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Abstract

This paper presents a game theoretic analysis of the generalized second price auc-
tion that the company Overture operated in 2004 to sell sponsored search listings
on search engines. We construct a model that embodies few prior assumptions
about parameters, and we present results that indicate that this model has under
quite general assumptions a multiplicity of Nash equilibria. We then analyze bid
data assuming that advertisers choose Nash equilibrium bids. We offer prelimi-
nary conclusions about advertisers? true willingness to bid for sponsored search
listings. We find that advertisers? true willingness to bid is multi-dimensional and
decreasing in listing position.



1 Introduction

Internet search engines sell to advertisers the opportunity to advertise links to their

pages on the search result page seen by users who entered a specific search term.

These advertisements are called “sponsored links.” Sponsored links are displayed

on the same page as the links determined by the search engine’s own algorithm,

but separately from these. The major search engines use auctions to sell spaces

for sponsored links. A separate auction is run for each search term. Advertisers’

bids determine which advertisers’ sponsored links are listed and in which order.

The subject of this paper is an early version of an auction of sponsored link spaces

that was operated until 2005 by a company called Overture.1 We shall examine a

theoretical model of Overture’s auction and confront this model with bidding data

that we have collected. We seek to extract from the data information about bid-

ders’ valuations of sponsored search advertisements, and we seek to understand

how bidders respond to the incentives created by the auction rules.

Bidders in Overture’s sponsored search auction, and also in the current spon-

sored search auctions run by Yahoo or Google, for example, bid a payment per

click. Whenever a search engine user clicks on an advertiser’s sponsored link that

advertiser has to make a payment to the search engine. The auction format that

Overture used, and that is also currently used, in a somewhat different format, by

1In 2004, when we collected data about Overture’s auction, advertisers bid in Overture’s auc-
tion for sponsored search listings on Yahoo’s search pages. Indeed, Overture, which had started as
an independent company, had been acquired at this point by Yahoo, and it was later to be renamed
Yahoo Search Marketing.
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Yahoo and Google, is a “generalized second price auction:”2 The highest bidder

is listed first and pays per click the second highest bid; the second highest bidder

is listed second and pays per click the third highest bid; etc.3

The generalized second price auction is a method for allocating heterogeneous

objects, the positions on a page of search results. It is based on the assumption

that bidders agree which object has the highest value, which one has the second

highest value, etc. Other auction formats for allocating heterogenous objects do

not rely on this assumption. An example is the simultaneous ascending auction

described in Milgrom (2000). In this auction, bidders can specify in each round

for which object they want to bid. Bids are raised in multiple rounds. Within the

limits of the auction rules, they can switch from bidding for one object to bidding

for another object. The auction closes when no further bids are raised. By contrast,

in the generalized second price auction, bidders submit a single-dimensional bid

without specifying what they are bidding for. It seems worthwhile to investigate

the properties of this new auction format.

Edelman et. al. (2007) and Varian (2007) have offered theoretical analyses

of the generalized second price auction that suggest that the auction may yield

an efficient allocation of positions to bidders. These authors’ work relies on a

relatively narrow specification of bidders’ payoff functions: bidders’ values per

click do not depend on the position in which their advertisement is placed, and

click rates are assumed to grow at the same rate for all advertisers as one moves

2This expression was introduced by Edelman et. al. (2007).
3Today, when ranking advertisers and determining their payments, Yahoo and Google incor-

porate the likelihood that a user will actually click on the advertisers’ link.

2



up in sponsored link position. These authors’ work also relies on a selection from

the set of Nash equilibria of the generalized second price auction. The authors

focus on equilibria that, although, of course, they are strategic equilibria, are very

similar to Walrasian equilibria. A recent working paper, Athey and Nekipelov

(2011), extends the auction set-up to incorporate random bidder-specific weights

when determining the advertisers ranking. Such weights are a feature that Yahoo

and Google use today.

There is very little empirical evidence to this point that justifies the assump-

tions that Edelman et. al. and Varian incorporated into their models. In our paper

the purpose of the theoretical analysis is to lay the grounds for our own, and for

future, empirical investigations of data from sponsored search auctions. We there-

fore propose a more flexible specification of bidders’ preferences than is used by

Edelman et. al. and Varian, having in mind that further restrictions will have to be

motivated by data. We then use the same Nash equilibrium refinement, “symmet-

ric” Nash equilibria, that also Edelman et. al. and Varian used. We find that some

of the previous literature’s results on symmetric Nash can easily be generalized to

our model. However, unlike in previous papers, the symmetric Nash equilibria of

the generalized price auction in our paper will be efficient only under restrictive

assumptions, but not in general. We also point out that there is a very large set

of Nash equilibria that are not symmetric. Our empirical analysis is not based on

any selection from the set of Nash equilibria.

We then proceed to an analysis of bidding data for selected search terms. We

have collected our data from Overture’s website in the spring of 2004. We use a re-
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vealed preference approach to infer the structure of bidders’ valuations. The more

restrictive specifications of preferences used by previous authors are nested by our

model, and therefore correspond to parameter restrictions within our model.

The evidence suggests that the properties of valuations that previous authors

have postulated do not hold in practice. Our non-parametric revealed preference

approach suggests that values per click decline in listing position. Moreover, even

with our flexible specification of payoffs we find that we can rationalize most

bidders’ behavior only over relatively short time periods, after which we have to

postulate an unexplained structural break in preferences. Thus we find that it is

not easy to rationalize bidding behavior as equilibrium behavior. The most promi-

nent model of equilibrium bidding has great difficulties accounting for real world

bidding. Unlike the literature seems to suggest, more theoretical and empirical

work is needed to find an empirically satisfactory model of bidding behavior.

Bidding in sponsored search auctions has previously been examined empir-

ically by Edelman and Ostrovsky (2007) and by Varian (2007). Edelman and

Ostrovsky’s data are from an even earlier version of the Overture auction than we

consider. That version was a generalized first price format rather than a gener-

alized second price format. This differentiates their paper from ours. Moreover,

unlike us, Edelman and Ostrovsky do not use a structural model of equilibrium

bidding, and they do not present valuation estimates in any detail.

Varian (2007) uses bidding data for Google’s sponsored search auction on one

particular day. He finds evidence that supports a model of equilibrium bidding in

which bidders’ valuations are not rank dependent. By contrast, we use data that
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have been collected over a period of several months. To interpret observed bids as

equilibrium bids over extended time periods, we need to allow valuations to de-

pend on rank, and we need to allow for structural breaks. Varian’s model is based

on an equilibrium selection that implies efficiency of equilibria. Our analysis, us-

ing a data set that extends over time, and using a more general structural model,

does not find evidence of efficiency of equilibria.

While it is a strength of our analysis in comparison to Varian’s that our bidding

data cover several months, a strength of Varian’s analysis is that he has (propri-

etary) click rates available to him. When interpreting our results it must be kept

in mind that our findings may be distorted by the lack of precise click rates.

The theory of sponsored search auctions is also related to the theory of contests

and tournaments with multiple, ranked prizes (e.g. Moldovanu and Sela (2001),

Moldovanu et. al. (2007)). One can interpret the “effort level” in these models as

the bid in our model. However, the generalized second price rule seems specific

to the sponsored search auction context.

This paper is organized as follows. Section 2 presents the model. Section 3

discusses Nash equilibria of the model. We reinvestigate “symmetric equilibria”

(using Varian’s 2007 terminology), as well as other Nash equilibria. Section 4 de-

scribes the data. Section 5 reports the results of revealed preference tests. Section

6 concludes.
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2 Model

There are K positions k = 1, 2, . . . , K for sale, and there are N potential adver-

tisers i = 1, 2, . . . , N . We shall refer to the potential advertisers as “bidders.” We

assume K ≥ 2 and N ≥ K. Bidders i = 1, 2, . . . , N simultaneously submit

one-dimensional non-negative bids bi ∈ <+. Bids are interpreted as payments per

click. The highest bidder wins position 1, the second highest bidder wins position

2, etc. The bidder with the K-th highest bid wins position K. All remaining bid-

ders win no position. The highest bidder pays per click the second highest bid, the

second highest bidder pays per click the third highest bid, etc. The K-th highest

bidder pays per click the K + 1-th highest bid if there is such a bid. Otherwise, if

N = K, the K-th highest bidder pays nothing. We will explain later how we deal

with identical bids, i.e. ties. We follow Edelman et. al. (2007) and refer to this

auction as a “generalized second price auction.”

The payoff to bidder i of being in position k if he has to pay b per click is:

cki (γ
k
i − b) + ωki (1)

Here, cki > 0 is the click rate that bidder i anticipates if he is in position k, that is,

the total number of clicks that bidder i will receive in the time period for which

the positioning resulting from the auction is valid. Next, γki > 0 is the value per

click for bidder i if he is in position k. This is the profit that bidder i will make

from each click on his advertisement. Finally, ωki ≥ 0 is the impression value

of being in position k for bidder i. The impression value describes the value that
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bidder i derives from merely being seen in position k, independent of whether

a search engine user clicks on bidder i’s link. We have in mind that companies

derive value from the fact that a sponsored search link reminds customers of the

existence of their company, and that it makes users more likely to buy in the future,

even if those users do not click on the link and make a purchase at the time of their

search.4

Our representation of bidders’ payoffs is “reduced form,” that is, we do not

describe explicitly the behavior of users of search engines that generates bidders’

payoffs. One reason for not modeling users’ behavior explicitly is that this behav-

ior is presumably driven not only by economic considerations, but also by human

physiology (where do people look first on a computer screen?) and psychology,

and we do not know of good ways of capturing these factors in a model. Another

reason is that we only have bidding data, not data about users’ behavior.5

A restrictive assumption implicit in equation (1) is that click rate, value per

click, and impression value for bidder i in position k do not depend on the identity

of the bidders that win other positions. In practice, this identity might matter.

Bidder i might attract a larger click rate in second place if the bidder in the top

position is a large, widely known company than if the bidder in the top position

is small and not well-known. In auction theory, this is known as an “allocative

externality.” It is well-known that such externalities may create multiple equilibria

in single unit auctions (Jehiel and Moldovanu, 2006). In our multi-unit auction,

4Note that we do not rule out that the impression value is zero.
5Athey and Ellison (2011) offer a model in which search engine users are described as expected

utility maximizing economic agents.
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we find multiple equilibria even with the specification of payoffs given in (1).

By leaving allocative externalities out of our model we thus identify a different

source of multiplicity of equilibria. Our modeling choice also reflects that we do

not attempt to identify and measure allocative externalities. Measuring allocative

externalities would require sufficient data variation in the allocation realization

which we cannot guarantee as our data set is too small.

Equation (1) seems to assume that bidders know click rates, values per click,

and impression values. We can, however, allow the possibility that bidders are un-

certain about these variables, and maximize the expected value of the expression

in (1). The expected value will have the same form as (1), with all three variables

replaced by their expected value, if all three variables involved are stochastically

independent.

We shall refer to the value of b which makes the payoff in expression (1) zero

as bidder i’s willingness to bid for position k. We denote it by vki :

vki = γki +
1

cki
ωki (2)

We can now equivalently write bidder i’s payoff as:

cki (v
k
i − b) (3)

This expression makes clear that our model is equivalent to one in which there is

no impression value, and the value per click is vki rather than γki . We shall conduct

our analysis using expression (3), but it will be useful to keep in mind that the
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model admits the alternative interpretation in expression (1).

Our model nests as special cases those of Lahaie (2006), Edelman et. al

(2007), and Varian (2007). These authors assume that the values per click are

independent of the position, that is, for every i = 1, 2, . . . , N there is some con-

stant vi such that:

vki = vi for all k = 1, 2, . . . , K (4)

and that the ratio of the click rate of one position to that of another is the same

across all bidders, that is, for every bidder i = 1, 2, . . . , N and every position

k = 1, 2, . . . , K there are numbers ai and ck such that:

cki = aic
k (5)

Our analysis is more general than the analysis in the papers cited above, although

in Propositions 2 and 3 below we shall focus on the specification in equation (5).

We start with a more general specification than previous papers for two reasons.

First, a priori neither of the two generalizations seems unreasonable. The value of

a click may depend on the position from which the click is received, if, for exam-

ple, search engine users work their way from the top of the page to the bottom, and

pick the first advertiser whose offerings match their needs. Then clicks that arrive

at an advertisers’ page from a bottom position represent buyers with specialized

interests for whom the profit per click may be different than for other bidders. The

click rate ratio for different positions may depend on the identity of the advertiser

if, for example, one bidder is a prominent internet book trader, whereas the other
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advertiser is not so prominent. For a prominent advertiser dropping one position

may lead to a lower percentage loss of clicks than for a less prominent advertiser.

Our second argument for working with a more general specification than previous

literature is that we wish to allow the data to inform us about model parameters,

and therefore we want to embed as few assumptions as possible in the model. Un-

fortunately, our data will not allow us to draw inferences about click rates, but the

data will suggest that the value of a click to an advertiser depends on the position

of the advertiser.

We shall study pure strategy Nash equilibria of the auction game. A pure

strategy Nash equilibrium is a vector of bids (b1, b2, . . . , bN) such that each bid

maximizes the bidder’s payoffs when the bids of the other bidders are taken as

given. To give a formal definition, we need to deal with ties. A ranking of bidders

is a bijection φ : {1, 2, . . . , N} → {1, 2, . . . N} that assigns to each rank ` the

bidder φ(`) who is in that rank. A ranking of bidders is compatible with a given bid

vector (b1, b2, . . . , bN) if ` ≤ `′ ⇒ bφ(`) ≥ bφ(`′), that is, higher ranks are assigned

to bidders with higher bids, where ties can be resolved arbitrarily. A ranking of

bidders that is compatible with a given bid vector thus represents one admissible

way of resolving ties in this bid vector. We now define a Nash equilibrium to be a

bid vector for which there is some compatible ranking of bidders so that no bidder

has an incentive to unilaterally change their bid.

Definition 1. A vector of bids (b1, b2, . . . , bN) is a Nash equilibrium if there is a

compatible ranking φ of bidders such that:
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• For all positions k with 1 ≤ k ≤ K and all alternative positions k′ with

k < k′ ≤ K:

ckφ(k)
(
vkφ(k) − bφ(k+1)

)
≥ ck

′

φ(k)

(
vk

′

φ(k) − bφ(k′+1)

)

• For all positions k with 1 ≤ k ≤ K and all alternative positions k′ with

1 ≤ k′ < k:

ckφ(k)
(
vkφ(k) − bφ(k+1)

)
≥ ck

′

φ(k)

(
vk

′

φ(k) − bφ(k′)
)

• For all positions k with k ≤ K:

ckφ(k)
(
vkφ(k) − bφ(k+1)

)
≥ 0

• For all ranks ` with ` ≥ K + 1 and all positions k with 1 ≤ k ≤ K:

ckφ(`)
(
vkφ(`) − bφ(k)

)
≤ 0

Here, if K = N , we define bφ(N+1) = 0.

The first two conditions say that no bidder who wins a position has an incen-

tive to deviate and bid for a lower or for a higher position. Note the following

asymmetry. A bidder who bids for a lower position k has to pay bφ(k+1) to win

that position, but a bidder who bids for a higher position k has to pay bφ(k) to win
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that position. The last two conditions say that no bidder who wins a position has

an incentive to deviate so that he wins no position, and no bidder who wins no

position has an incentive to deviate so that he wins some position.

Our approach of modeling the auction as a static game of complete informa-

tion and focusing on Nash equilibria of this game follows previous papers: Lahaie

(2006), Edelman et. al. (2007), and Varian (2007). The static model is very

stylized. Interactions in practice take place over time. Moreover, the common

knowledge assumption, literally interpreted, is unrealistic. However, the idea of

our approach is that the repeated nature of the interaction with almost continu-

ous opportunities for bid adjustment allows bidders to converge fast to a Nash

equilibrium of the auction. We do not model this adjustment process explicitly.

However, we have in mind that bidders behave naively in this process. Therefore,

the adjustment process itself need not be in equilibrium. But after a short while,

taking others’ bids as given, each bidder behaves optimally. In particular, we shall

assume that static equilibrium has been reached at every instance in our data set.6

3 Nash Equilibria

In the first part of this section we focus on a particular type of Nash equilib-

ria, namely equilibria in which bidders do not have an incentive to win a higher

position k even if they have to pay only the lower price bk+1, rather than bk. Var-

6Che et. al. (2011) offer some experimental evidence that an adaptive learning process under
incomplete information does indeed guide bidders towards similar behavior as they exhibit in the
static, complete information game.
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ian (2007) has called such equilibria “symmetric Nash equilibria.” There may be

multiple such equilibria, but under additional assumptions the the allocation of

positions to bidders is uniquely determined. Symmetric equilibria have been stud-

ied in detail in the earlier literature. Our more general framework allows us to

uncover step by step the assumptions needed for various conclusions about sym-

metric equilibria.

In the second part of the section we also allow asymmetric equilibria. It is

difficult to characterize the set of all Nash equilibria. We present an example that

indicates that the set of all Nash equilibria may be surprisingly large. We then

examine critically possible arguments for focusing on symmetric Nash equilibria.

We are skeptical about these arguments. In our empirical analysis we shall be

agnostic in the sense that we do not make any assumption about the type of Nash

equilibrium that bidders play.

Definition 2. A vector of bids (b1, b2, . . . , bN) is a symmetric Nash equilibrium

if there is a compatible ranking φ of bidders so that the bid vector satisfies the

conditions of Definition 1, and:

• For all positions k with 1 ≤ k ≤ K and all alternative positions k′ with

1 ≤ k′ < k:

ckφ(k)
(
vkφ(k) − bφ(k+1)

)
≥ ck

′

φ(k)

(
vk

′

φ(k) − bφ(k′+1)

)
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• For all ranks ` with ` ≥ K + 1 and all positions k with 1 ≤ k ≤ K:

ckφ(`)
(
vkφ(`) − bφ(k+1)

)
≤ 0

The sense in which Nash equilibria that satisfy the conditions of Definition

2 are “symmetric” is that all bidders, when contemplating to bid for position k,

expect to pay the same price for this position, namely bφ(k+1). Thus, the vector(
bφ(2), bφ(3), . . . , bφ(K+1)

)
can be interpreted as a vector of Walrasian equilibrium

prices. If each bidder takes these prices as given and fixed, and picks the position

that generates for him the largest surplus at these prices, then for each position

there will be exactly one bidder who wants to acquire that position, provided that

indifferences are resolved correctly. Thus the market for each position “clears”:

demand and supply are both equal to 1.

We now introduce an assumption that guarantees the existence of a symmetric

Nash equilibrium.

Assumption 1. For every bidder i = 1, 2, . . . , N and for every position k =

2, 3, . . . K the following two inequalities hold:

ck−1i vk−1i > cki v
k
i and vk−1i ≥ vki

The first inequality says that the value of a higher position for bidder i is larger

than value of a lower position. The second inequality says that bidder i ’s will-

ingness to bid of a higher position is at least as large as i’s willingness to bid for
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a lower position. Even if the value per click and the impression value are larger

for larger positions, the second inequality in Assumption 1 may be violated if the

click rates increases too fast in comparison to the impression value. This can be

seen from equation (2). Thus, the second part of Assumption 1 is somewhat re-

strictive. If one assumes, however, as the previous literature has done, that values

per click are independent of the position, then the second inequality in Assump-

tion 1 is automatically satisfied, and the first inequality reduces to the requirement

that higher positions have higher click rates than lower positions.

Proposition 1. Under Assumption 1 the game has at least one symmetric Nash

equilibrium in pure strategies.

Proof. STEP 1: We show the existence of Walrasian equilibrium prices for the

K positions. This is essentially an implication of Theorem 3 in Milgrom (2000).

Milgrom proves existence of competitive equilibrium indirectly. He postulates

that K objects are sold through a simultaneous ascending auction, and that bid-

ders bid straightforwardly. He then proves that the auction will end after a finite

number of rounds, and that the final prices paid for theK objects converge to Wal-

rasian equilibrium prices as the increment in the simultaneous ascending auction

tends to zero. This implies that Walrasian equilibrium prices exist. To apply Mil-

grom’s argument to our context, we need to modify his construction, and assume

that bids in the simultaneous ascending auction are payments per click, rather than

total payments. With this modification, Milgrom’s argument goes through with-

out change. Milgrom’s result assumes that objects are substitutes: each bidder’s
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demand for an object does not decrease as the prices of the other objects increase.

This assumption is obviously satisfied in our setting with single unit demand.

Denote by φ a ranking of the bidders that is compatible with the Walrasian

equilibrium, that is, in the Walrasian equilibrium position k is obtained by agent

φ(k). Denote by (p1, p2, . . . , pK) some vector of Walrasian equilibrium prices that

has been constructed by Milgrom’s method. Observe that, as one can easily show,

N = K implies pK = 0.

STEP 2: We show that p1 ≥ p2 ≥ . . . ≥ pK . Indeed, suppose that for some

k we had pk−1 < pk, and consider the bidder i who acquires position k. Because

position k is the optimal choice for bidder i at the given prices,

cki
(
vki − pk

)
≥ ck−1i

(
vk−1i − pk−1

)
(6)

Because pk−1 < pk this implies:

cki
(
vki − pk

)
> ck−1i

(
vk−1i − pk

)
(7)

which is equivalent to:

(
ck−1i − cki

)
pk > ck−1i vk−1i − cki vki (8)

The expression on the right hand side of (8) is by Assumption 1 positive. The

expression on the left hand side is linear in pk. For pk = 0 it equals zero and is

thus smaller than the right hand side. The largest possible value of pk is vki . We
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now show that even for this largest value of pk the expression on the left hand side

is smaller than the expression on the right hand side:

(
ck−1i − cki

)
vki ≤ ck−1i vk−1i − cki vki ⇔ (9)

vki ≤ vk−1i (10)

which holds by Assumption 1. Thus, there is no value of pk for which (8) could

be true, and the assumption pk−1 < pk leads to a contradiction.

STEP 3: We now construct a symmetric Nash equilibrium. For each k with

2 ≤ k ≤ K we set the bid of the bidder who wins position k in the Walrasian

equilibrium equal to the price that position k − 1 has in that equilibrium:

bφ(k) = pk−1 (11)

For bidder φ(1) who wins position 1 we can choose any bid bφ(1) that is larger than

p1. Finally, if there are bidders iwho don’t obtain a position in the Walrasian equi-

librium, we set their bids equal to pK . Because the Walrasian prices are ordered

as described in STEP 2 these bids imply that every bidder who wins a position in

the Walrasian equilibrium wins the same position in the auction, and pays in the

auction the price that he pays in the Walrasian equilibrium. Moreover, because

we have implemented a Walrasian equilibrium, no bidder prefers to acquire some

other position at the price that the winner of that position pays over the outcome

that he obtains in the proposed bid vector, and hence we have a symmetric Nash
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equilibrium.

Three remarks are in order. First, note that Proposition 1 does not assert that

there is only one symmetric Nash equilibrium. In many examples, there are indeed

many symmetric Nash equilibria. Second, as the second part of Assumption 1

is somewhat restrictive, one might wonder whether it can be relaxed. We have

not pursued this question. Third, the simultaneous ascending auction to which

we refer in Step 1 of the above proof may be regarded as a an alternative to the

generalized second price auction used by Overture. We have not attempted to

evaluate the relative merits of this alternative auction format for sponsored search

positions.

If we knew bidders’ valuations vki , could we predict the winner of each posi-

tion in a symmetric Nash equilibrium? We shall consider this question under the

following simplifying assumption.

Assumption 2. For every bidder i = 1, 2, . . . , N and for every position k =

1, 2, . . . , K there are numbers ai > 0 and ck > 0 such that

cki = aic
k

for all i and all k.

Proposition 2. Under Assumption 2 a ranking φ of bidders that is compatible
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with a symmetric Nash equilibrium maximizes

K∑
k=1

ckvkφ(k)

among all possible rankings φ.

For generic parameters, there will be a unique allocation of positions to bid-

ders that maximizes the sum in Proposition 2. In this sense, Proposition 2 pro-

vides conditions under which we can unambiguously predict which bidder will

win which position in a symmetric equilibrium.

The function that according to Proposition 2 symmetric Nash equilibrium

rankings maximize is similar to a utilitarian welfare function. However, a util-

itarian welfare function would assign to each ranking the sum of all bidders’ val-

uations of positions, that is:
K∑
k=1

aic
kvkφ(k)

In the expression in Proposition 2 the bidder specific factors ai are omitted. It is

intuitively plausible that the Overture auction cannot lead to an allocation which

takes these factors into account: these factors only affect the absolute level of click

rates, but not their ratio; incentives in the auction only depend on the ratio of click

rates. If, however, there is no heterogeneity in click rates, i.e. the factors ai are the

same for all bidders, then Proposition 2 implies that symmetric Nash equilibria

maximize utilitarian welfare.

Note that Proposition 2 is about the equilibrium allocation of positions to bid-
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ders. It does not imply the uniqueness of equilibrium bids. There may be multiple

bids supporting the same equilibrium allocation. In the second part of this section

we shall discuss the multiplicity of Nash equilibria in our model in more detail.

Proof. Le φ be a ranking of bidders that is compatible with a symmetric Nash

equilibrium. Without loss of generality assume that φ is the identity mapping. Let

φ̂ be an alternative ranking. Consider some position k, and consider the incentives

of the bidder who wins position k under the ranking φ̂, that is bidder φ̂(k). If

we denote by pk (for k = 1, 2, . . . , K) the Walrasian prices associated with the

symmetric equilibrium, then, by the definition of Walrasian equilibrium:

aφ̂(k)c
k
(
vk
φ̂(k)
− pk

)
≤ aφ̂(k)c

φ̂(k)
(
v
φ̂(k)

φ̂(k)
− pφ̂(k)

)
⇔ (12)

ck
(
vk
φ̂(k)
− pk

)
≤ cφ̂(k)

(
v
φ̂(k)

φ̂(k)
− pφ̂(k)

)
(13)

If φ̂(k) > K:

aφ̂(k)c
k
(
vk
φ̂(k)
− pk

)
≤ 0⇔ (14)

ck
(
vk
φ̂(k)
− pk

)
≤ 0 (15)

Summing (13) and (15) over all k = 1, 2, . . . , K we obtain:

K∑
k=1

ck
(
vk
φ̂(k)
− pk

)
≤

∑
k∈{1,...,K|φ̂(k)≤K}

cφ̂(k)
(
v
φ̂(k)

φ̂(k)
− pφ̂(k)

)
(16)
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which implies:

K∑
k=1

ck
(
vk
φ̂(k)
− pk

)
≤

K∑
k=1

ck
(
vkk − pk

)
⇔ (17)

K∑
k=1

ckvk
φ̂(k)

≤
K∑
k=1

ckvkk (18)

Thus, the value of the function in Proposition 2 under φ̂ is not larger than it is

under φ.

To illustrate how Proposition 2 allows one to predict symmetric equilibrium

allocations we consider the case in which bidders are ranked according to a single

crossing condition: the marginal value of higher positions decreases as a player’s

index goes up.

Assumption 3. Assumption 2 holds, and for all bidders i = 1, 2, . . . , N − 1 and

all positions k = 1, 2, 3, . . . , K − 1

ckvki − ck+1vk+1
i > ckvki+1 − ck+1vk+1

i+1

The following is an immediate implication of Proposition 2.

Corollary 1. Under Assumption 3 in every symmetric Nash equilibrium bidder i

wins position i for i = 1, 2, . . . , K.

If Assumptions 1 and 3 hold simultaneously we can infer the existence of a sym-

metric equilibrium in which bidder i wins position i. Existence results that have
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been obtained constructively by Edelman et. al. (2007, Theorem 1) and Varian

(2007, Section 2) are implications of this observation. These authors study mod-

els in which Assumption 2 holds, values vki are independent of position k, and

ck > ck+1 for k = 1, 2, . . . , K − 1. This implies Assumption 1. Assumption 3 is

then satisfied if, in addition, bidders are labeled such that v1 > v2 . . . > vN .

Varian (2007, Fact 5) notes that in his model a sufficient condition for a bid

vector to be a symmetric Nash equilibrium is that no bidder has an incentive to bid

for an adjacent position instead of the position he obtains, that is, if the inequalities

in Definition 2 hold for adjacent positions, they hold for all positions. The same

can be shown in our model under Assumption 3.

We now turn to an analysis that also allows asymmetric Nash equilibria. It

is hard to give a complete description of all Nash equilibria. We give instead

an example. In this example, every allocation of positions to bidders can be an

equilibrium allocation. We describe corresponding bid vectors. Note that the

example satisfies Assumption 3, and thus in any symmetric equilibrium bidders

are allocated positions as in Corollary 1.

Example 1. There are 3 bidders and 3 positions. Click rates are bidder inde-

pendent: c1i = 3, c2i = 2, c3i = 1 for all bidders i = 1, 2, 3. The willingness to

bid per click is independent of a bidder’s position: vk1 = 16, vk2 = 15, vk3 = 14

for all positions k = 1, 2, 3. Whenever one bidder bids 11, another bids 9, and

another bidder bids 7, then this will be a Nash equilibrium. Thus, all allocations

of positions to bidders are possible equilibrium allocations.

Although we do not offer in this paper a complete characterization of asym-
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metric Nash equilibria, our empirical analysis will not rule such equilibria out by

assumption. Varian (2007) offers no game theoretic motivation for focusing on

symmetric Nash equilibria. But Edelman et. al. (2007, p. 249) have argued that

the selection of symmetric equilibria can be justified by the assumption that bid-

ders raise their bids to induce a higher payment for the next highest bidder, but

that they do so only up to the point b̄ at which they would not regret having raised

their bid if the next highest bidder were to lower his bid slightly below b̄. Edel-

man et. al. refer to the selected equilibria as “ locally envy-free.” We regard this

argument as not entirely compelling because it is not clear that the relevant case

for bidders to consider is the case that other bidders lower their bids just below b̄.

Edelman et. al. (2007) offer two further justifications for their selection. The

first (their footnote 17) is that there is an analogy between symmetric Nash equi-

libria and the requirement in single unit, second price auctions that bidders bid

at least their true value. We argue that in single unit, second price auctions this

requirement is not attractive per se. Edelman et. al. (2007, Section IV) also in-

troduce an ascending price auction with incomplete information, and show that

the unique perfect Bayesian equilibrium of this auction results in rankings and

payments identical to those in symmetric Nash equilibria of the static, complete

information model. They interpret the ascending price auction as a description

of the process by which bidders arrive at equilibrium. One can conceive of other

models of this process, and we prefer to remain agnostic on this point.7

7An earlier version of this paper also discussed refining the set of Nash equilibria by ruling out
weakly dominated strategies. The strategies in Example 1 are not weakly dominated.
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4 Data

We have collected bid data for five search terms over a period from February 3rd

2004 to May 31, 2004. The search terms are Broadband, Flower, Loan, Outsourc-

ing and Refinance.8 For each search term, the data describe the current bid levels

every 15 minutes9 yielding 96 bid observations per bidder per day.10 We include a

bid observation (and time period) for bidder i in the final data only when the bid-

der places a new bid or alters the bid level of an existing bid. The data selection

avoids a set of issues related to delays in bidders’ response times.11

We augmented the bid data with weekly click-through data for 46 weeks in

2004.12 Based on the click through data we calculate that the ratio ck−1/ck equals

about 1.5 for top positions on average across our search terms. We use this number

in the subsequent analysis. The assumption of a common click through ratio is

restrictive as it does not permit the possibility of bidder heterogeneity in click

through ratios. We make the assumption as our data do not contain information

8Initially, search words were chosen at random by using an English dictionary, and we collected
one sample of bid prices for each search word. We then selected the search words that achieve
high bid prices. The motivation for our selection was that bidders may be more likely to behave
optimally when more money is at stake.

9The data were collected using the publicly accessible bid tool on the webpage
http://uv.bidtool.overture.com/d/search/tools/bidtool. The data re-
trieval time interval ranges between 10 and 20 minutes.

10Bidders revise their bids frequently and the 15 minute sampling frequency was chosen to
capture bid changes accurately. On average a new bid is chosen, or an existing bid is revised every
43 minutes, yielding an average of 33 changes per day. There is variation across search terms with
the average number of bid revisions ranging from five per day for Outsourcing to 63 per day for
Flower.

11In particular, the data selection avoids the concern that an initially payoff maximizing bid may
no longer be an optimal bid choice when an opponent’s bid level changes.

12The data were kindly provided to us by Yahoo.
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on bidder specific click throughs. The empirical findings have to be interpreted

subject to this caveat.

The imposed ratio of 1.5 is based on the expected click through rates. The

weekly number of clicks per position exhibits a lot of variation. For this reason

we use the median number of clicks per position to measure the expected click

through rates. We denote the median number of clicks by ck(`) for search term

` and position k. The expected click ratios are calculated as the ratio of median

number of clicks across search terms, that is 1
5

∑5
`=1(c

k−1(`)/ck(`)), and equal

1.44, 1.55, 1.50 and 1.28 for positions k = 2, 3, 4, 5 respectively. The standard de-

viations of the click ratios, calculated across search terms, equal 0.20, 0.12, 0.29

and 0.20 for positions k = 2, 3, 4, 5, respectively. We cannot reject the null hy-

pothesis that the ratio equals 1.5 for top positions.

The price paid reflects a lower bound on an advertiser’s willingness to pay per

click. The lower bound varies substantially across categories. The price for the

top Broadband position equals $2.05 on average. The average top position price

equals $2.44, $4.62, $2.54, $6.92 for the search terms Flower, Loan, Outsourcing,

and Refinance respectively.

The price difference between two adjacent positions is 20 cents on average

across search terms for the top ten positions. The price difference between two

adjacent positions varies across search terms and ranges from 14 cents for Out-

sourcing to 31 cents for Refinance.

There is substantial dispersion in bids over time suggesting that revealed pref-

erence arguments may achieve tight bounds on advertisers’ willingness to pay.
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The bid dispersion varies in magnitude across categories. The low standard de-

viation occurs for Outsourcing with a standard deviation of the top position price

equalling $0.27. On the other extreme is the category Broadband with a stan-

dard deviation of $0.81. The empirical distribution reveals that ninety percent of

high Outsourcing position price observations fall into the interval $2.00 to $3.00.

Ninety percent of Broadband price observations fall into the interval $1.32 to

$3.25.

The dispersion in bids over time does not reflect a clear pattern attributable to

days of the week or hours of the day. We illustrate the patterns of bids over time in

two ways: First, we qualitatively examine position bids and illustrate that there is

no systematic pattern of variation in position bids across days of week and hour of

the day. Second, we conduct statistical tests to confirm that there is no significant

variation across days of the week or hours of the day for the majority of search

terms and positions.

Table 1 reports the average submitted bid for the top three positions for each

day of the week for the search term Outsourcing. The evidence for other position

bids and other search terms is qualitatively similar. The observations in the Ta-

bles include all submitted bids bk for position k for a given day. The number in

parenthesis denotes the sample standard deviation.

The top position bid b1 is surprisingly constant in Table 1. It varies by 15

cents across days of the week ranging between 2.58 (Thursday) and 2.73 (Friday).

There is no observation for b1 on Sundays. A statistical test of equality of average

top position bid b1 across days of the week cannot be rejected at the one percent
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Table 1. Outsourcing Position Bids.

Mon Tue Wed Thu Fri Sat Sun

b1 2.62 2.70 2.60 2.58 2.73 2.71 .
(0.25) (0.24) (0.22) (0.23) (0.25) (0.28)

b2 2.51 2.50 2.54 2.33 2.42 2.14 2.59
(0.21) (0.15) (0.18) (0.36) (0.31) (0.35) (0.09)

b3 2.08 2.06 2.25 1.98 2.37 2.38 2.21
(0.46) (0.41) (0.41) (0.37) (0.27) (0.00) (0.13)

significance level. For comparison on average the position bid b2 is 25 cents lower

than the position bid b1 and the difference in the top two bid prices, b1 − b2, is of

larger magnitude than the within day of the week variation in b1. The average out-

sourcing bid b2 ranges between 2.14 (Saturday) and 2.59 (Sunday). The Saturday

low bid price b2 is a substantial 19 cents away from the second lowest bid price

(Thursday). A statistical test of equality of average top position bid b2 across days

of the week is rejected. The position bid b3 ranges between 1.98 (Thursday) and

2.38 (Saturday). A statistical test of equality of average top position bid b3 across

days of the week cannot be rejected.

Table 1 illustrates that there is variation in position bid prices across the days

of the week, but there is no clear day of the week pattern evident. For example, on

Saturday the low price for position bid b2 occurs while at the same day the high

position bid b3 arises. The rejection of the null of equal coefficients for position

bids b2 across days of the week appears attributable to Saturday outliers.

Next, we examine the evidence on hourly position prices. Table 2 illustrates

the within day hourly price variation for Refinance.
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Table 2. Refinance, Hourly Position Bid Prices.

Hour b1 b2 b3

0:00 7.02 (0.57) 6.95 (0.48) 6.96 (0.53)
1:00 7.03 (0.75) 7.03 (0.51) 6.63 (0.39)
2:00 7.13 (1.07) 6.94 (0.49) 6.82 (0.47)
3:00 6.86 (0.61) 6.85 (0.61) 6.73 (0.63)
4:00 7.30 (0.95) 7.11 (1.04) 6.85 (0.79)
5:00 6.87 (0.61) 6.90 (0.76) 6.77 (0.65)
6:00 7.05 (0.90) 7.05 (0.76) 7.06 (0.62)
7:00 6.83 (0.55) 6.72 (0.54) 6.70 (0.64)
8:00 6.98 (0.57) 6.94 (0.72) 6.83 (0.38)
9:00 6.85 (0.61) 6.91 (0.57) 7.16 (0.53)

10:00 6.86 (0.62) 6.83 (0.59) 6.86 (0.58)
11:00 6.92 (0.71) 6.84 (0.52) 6.87 (0.45)
12:00 6.90 (0.57) 6.86 (0.53) 6.93 (0.52)
13:00 6.88 (0.57) 6.79 (0.50) 6.66 (0.57)
14:00 6.94 (0.61) 6.98 (0.60) 6.84 (0.60)
15:00 6.96 (0.54) 6.76 (0.58) 6.55 (0.60)
16:00 6.86 (0.67) 6.73 (0.66) 6.56 (0.58)
17:00 7.01 (0.62) 6.89 (0.57) 6.86 (0.67)
18:00 7.04 (0.49) 7.00 (0.43) 6.94 (0.57)
19:00 7.82 (5.44) 6.99 (0.65) 6.76 (0.60)
20:00 7.02 (0.47) 6.93 (0.49) 6.71 (0.55)
21:00 7.04 (0.46) 6.83 (0.52) 6.69 (0.52)
22:00 7.02 (0.51) 7.05 (0.56) 6.93 (0.55)
23:00 7.04 (0.64) 7.01 (0.58) 7.09 (0.54)
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There is again surprisingly little variation in bid prices within a day. The top

position bid price b1 ranges between 6.83 (at 7am) and 7.82 (at 7pm). There is

no discernible trend during the day in position bid levels. A statistical test of

equal position bids b1 within the day cannot be reject. The position bid b2 ranges

between 6.72 (7am) and 7.11 (4am). The position bid b3 ranges between 6.55

(3pm) and 7.16 (9am). For both, b2 and b3, a statistical test of equal average bid

prices across hours of the day cannot be rejecteded. Overall, we do not see a

systematic discernible pattern in variations of position prices during the day.

To examine systematically whether position prices vary significantly across

days of the week or hours of the day we consider a statistical test of equality of

day of the week (or hour) effects. We examine the null hypothesis of constant

position prices for individual search words and position bids. The null hypothesis

for search term ` and position k can be written as bjk(`) = bk(`) for all days of the

week j (or all hourly intervals j). We conduct separate tests for all top five position

bids and all search terms. In each case we consider a test for days of the week and

another test for hours within the day. We construct an F-statistic by regressing bid

position prices on two sets of regressors. First, in the unrestricted case we include

a full set of day of the week dummies (or hourly interval dummies). Second, in

the restricted case we include a constant only. We use the 1% significance level as

the test criterion.

In total we conduct 50 tests. On 28 of 50 tests, that is on 56% of all tests,

we cannot reject the null of equal coefficients. For the majority of tests we find

no significant variation over time. Excluding the search term loan, the number
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of cases in which the null is not rejected increases to 70%. We may interpret the

statistical test evidence as an indication that there are no systematic variations in

bid prices across days of the week or hours of the day.

Summarizing, we can conclude that a qualitative examination of position bids

reveals no systematic patterns of variation in position bids across days of week

and hours of the day. There is some variation in prices over time possibly caused

by individual outliers, but there is no clear evidence of systematic variation. A

statistical examination of equal position bids over time reveals no significant vari-

ation across days of the week and hours of the day for the majority of search terms

and positions.

In the data we see that some bidders are regular bidders for top positions while

other bidders achieve a top position on occasions only, or vanish after a short time.

These two types of bidders may exhibit distinct valuation processes and we wish

to distinguish them in the subsequent analysis. To illustrate the difference we

determine the average position in the bid ranking during our sample period. There

are 167 bidders with average ranking of one to ten and there are 1, 227 bidders

with average ranking of ten or higher. The bidders with average ranking of one to

ten win 85 percent of the top five positions. We focus on these regular bidders in

the subsequent analysis.
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5 Revealed Preferences

This section explores a non-parametric revealed-preference approach to infer bounds

on advertisers’ willingness to pay. We assume that the submitted bid maximizes

the bidder’s payoff. We use the bid data in conjunction with the optimality con-

dition to deduce bounds on the willingness to pay. We illustrate when the bounds

imply a non-empty set of valuations and examine the non-emptiness hypothesis

empirically. We discuss the shape of the valuation profiles consistent with the

bounds. Section 5.1 illustrates when a set of bid observations yields a non-empty

set of valuations. Section 5.2 describes our empirical test results for the revealed

preference hypothesis. Section 5.3 illustrates the shape of the valuation profile

consistent with the bounds and describes caveats of the test procedure.

5.1 Test of the Revealed Preference Hypothesis

It is instructive to distinguish two types of bid submissions depending on whether

the submitted bid wins an item or not. First, suppose the chosen bid of bidder i

does not win a position which we call a type one bid submission. If we denote by

bφ(k) the kth highest bid, then, it must be that the bid prices exceed the valuation

of the position:

vki ≤ bφ(k) for all k ≤ K (19)

Thus, we obtain an upper bound on the valuation vector.

Second, suppose the bid by bidder i wins position k ≤ K. We call this a

type two submission. Optimality of the bid choice implies the following three
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inequalities:

−vki ≤ −bφ(k+1) (20)

vk
′

i ≤
cki
ck

′
i

vki +

[
bφ(k′) −

cki
ck

′
i

bφ(k+1)

]
for k′ < k (21)

vk
′

i ≤
cki
ck

′
i

vki +

[
bφ(k′+1) −

cki
ck

′
i

bφ(k+1)

]
for K ≥ k′ > k (22)

The first inequality says that the valuation of position k is at least as large as the

winning price which places a lower bound on the valuation vki . The second and

third inequalities say that the valuation for a position that is not won, vk′i with

k′ 6= k, is bounded from above by a line with slope cki
ck

′
i

and an intercept equal to

bφ(k′) − cki
ck

′
i

bφ(k+1) for k′ < k and an intercept equal to bφ(k′+1) − cki
ck

′
i

bφ(k+1) for

k′ > k, respectively.

The above inequalities are the same as in Definition 1. We can write these

inequalities compactly in matrix notation as

Atvi ≤ αt (23)

where vi =
(
v1i , v

2
i , . . . , v

K
i

)
is a K × 1 dimensional valuation vector; At is a

K×K dimensional matrix and αt is a K×1 dimensional vector. In type one sub-

missions At equals the identity matrix and αt is equal to
(
bφ(1), bφ(2), . . . , b(K)

)
.

In type two submissions, when position k is won, At is equal to a matrix with

entry (k, k) equal to -1, entry (k, k′) equal to 0, entry (k′, k′) for k′ 6= k equal to 1,
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entry (k′, k) equal to−
(
cki /c

k′
i

)
and all other entries equal to zero;13 and vector αt

has entry k equal to −bφ(k+1), entries k′ where k′ < k equal to bφ(k′) − cki
ck

′
i

bφ(k+1),

and entries k′ > k equal to bφ(k′+1) − cki
ck

′
i

bφ(k+1).

Given a set of observations T , we denote the set of valuations that satisfy

restriction (23) as VT
i ,

VT
i =

{
vi ∈ <K+ |Atvi ≤ αt for all t ∈ T

}
Revealed preference predicts that the set VT

i is non-empty. The revealed prefer-

ence hypothesis can be tested empirically. Observe though that the computational

complexity of the empirical test can be high even for moderately sized K due to

the curse of dimensionality.

Figure 1 illustrates the set VT
i graphically in the case of two positions, K =

2. In Figure 1, we write “ b12” for b1φ(2) etc. We consider three hypothetical bid

vector observations b1, b2, b3 where the superscript in the bid vector indicates that

bidder i wins position 1, position 2, or no position, respectively. The dark shaded

area14 describes the set of valuations consistent with inequalities (19) - (22) for

the hypothetical bid vectors. The solid line segments b12, a5 and a7 arise from

inequalities (20) and (22) and bid vector b1. The inequalities imply that valuations

in the area south-east of the solid line segments are consistent with item 1 being

won.15 The dashed line segments b33, a3 and a8 arise from inequalities (20) and

13Here, k′ 6= k.
14The dark shaded area has boundary points a1, a2, a3, a4, a5, and a6.
15Valuations to the east of the solid line segment b12, a5 satisfy the property that the valuation

v1 exceeds the price paid for item 1. Valuations to the south-east of the line segment a7, a9 satisfy
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Figure 1: Valuations consistent with hypothetical bids
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(21) and bid vector b2. It says that valuations in the area north-west of the solid

line segments are consistent with item 2 being won.16 The dotted line segments

b32, a1 and b31 arise from inequality (19) and bid vector b3. It says that valuations

in the south-west of the dotted line segments are consistent with no item being

won.17

Figure 1 can be easily extended to an arbitrary set of bids. To see that, partition

the set of observations T into three sets T 1, T 2, T 3, so that T 1, T 2 denote the sets

of bids in which position 1, 2 is won and T 3 denotes the set of bids in which no po-

sition is won. The dotted line is defined by the minimum bids for positions 1 and

2, b3φ(2) = mint∈T 3(btφ(2)), and b3φ(1) = mint∈T 3(btφ(1)), the dashed line segments

are defined by b2φ(3) = maxt∈T 2(btφ(3)) and a10 = mint∈T 2(btφ(1) − (c2i /c
1
i )b

t
φ(3)),

and the solid line segments are defined by b1φ(1) = maxt∈T 1(btφ(2)) and a9 =

maxt∈T 1(btφ(2) − (c2i /c
1
i )b

t
φ(3)). Hence, the bid vectors b1, b2, b3 in Figure 1 de-

note the corresponding minima and maxima. If some set T i is empty, then the

corresponding boundary will not bind and the shaded area in the figure will be

enlarged.18

With multiple positions, K > 2, the set VT
i is contained in <K . The boundary

the property that the bidder who buys item 1 would not have been better off by buying item 2.
16Valuations to the north of the solid line segment b33, a3 satisfy the property that the valuation

v2 exceeds the price paid for the item b33. Valuations to the north-west of the line segment a10, a8
satisfy the property that the bidder who buys item 2 would not have been better off by buying item
1.

17Valuations to the west of the dotted line segment b31, a1 satisfy the property that the valuation
v1 is less than the price paid for item 1. Valuations to the south of the line segment b32, a1 satisfy
the property that the valuation v2 is less than the price paid for item 2.

18If T 1 is empty, then the left boundary of the shaded area will equal the vertical line
(
0, v2i

)
as

by assumption v1i > 0. If T 2 is empty, then the bottom boundary of the shaded area will equal the
horizontal line

(
v1i , 0

)
. If T 3 is empty, then the shaded area is unbounded to the north-east.
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of the set VT
i along dimension (vki , v

k′
i ) shares the features as in Figure 1 for any

pair (vki , v
k′
i ).

Next, we state that a pairwise non-empty boundary is a necessary condition for

the revealed preference hypothesis. We denote the set of bid observations in which

the submitted bid wins position k by T k ⊂ <N , and the set of bid observations in

which the submitted bid does not win any position by TK+1 ⊂ <N . We adopt the

convention that the maximum and minimum over an empty set equals −∞ and

+∞, respectively.

Condition 1 (Non-empty Pairwise Boundaries). Given a set of observations T , a

necessary condition for the valuation range VT
i to be non-empty is that

max
t∈Tk

(
btφ(k+1)

)
≤ min

t∈TK+1
(btφ(k)) for all k ≤ K;

max
t∈Tk

(
btφ(k+1) −

ck
′
i

cki
btφ(k′+1)

)
≤ min

t∈Tk′

(
btφ(k) −

ck
′
i

cki
btφ(k′+1)

)
for all k, k′ ≤ K with k < k′.

The non-empty pairwise boundary condition is a necessary condition for a

non-emptiness of the set VT
i . The first necessary condition states that the position

price paid during some period cannot exceed the price of the same position during

another period when the bidder doesn’t win a position. The second necessary con-

dition says that when position k is won the valuation difference, vki −
(
ck

′
i /c

k
i

)
vk

′
i ,

is bounded from below by the price differences btφ(k+1) −
(
ck

′
i /c

k
i

)
btφ(k′+1), and,
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when position k′ is won it is bounded from above by the price differences btφ(k) −(
ck

′
i /c

k
i

)
btφ(k′+1), respectively. Observe that Condition 1 is not a sufficient condi-

tion as two two-dimensional areas that share one dimension need not overlap in

the common dimension.

Examining empirically whether the set VT
i ⊂ <K is non-empty can be com-

putationally complex for moderately sized K. Yet, Condition 1 can be examined

at relatively small computational costs for all K. For computational reasons we

proceed with a two step test approach of the revealed preference hypothesis: In the

first step, we examine whether there is a violation of Condition 1. In the second

step, we examine whether there is a non-empty set for those observations with a

non-empty pairwise boundary.

A violation of the revealed preference hypothesis may be indicative of behav-

ior inconsistent with rationality. Alternatively, it may suggest taste changes across

subsets of the observations. For instance, preferences may be different during day-

time from during night-time. The revealed preference hypothesis may be satisfied

during day-time periods and during night-time periods, but not for both periods

jointly.

5.2 Revealed Preference Test Results

This section reports the revealed preference hypothesis test results in two steps.

First, we examine the non-empty pairwise boundary hypothesis. Second, we con-

sider the full revealed preference test.

The non-empty pairwise boundary hypothesis is examined for a subset of our
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data consisting of bidders that submit a bid for a top five position on average.19 In

total there are 71 such bidders. We find no violation of the non-empty pairwise

boundary condition for 21 of 71 bidders, or 30 percent. Violations arise for bidders

submitting numerous bids. On average, a bidder with a violation submits 154 bids.

In contrast, a bidder without a violation submits about 3 bids.

A violation may be attributable to a discrete change in an observable charac-

teristic, such as a change from day-time to night-time. Alternatively, a violation

may be attributable to a gradual change in observable characteristics, for instance

when there is a time trend. Violations may also arise, if bidders are inexperienced

and make periodic mistakes in assessing their willingness to pay or in submitting

erroneous bids.

To examine whether violations arise suddenly or gradually, we select all bid-

ders with a violation for the entire sample period. We determine the (maximal)

length of sub-periods on which the non-empty boundary hypothesis holds. The

algorithm is simple. For each bidder, we start with the first observation and then

add on additional consecutive observations as long as no violation of the non-

empty boundary hypothesis occurs. When a violation arises, we start a new set

of observations. The algorithm partitions the set of observations into consecutive

sub-period Ti1, . . . , Titi with the property that the non-empty boundary hypothesis

is satisfied on each sub-period. Notice that period Ti1 starts at the point of time

19An examination of all bidders shows that a violation of the non-empty boundary condition
occurs for 14 percent of bidders only. The low violation rate may appear surprising initially.
However, the bidders without a violation win position 70 or higher on average. For these bidders,
the upper valuation bound is binding most of the time, and there are hardly any observations that
provide a lower bound on the valuation range.
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when bidder i places the first bid, or revises the existing bid for the first time.

Typically period Ti1 starts well inside of our sample period.

The length of the sub-periods without a violation amounts to 1.34 days on

average. During the 1.34 days the bidder submits a total of 4.7 bids on average.

The frequent violations suggest that valuations may vary over time, or that bidders

may make mistakes periodically.

Next, we describe our test results of the revealed preference hypothesis. We

examine whether the hypothesis holds for observations without a violation of the

non-empty pairwise boundary condition.

The non-empty VT
i hypothesis. In total we include 1618 observations. These

include all observations of bidders with a non-empty pairwise boundary during

the entire period and all observations with a non-empty pairwise boundary for

sub-periods. To limit the computational complexity of the exercise, we examine

the non-emptiness hypothesis for a five dimensional valuation profile consisting of

the top five valuations (v1i , v
2
i , . . . , v

5
i ). We do not examine the restrictions placed

by the hypothesis for higher position valuations, (v6i , v
7
i , . . . , v

10
i ). For each test

candidate, we take one million independently and identically distributed multi-

variate random draws from a uniform distribution.20

The results are the following: For 51 percent of observations the set VT
i is

non-empty. We can conclude that for about half the observations the revealed

20The support of the uniform distribution is defined by the position price when no item is won,
and the price paid when the item is won. Specifically, we take as the upper bound for valuation
vki the low bid observation that does not win a top ten position, mint∈T 11 bt(i), and we take as the
lower bound the price paid when position k is won, maxt∈Tk btφ(k+1). When the upper bound does
not exist, we replace it with 15. When the lower bound does not exist, we set it to 0.
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preference hypothesis is satisfied.

Summarizing, we find that bidders’ behavior can only be rationalized over

relatively short time periods, after which we have to postulate an unexplained

structural break in preferences. Next, we examine the short time periods in more

detail and test further restrictions on the valuation profiles. We examine the shape

of the valuation profiles that are consistent with revealed preference.

5.3 Shape of the Valuation Profile

This section examines the shape of the valuation profile and describes caveats of

our test procedure.

For the shape of the valuation profile we consider two alternative hypothesis:

(i) constant valuations, v1i = v2i = . . . = v5i ; and (ii) monotone decreasing valua-

tions, v1i > v2i > . . . > v5i . The data include all observations that pass the revealed

preference test.

The hypothesis of a constant valuation profile is tested in the following way.

We fix a grid with 0.5 cent increment and determine whether there exists a constant

valuation profile ṽi ∈ {0.005, 0.01, . . . , 15} such that ṽi ∈ VT
i .

The hypothesis of monotone decreasing valuations is tested by using a sample

of randomly drawn monotone valuation profiles. We select one hundred thousand

draws from a multi-variate uniform distribution and we check whether ṽi ∈ VT
i .

We find that 16 percent of observations pass the constant valuation test. We

interpret the test result as a rejection of the null hypothesis of constant valuations.

We find that 98 percent of observations pass the monotone decreasing valua-
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tion test. We cannot reject the monotonicity of valuation profiles.

To examine whether the decrease amounts to at least five percent for all con-

secutive pairs of valuations we consider the hypothesis that vki > 1.05 · vk+1
i for

k = 1, ..., 4. We cannot reject the null hypothesis of a five percent decline for all

consecutive pairs for 98 percent of observations. The test results indicate that the

willingness to pay decreases with the position.

We conclude this section with two caveats of the revealed preference approach.

First, the chosen data partition may influence the interpretation of the test results.

For example, it may be of interest to partition the data into day-time and night-

time observations, and to examine whether the revealed preference hypothesis

holds for the respective sub-samples. Yet, it is difficult to determine whether the

newly created partition improves the fit simply due to the increased fineness of the

partition, or indeed reflects a structural break.

A second caveat concerns the zero-one nature of the revealed preference test.

A test may be rejected although the data almost satisfy optimality. The test does

not take into account if a violation was a near miss or far off. Both count as a

violation. An alternative approach which avoids this zero-one nature is to measure

the magnitude of the departure from the revealed preference.

The alternative approach may be based on the assumption that there is a ran-

dom component entering the willingness to pay of individual bidders. The valu-

ations consist then of a parametric component plus an error. The error can be in-

terpreted as optimization error, as in McKelvey and Palfrey (1995), or may reflect

random components in valuations which are known to bidders but not observed
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by the econometrician. Maximum likelihood may then be used to estimate the

parameters of the parametric component.

Assuming a linear specification, the valuation of bidder i for position k in

period t is then given by,

vki = Xk,t
i αi + εkti

= α0
i +

(
α1 · α0

i

)
· k + εkti

where the coefficients α0
i measure bidder fixed effects. The coefficient α1 enters

the multiplicative term (α1 · α0
i ) and measures the valuation decrease relative to

the bidder specific intercept α0
i . The top position has index k equal to one. The

term εkti denotes the error term. The parametric assumption can be combined with

the bounds on the valuations to obtain a set of inequalities for any bid observation

bt.21 Assuming that the error εkti is iid standard normally distributed, allows us to

21For a type one submissions, when the bid does not win a top position and t ∈ TK+1, the
inequality is,

Xk,t
i αi + εki ≤ btφ(k) for all k ≤ K for k ≤ K.

For type two submissions, when the submitted bid wins position k ≤ K and t ∈ T k, the inequali-
ties are

Xk,t
i αi + εki ≥ btφ(k+1)

Xk′,t
i αi + εk

′

i ≤
cki
ck

′
i

Xk,t
i αi +

cki
ck

′
i

εki + btφ(k′) −
cki
ck

′
i

btφ(k+1)

for k′ < k

Xk,t
i αi + εk

′

i ≤
cki
ck

′
i

Xk,t
i αi +

cki
ck

′
i

εki + btφ(k′+1) −
cki
ck

′
i

btφ(k+1)

for K ≥ k′ > k
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derive the likelihood.22

We wish to explore this likelihood approach in future work. As an initial at-

tempt we considered data for top three premium bidders who submit at least ten

bids and who occupy a top ten position for more than two weeks during the sam-

ple period. The estimates yielded slope coefficients α1 which are negative for all

search terms and significantly different from zero. The slope coefficients range

between −0.02 and −0.24 across search terms. These estimates indicate that val-

ues per click depend on the position in which their advertisement is placed and

accord well with the evidence from the revealed preference tests. Further research

will explore the likelihood approach in more detail allowing for richer data and

more realistic specifications of the slope coefficients accounting for bidder hetero-

geneity and additional explanatory variables.

22The log-likelihood is given by

` =
∑

t∈TK+1

K∑
k=1

ln
(

Φ
(
btφ(k) −Xk,t

i αi

))
+

K∑
k=1

∑
t∈Tk

ln

(∫ ∞
bt
φ(k+1)

−Xk,t
i αi

[∏
k′<k

Φ

(
cki
ck

′
i

Xk,t
i αi +

cki
ck

′
i

εki + btφ(k′) −
cki
ck

′
i

btφ(k+1) −Xk′,t
i αi

)

·
∏
k′>k

Φ

(
cki
ck

′
i

Xk,t
i αi +

cki
ck

′
i

εki + btφ(k′+1) −
cki
ck

′
i

btφ(k+1) −Xk,t
i αi

)
φ(εki )dε

k
i

])

where the first line describes the contribution to the likelihood of type one bid submissions, and
lines two and three describe the likelihood contribution of type two bid submissions.
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6 Conclusion

We have presented a game theoretic analysis of the Yahoo sponsored search auc-

tion, and we have interpreted bidding data assuming that this theory is a correct

model of bidders’ behavior. Our analysis suggests that it might be interesting to

consider a dynamic model of bidding behavior in the auction in which bidders

pursue repeated game strategies. Another missing element in our model might be

bidders’ budget constraints. It seems common that bidders in sponsored search

auctions have to respect budget constraints. The rich data that high frequency

sponsored search auctions provide allows the examination of a variety of further

issues.
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