Intrinsic Motivation and Crowding Out

- Richard Titmuss (1971) found that the US where blood-donors are paid had lower quality blood supplied than UK where it was based on voluntary donation
- Subsequent experiments (surveyed by Frey and Jergen, 2000 and Fehr and Gachter, 2001) provides evidence for crowding out of intrinsic motivation if monetary incentives are provided.
- "Pay enough or don't pay at all" (experiments by Gneezy and Rustichini (2000)
- Arrow (1972) and Solow (1971) in their surveys of Titmuss thought that doing something for money simply expands the choice set - how can that hurt?

- If you derive intrinsic motivation, and get paid, just add them up
- Also, can donate the money back to your favorite charity
- Can we explain this using the standard economic framework?
- Frey and Oberholzer-Gee (1997) and Gann (2001): giving blood and selling blood are two distinct activity and introducing money transforms the former into the latter
- Frey (1997): preferences change if money is introduced
- Arbitrary, since does not look at consequences.

- Seabright (2002) and Benabou and Tirole (2005): doing something for free signals your type and you build a reputation
- Here we provide an alternative, simpler story, based on heterogeneity in motivation and unobservability of quality.

"Why Referees Are Not Paid (Enough)" M. Engers and J.S. Gans (1998), American Economic Review

- A group of agents all care equally about a project
- Benefit from completion normalized to 0
- Only one person can do it
- The "leader" sequentially approaches agents
- If one turns down, there is delay and the project is sent to another agent
- $\bullet\,$ Cost of undertaking the project to an individual c
- Private information

- CDF of cost in the population F(c) is common knowledge
- If an agent who is approached turns down, there is a fixed delay cost of δ each time
- No discounting of future
- Let \hat{c} be the cost threshold such that someone with $c \leq \hat{c}$ will agree (to be determined endogenously)
- Then total expected delay cost is given by the recursive equation

$$D = F(\hat{c}) * \mathbf{0} + (\mathbf{1} - F(\hat{c})) * (\delta + D)$$

• This yields

$$D = \frac{1 - F(\hat{c})}{F(\hat{c})}\delta$$

• A person approached who turns down will expect delay costs to be

$$\delta + D = rac{\delta}{F(\hat{c})}.$$

• Without payment the relevant cost threshold is

$$\hat{c}_0 = \frac{\delta}{F(\hat{c}_0)}.$$

• The payoff to each (non-contributing) agent (including leader) is

$$-D = -\frac{1 - F(\hat{c}_0)}{F(\hat{c}_0)}\delta$$
$$= \delta - \frac{\delta}{F(\hat{c}_0)}$$

 Suppose there is a monetary incentive of w to the agent who agrees $\bullet\,$ This raises the threshold cost c to

$$\hat{c}_w = w + \frac{\delta}{F(\hat{c}_w)}$$

• Typically $\hat{c}_w > \hat{c}_0$ as F(.) is increasing

Example: Uniform distribution

• Let $c \in [0, \overline{c}]$ and $f(c) = \frac{1}{\overline{c}}$

•
$$F(c) = \int_0^c f(c) dc = \frac{c}{\overline{c}}.$$

• Verify:
$$\hat{c}_0 = \frac{\delta}{F(\hat{c}_0)} = \frac{\delta}{\frac{\hat{c}_0}{\overline{c}}}$$

• This solves:

$$\hat{c}_0 = \sqrt{\delta \overline{c}}.$$

• Also,

$$\hat{c}_w = w + \frac{\delta \overline{c}}{\hat{c}_w}$$

• Or,

$$\hat{c}_w - \frac{\delta \overline{c}}{\hat{c}_w} = w$$

- Check that LHS (say, $g(\hat{c}_w)$) is increasing in \hat{c}_w : slope $1 + \frac{\delta \overline{c}}{\hat{c}_w^2}$
- Also, concave: second derivative

$$-rac{2\delta\overline{c}}{\hat{c}_w^3}$$

• Therefore, has to be increasing in w (see Figure 1)

• The payoff of the "leader" is

$$-rac{\mathbf{1}-F(\hat{c}_w)}{F(\hat{c}_w)}\delta-w.$$

• For w = 0 we naturally get the same expression as above.

• But

$$w = \hat{c}_w - \frac{\delta}{F(\hat{c}_w)}$$

• Substituting, the payoff of the "leader" is:

$$\delta - \hat{c}_w$$

• This is decreasing in \hat{c}_w and so the optimal w is 0.

- Suppose the fee is collectively raised and so the leader does not have to put his private weight on the cost (i.e., 1)
- Now the person who agrees gets

$$\hat{c}_w = w(1 - \frac{1}{n}) + \frac{\delta}{F(\hat{c}_w)}$$

• This gives

$$w = \frac{n}{n-1} \left(\hat{c}_w - \frac{\delta}{F(\hat{c}_w)} \right)$$

• Now the leader gets

$$-\frac{1-F(\hat{c}_w)}{F(\hat{c}_w)}\delta - \frac{w}{n}$$
$$= \left[\delta - \frac{\delta}{F(\hat{c}_w)}\right] + \left[-\frac{1}{n-1}\left(\hat{c}_w - \frac{\delta}{F(\hat{c}_w)}\right)\right]$$

- For $w \to 0$, the first term goes to $\delta \frac{\delta}{F(\hat{c}_0)}$ from above (as it is decreasing in \hat{c}_w)
- The second term goes to 0 but is always negative
- So in this case the leader will choose some w > 0.

Intuition

- payment of money raises the acceptance rate $(F(\hat{c}_w) > F(\hat{c}_0))$
- but that means its less costly to turn down a request
- that means the wage payment has to go up to offset this
- The question, is why does it go up so much so that the leader does not want to do it?
- Payoff of each agent has the term -D
- The agent who agrees to do it has an added term $w \hat{c}_w = -(\delta + D)$

- For the leader, the payoff has an added term $-w = \delta + D \hat{c}_w$
- The leader has to compensate the agent for his private cost \hat{c}_w out of his pocket, which is increasing in w and this is not worthwhile
- Since the agent who agrees internalizes the change in D and so does the editor, the result of introducing fees on D cancels out
- However, if there is cost sharing then the result is not as sharp
- In general, raising w does raise the "number" of people who would like to agree
- This may not hold more generally.

Benabou and Tirole (AER December 2006) "Incentives and Pro-Social Behaviour"

- Key observation: rewards change the pool of participants
- You care about your reputation
- However, if money is involved then this is diluted
- Might case some people to drop out
- Participation decision is binary: $a \in \{0, 1\}$
- Costs C(0) = 0 and C(1) = c
- Motivational reward $v_a \ge 0$

- Monetary reward from income $y : v_y y$ where $v_y \ge 0$
- These parameters (v_a, v_y) are private information
- An individual participates if

$$v_a + yv_y - c + R(y) \ge 0$$

• R(y) captures reputational concerns

$$\begin{array}{lll} R(y) &\equiv & \mu_a \left\{ E(v_a | \mathbf{1}, y) - E(v_a | \mathbf{0}, y) \right\} \\ & & -\mu_y \left\{ E(v_y | \mathbf{1}, y) - E(v_y | \mathbf{0}, y) \right\} \end{array}$$

- The first term captures gains from being known as a "good" citizen and the second losses from being known as "money-minded".
- Assume v_a and v_y are independent so that f(v_a, v_y) = g(v_a)h(v_y)

- Assume μ_a and μ_y are fixed
- First consider no rewards: y = 0
- Then agent participates if and only if

$$v_a \ge c_a - R(\mathbf{0}) \equiv v_a^*$$

- Nothing is learnt about v_y through participation
- A threshold for v_a is learnt
- To determine this let

$$M(v_a) \equiv E(\tilde{v}_a | \tilde{v}_a \ge v_a) = rac{\int_{v_a}^{\infty} vg(v) dv}{\int_{v_a}^{\infty} g(v) dv}$$

• Similarly, let

$$N(v_a) \equiv E(\tilde{v}_a | \tilde{v}_a \leq v_a) = rac{\int_{-\infty}^{v_a} vg(v) dv}{\int_{-\infty}^{v_a} g(v) dv}$$

- *M* is the average value of v_a for those who participate
- N is the average value of v_a for those who do not participate
- *M* is honour from participation and *N* is stigma from non-participation
- The cutoff from unpaid participation is then defined as a solution to $\Phi(v_a^*) = c$ where $\Phi(v_a) \equiv v_a + \mu_a \left[M(v_a) - N(v_a) \right]$, i.e.,

$$v_a + \mu_a \left[M(v_a) - N(v_a) \right] = c.$$

For the uniform distribution

$$M(v_a) - N(v_a) = \frac{1}{2}$$
 for $g(v_a) = 1$ on [0, 1]

• Proof:

$$\frac{\int_{v_a}^{1} vg(v)dv}{\int_{v_a}^{1} g(v)dv} - \frac{\int_{0}^{v_a} vg(v)dv}{\int_{0}^{v_a} g(v)dv} = \frac{\int_{v_a}^{1} vdv}{\int_{v_a}^{1} dv} - \frac{\int_{0}^{v_a} vdv}{\int_{0}^{v_a} dv} \\
= \frac{\left[\frac{v^2}{2}\right]_{v_a}^{1}}{\left[v\right]_{v_a}^{1}} - \frac{\left[\frac{v^2}{2}\right]_{0}^{v_a}}{\left[v\right]_{0}^{v_a}} \\
= \frac{1}{2}\left(\frac{1-v_a^2}{1-v_a}-\frac{v_a^2}{v_a}\right) \\
= \frac{1}{2}(1+v_a-v_a)$$

• More generally, for $g(v_a) = (\alpha + 1) v_a^{lpha}$ on [0, 1] with lpha > -1

$$M(v_a) - N(v_a) = \frac{1+\alpha}{2+\alpha} \frac{1-v_a}{1-v_a^{1+\alpha}}$$

 This is increasing in v_a when α > 0 and decreasing when -1 < α < 0.

- Key Result: Assume that Φ'(.) ≥ 0. Then if μ_y = 0 or if v_a and v_y are independent, the introduction of reward lowers net reputational value of participation: R(y) < R(0) for all y > 0.
- The assumption $\Phi'(.) \ge 0$ ensures uniqueness of equilibrium
- If you introduce reward, $v_a + yv_y c + R(y) \ge 0$
- Intuition: Two reputational effects

- Reward attracts greedy types: $E(v_y|\mathbf{1}, y) > E(v_y|\mathbf{0}, y)$
- Reward repels good types
- Overall participation will increase or decrease depending on the weights of these two effects
- Note here the quality of participation is the same for all types so therefore cannot explain Titmuss' findings

Extrinsic Vs. Intrinsic Incentives (Benabou-Tirole, 2003): To be added.

