{1 + \lambda}{2 + \lambda} - \frac{b - \lambda}{(2 + \lambda)\lambda}$. The relevant range for β is $\beta \in [\hat{\beta}(\hat{\theta}), 1]$. At $\beta = \hat{\beta}(\hat{\theta})$, $(1/2)\{\beta - (1 - \beta)\lambda\bar{\theta}\}_+^2 = 0$, and so $g(\beta)(\hat{\theta}) = f(\beta)(\hat{\theta})$. The condition for $\beta^* = \hat{\beta}(\hat{\theta})$ is, upon simplification, $\frac{\lambda + \beta}{2 + \lambda} \geq b - \lambda$ (using the fact that $(1 - \theta) = 0$). Let $\tilde{b} = \lambda + \frac{\lambda + \beta}{2 + \lambda}$, we show that $b > \tilde{b}$. The condition for $\frac{\lambda + \beta}{2 + \lambda}$ to exceed $\frac{\lambda}{1 + \lambda \Delta \theta}$ is, upon simplification, $2(1 + \lambda \Delta \theta) > (\Delta \theta/\hat{\theta})$. This is true since the left-hand side exceeds 2 while the right-hand side is bounded above by 1. Therefore, arg max$_{\beta = [\hat{\beta}(\hat{\theta}), 1]} f(\beta) = \beta^*$ for $b < \tilde{b}$ and for $b \geq \tilde{b}$, arg max$_{\beta = [\hat{\beta}(\hat{\theta}), 1]} f(\beta) = \hat{\beta}(\hat{\theta})$.

As $\bar{b} > \tilde{b}$, there are three cases of interest: $\bar{b} < \tilde{b}, \bar{b} < b < \tilde{b}$, and $b \geq \tilde{b}$.

In the first case, $g(\hat{\beta}(\hat{\theta})) > 0$ and $f(\beta^*) > g(\hat{\beta}(\hat{\theta}))$. However, for $\beta \geq \beta^*$, $f(\beta)$ is decreasing, and for $\beta = 1, f(\beta) < 0$. Therefore, by continuity there exists some β_1 that lies between β^* and 1 such that for $\beta \geq \beta_1$, high types are preferred. For $\beta \in [\hat{\beta}(\hat{\theta}), \beta_1]$ low types are preferred. From the analysis of Case 2 above, and given that $g(\beta)$ is increasing an convex, again by continuity we know that there is some $\beta_0 \in [\hat{\beta}(\hat{\theta}), \hat{\beta}(\tilde{\theta})]$ such that for $\beta \geq \beta_0$ low types are preferred, but for $\beta < \beta_0$, high types are preferred. Therefore, in this case low types are preferred for $\beta \in [\beta_0, \beta_1]$ and high types are preferred for $\beta < \beta_0$ and $\beta > \beta_1$.

In the second case, $g(\hat{\beta}(\hat{\theta})) < 0$, but $f(\beta^*) > 0$. Given that $f(\beta)$ is concave in the interval $[\hat{\beta}(\hat{\theta}), 1]$, by continuity there are two cutoff points β_2 and β_3 in this interval with $\hat{\beta}(\hat{\theta}) < \beta_2$ and $\beta_2 < \beta_3 < 1$, such that for $\beta \in [\hat{\beta}(\hat{\theta}), \beta_2)$, high types are preferred, for $\beta_2 \leq \beta < \beta_3$ low types are preferred, and for $\beta_3 < \beta < 1$, high types are preferred again.
In the third case, $\beta^* = \bar{\beta}(\bar{\theta})$ but as $b \geq \bar{b} > \hat{b}$, $f(\beta) < 0$ in the entire interval $\beta \in [\bar{\beta}(\bar{\theta}), 1]$. Therefore, in this case high types are preferred.

To sum up, there exists three threshold values of the parameter b, namely, λ, \bar{b}, and \hat{b} such that $\bar{b} > \hat{b} > \lambda$. For $b \leq \lambda$ low types are preferred for all levels of orders. Therefore, both the first and the second preference vendors are low types in this case. For $b \geq \bar{b}$ high types are preferred for all levels of orders and so both the first and the second preference vendors are high types in this case. For $\lambda \leq b \leq \bar{b}$, there exists an interval $[\bar{\beta}, \tilde{\beta}]$ where $\tilde{\beta} < 1$ and $\bar{\beta} > 0$ such that low types are used for $\beta \in [\tilde{\beta}, \bar{\beta}]$ and high types are preferred for $\beta \in [0, \tilde{\beta})$ and $\beta \in [\bar{\beta}, 1]$. For $\lambda \leq b \leq \bar{b}$, $\beta = \tilde{\beta}$ and $\bar{\beta} = \bar{\beta}_1$. For $b \geq \bar{b} < \hat{b}$, $\beta = \tilde{\beta}_2$ and $\bar{\beta} = \bar{\beta}_3$. In this case the first-preference vendors are going to be high type. The second-preference vendor gets the residual order α. If α is very high or low, the second-preference vendor is going to be a high type vendor. If α is neither too high nor too low then low type vendors are going to be chosen as second-preference vendors. □

Proof of Proposition 4. By Proposition 2 one vendor gets a certain order of 1, and the other vendor gets an order of 1 with probability α. So if they are of the same type, by Proposition 1 the one with the certain order will invest more. So let us consider the remaining possibility where the first-preference vendor is a high type vendor and the second-preference vendor is a low type vendor. Because the first-preference vendor gets a certain order of 1, by (1) the level of investment is 1. The second-preference vendor, who gets an order of α, chooses an investment level of $\alpha - (1 - \alpha)\lambda\hat{\theta}$ which is clearly less than 1. □

Proof of Proposition 5. The price received by the vendor of type $\bar{\theta}$ who undertakes investment x is $\lambda\alpha x / \bar{\theta}$. The type of the first-preference vendor is (weakly) higher than that of the second-preference vendor (by Proposition 3). For the first-preference vendor $x / \bar{\theta} = 1$ and for the second-preference vendor it is $\frac{\alpha - (1 - \alpha)\lambda\hat{\theta}}{\alpha} < 1$ and so the proof is complete. □

References

