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Abstract

A seller wishes to sell an object to one of multiple bidders. The valuations of

the bidders are privately known. We consider the joint design problem in which the

seller can decide the accuracy by which bidders learn their valuation and to whom

to sell at what price. We establish that optimal information structures in an optimal

auction exhibit a number of properties: (i) information structures can be represented

by monotone partitions, (ii) the cardinality of each partition is �nite, (iii) the partitions

are asymmetric across agents. We show that an optimal information structure exists.
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1 Introduction

The optimal design of an auction has received considerable attention in the economics

literature. Myerson (1981) constitutes the seminal paper in the �eld. Myerson shows

which auction rules achieve the largest revenues to the seller in a single object auction.

Most of the subsequent literature on mechanism design maintains the assumption that

the information held by market participants is given as exogenous. Little is known about

optimal mechanisms when the information of the participants is allowed to be endogenous.

This paper considers the optimal auction design problem when the seller can determine

bidders� information precision. We consider a problem in which a seller o¤ers a single

object to a number of risk neutral bidders. The seller wishes to maximize revenues from

the sale. Bidders�valuations for the object are private and not known prior to the bidding.

The seller controls the bidders�information structures which generate the bidders�private

information. The information structure determines the accuracy with which buyers learn

their valuations prior to the auction. The seller may assign an information structure that

informs a bidder perfectly or an information structure that gives the bidder only a rough

guess about her true value for the object. The seller�s choice of information structure

is made prior to the auction and does not involve transfer payments from the bidders.

After the choice of information structure by the seller, the bidders then report their value

estimate to a revelation mechanism which determines the probability of winning the object

and a transfer payment for every bidder. We study information structures and revelation

mechanisms that maximize the seller�s revenues. The solution in Myerson (1981) arises in

our model as a special case when the seller informs the bidders perfectly.

We analyze the optimal information and mechanism design problem under strong in-

formational assumptions. We assume that the seller has full control in his choice of the

information structure and there is no cost to adopt a particular information structure. Our

set-up allows us to emphasize two opposing e¤ects that determine the endogenous choice of

the precision of information: �rst, more information increases the e¢ ciency of the auction

and thus seller�s revenues; second, more information increases the rents of the bidders in

form of information rents which lower the seller�s revenues. We analyze this trade-o¤ and
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characterize the properties of optimal information structures.

The model assumes that the optimal information and mechanism design is subject to the

interim incentive and interim individual rationality constraints of the bidders. By imposing

the interim individual rationality constraint, each bidder is allowed to assess the value of

the transaction conditional on his private information. In particular, this means that the

seller cannot request payment for the private information, separately from the auction of

the object itself. The adoption of the interim individual rationality constraints here can be

motivated by a temporal distinction between the adoption of a set of rules governing an

auction or an entire series of auction and the actual auction event. Within such a sequencing

context, the individual rationality constraints arises naturally at the interim stage.1

Empirical applications that share features with some of our assumptions can be given,

but we wish to emphasize that we are not aware of an application that �ts our assump-

tions precisely. Our study makes strong assumptions and our results may not be directly

applicable for auction design in practice. In light of the results, we shall discuss the role of

the assumptions in detail in the �nal section.

The linkage principle of Milgrom & Weber (1982) is related to our work but obtained in

a distinct informational setup. In a symmetric model with a¢ liated values, they show that

the seller can increase revenue by releasing information publicly to all bidders. The public

information reduces the winner�s curse and hence the information rent of the winning bidder.

In contrast, with private values, an increase in information to an individual bidder increases

that bidder�s information rent. While we consider the choice of information structure by the

seller, a related literature considers the incentives of the buyers, to obtain more information,

e.g. Cremer & Khalil (1992), Persico (2000), and Bergemann & Välimäki (2002).

Our paper is organized as follows: Section 2 describes the model. Section 3 considers

the example of bidders with uniformly distributed valuations on the unit interval. Section

4 analyzes the optimal information structure when the signal space is �nite. We show

that: (i) the optimal information structures are partitions, (ii) the optimal partitions are

asymmetric, and (iii) optimal partitions exist. Section 5 extends the characterization results

to the class of all measurable information structures (possibly with in�nite and uncountable

1We thank an anonymous referee for suggesting this point of view.
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signals) and shows that the above characterization results remain to hold, in particular the

optimal information structure remains a �nite monotone partition. Section 6 concludes and

discusses the limits of our analysis.

2 Model

2.1 Utility

A seller has a single object for sale. There are I potential bidders for the auction, indexed

by i 2 f1; ::::; Ig. Each agent i has a compact set Vi = [0; 1] of possible valuations for the

object, where a generic element is denoted by vi 2 Vi, and

V =
I
�
i=1
Vi = [0; 1]

I .

We occasionally adopt the notation v = (vi; v�i). The valuation vi is independently dis-

tributed with prior distribution function Fi (vi). The prior distribution function Fi (vi) is

common knowledge. The associated density function fi (vi) is positive on Vi. The utility of

the (winning) agent is quasilinear and given by

ui (vi; ti) = vi � ti,

where ti is a monetary transfer.

2.2 Information Structure

The signal space is denoted by Si � [0; 1]. The space Si can either be countable, �nite or

in�nite, or uncountable. Let (Vi � Si;B (Vi � Si)) be a measurable space, where B (Vi � Si)

is the class of Borel sets of Vi � Si. An information structure for agent i is given by a

pair Si , hSi; Fi (vi; si)i, where Si is the space of signal realizations and Fi (vi; si) is a joint

probability distribution over the space of valuations Vi and the space of signals Si.2 We

refer to this class of information structures as (Borel) measurable information structures.

2By assumption, the signal of agent i is independent of agent j�s valuation, for j 6= i. If agent i�s signal

were to depend on agent j�s valuation, then full rent extraction is possible, see Cremer & McLean (1988).
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The distribution and the information structure for all agents are denoted by omitting

the subscript i; or F (v; s) and S, respectively. The joint probability distribution is de�ned

in the usual way by

Fi (vi; si) , Pr (evi � vi; esi � si) .
The marginal distributions of Fi (vi; si) are denoted with minor abuse of notation by Fi (vi)

and Fi (si) respectively. For Fi (vi; si) to be part of an information structure requires the

marginal distribution with respect to vi to be equal to the prior distribution over vi. The

conditional distribution functions derived from the joint distribution function are de�ned

in the usual way:

Fi (vi jsi ) ,
R vi
0 dFi (�; si)R 1
0 dFi (�; si)

;

and similarly,

Fi (si jvi ) ,
R si
0 dFi (vi; �)R 1
0 dFi (vi; �)

:

The auctioneer can choose an arbitrary information structure Si for every bidder i subject

only to the restriction that the marginal distribution equals the prior distribution of vi.

The cost of every information structure is identical and set equal to zero. The choice of

Si is common knowledge among the bidders. At the interim stage every agent observes

privately a signal si rather than her true valuation vi of the object. Given the signal si and

the information structure Si each bidder forms an estimate about her true valuation of the

object. The expected value of vi conditional on observing si is de�ned and given by

wi(si) , E [vi jsi ] =
Z 1

0
vidFi (vi jsi ) :

Every information structure Si generates a distribution function Gi (wi) over posterior ex-

pectations given by

Gi (wi) =

Z
fsi:wi(si)�wig

dFi (si) .

We denote by Wi the support of the distribution function Gi (�). Observe that the prior

distribution Fi (�) and the posterior distribution over expected values Gi (�) need not coin-

cide. For future discussions it is helpful to illustrate some speci�c information structures.

The information structure Si yields perfect information if Fi (vi) = Gi (vi) for all vi 2 Vi.
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In this case, the conditional distribution F (si jvi ) has to satisfy

Fi (si jvi ) =

8<: 0 if si < s (vi) ;

1 if si � s (vi) ;
(1)

where s (vi) is an invertible function. An information structure which satis�es (1) with-

out necessarily satisfying the invertibility condition is called partitional. An information

structure is called discrete if Si is countable and �nite if Si is �nite.

After the choice of the information structures Si by the auctioneer, the induced distrib-

ution of the agent�s (expected) valuations is given by Gi (wi) rather than Fi (vi). The signal

si and the corresponding expected valuation wi (si) remain private signals for every agent i

and the auctioneer still has to elicit information by respecting the truthtelling conditions.

2.3 Mechanism

The seller selects the information structures of the bidders and a revelation mechanism.

The objective of the seller is to maximize his expected revenue subject to the interim

participation and interim incentive constraints of the agents. By the revelation principle we

may restrict attention to the direct revelation mechanism. The direct revelation mechanism

consists of a tuple (Wi; ti; qi)
I
i=1 with transfer payment of bidder i:

ti :
I
�
i=1
Wi ! R;

and the probability of winning the object for bidder i:

qi :
I
�
i=1
Wi ! [0; 1]:

We sometimes write Ti(wi) for the expected transfer payment,

Ti(wi) , Ew�iti(wi; �);

where the expectation is taken over w�i = (w1; :::; wi�1; wi+1; :::; wI). Similarly, Qi(wi)

denotes the expected probability of winning,

Qi(wi) , Ew�iqi(wi; �):
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The interim utility of bidder i with an expected valuation wi and announced valuation bwi
is:

Ui (wi; bwi) = wiQi( bwi)� Ti( bwi).
The mechanism has to satisfy the interim participation constraints:

Ui (wi) , Ui (wi; wi) � 0, for all wi 2Wi;

and the interim incentive constraints:

Ui (wi) � Ui (wi; bwi) ; for all wi; bwi 2Wi:

A mechanism that satis�es both, the interim participation constraints and the interim

incentive constraints, is called incentive compatible. The timing of the events is graphically

summarized below:

��������������������������������������������������������������������!x?? x?? x??
information structure S; (si)

I
i=1 realized ( bwi)Ii=1 reported

mechanism (Wi; qi; ti)
I
i=1 ; (wi)

I
i=1 observed (qi (�) ; ti (�))Ii=1 assigned

determined

Figure 0: Time line of events

We note that the transfers and the information structures are determined simultaneously

for all bidders. In particular, we do not consider sequential mechanisms in which the

information structure for some agents may be determined after some information has already

been revealed about a certain subset of bidders.

3 Examples

This section illustrates properties of optimal information structures for some special cases.

First, we look at single and two-bidder auctions. We illustrate the unconstrained optimal

information structure. Then, we illustrate the constrained optimal information structure

when the seller�s choice is restricted to (i) identical information structures across bidders
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and (ii) identical partitions consisting of equally sized intervals. The examples illustrate

that the seller prefers sparse information and treat bidders asymmetrically. Second, we

depart from the two-bidder model and depict properties of the numerical solution to an

auction with many bidders when the valuations are drawn from the uniform distribution.

Again, we depict the unconstrained and constrained symmetric solution.

Single Bidder Auction: Consider �rst the case with a single bidder. The information

structure in which the seller assigns a perfectly informative information structure to the

bidder is analyzed in Myerson (1981). Myerson establishes that the seller can extract at

most the virtual valuations in any incentive compatible selling mechanism. The virtual

valuation of a bidder of type with valuation v equals the valuation of the bidder minus the

incentive cost,

v � 1� F (v)
f(v)

Notice, that the incentive cost is positive and remains positive even if the seller assigns an

information structure which informs partially only.

In contrast consider the situation in which the seller chooses to assign an uninformative

information structure to the buyer. Without any information, a bidder is willing to pay

up to the ex ante expected valuation of the bidder to receive the object. In this case,

the seller can extract all the expected surplus. It is therefore immediate that assigning an

uninformative information structure is optimal in a single bidder auction. The seller can

post a price equal to the ex ante expected valuation. This posted price scheme extracts the

total surplus and is e¢ cient. Moreover, if the seller were to assign an information structure

that informs the bidder, the seller would be worse o¤ because he incurs an incentive cost

expressed by the virtual utility.

Two-bidder Auction: Suppose now we were to add a second bidder to the auction with

an identical prior distribution. The policy to disclose no information does not remain

optimal with two bidders. To see this, notice that assigning an uninformative information

structure extracts at most the ex ante expected valuation of the winning bidder. But with

symmetric bidders, the revenue for the auctioneer would then be the same as in the case of

a single bidder. In a two-bidder auction there is a simple scheme that achieves more rent by
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exploiting the increase in the number of bidders. The scheme has the following feature: The

seller assigns an uninformative information structure to the �rst bidder as in the case of a

single bidder auction, but assigns a binary information structure to the second bidder. A

binary information structure permits the bidder to determine whether the valuation is above

or below a certain threshold. The optimal threshold is exactly equal the ex-ante expected

value of the object. The scheme then works as follows: Initially, the seller o¤ers the object

to the second bidder at a price equal to the conditional expected valuation in the event

that the valuation is above the threshold. If the second bidder rejects the o¤er, then the

seller o¤ers the object to the �rst bidder at a price equal to the ex ante expected valuation.

The total revenues to the seller under this scheme exceed the ex ante expected valuation of

a bidder. Thus, the revenues under this scheme are higher than under a scheme in which

the seller assigns an uninformative information structure. We observe that as before, the

seller leaves no informational rent to the bidders. However, the allocation is not necessarily

e¢ cient anymore, as it could be that the �rst bidder has in fact a higher valuation for the

object than the second bidder with the binary partition. However, the coarse information

structure doesn�t allow the seller to make this contingent decision.

In fact, it can be shown that the described information structure maximizes the revenues

to the seller with two bidders and uniformly distributed valuations. Ignoring elements in

the information structure which are associated with zero winning probability events, as we

do throughout this paper, ensures that the described information structure is the unique

solution. If attention is restricted to the class of information structures with �nite partitions,

then this result follows immediately from the �rst and second order conditions for optimally

chosen partitions. Our results in the subsequent sections establish that the described scheme

with two bidders is indeed optimal for the uniform distribution under general information

structures even permitting non-partitional and non-�nite information structures. For non-

uniform prior distributions the optimal information structure may change as both, the

location of the boundary points in the partition and the number of elements in the partition,

depend on the distributional assumption.

The scheme with two bidders has a number of features that are worth emphasizing. First,

even if bidders have initially symmetric prior distributions of valuations, they are optimally
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assigned asymmetric information structures. The �rst bidder receives no information, while

the second bidder learns wether the valuation is above or below the ex-ante mean. Second,

the seller does not give an informational rent to buyers. Both bidders are o¤ered the object

at a �xed price that they can accept or reject.

Symmetric Information Structures: Suppose the auctioneer were constrained to o¤er

identical information structures to bidders. With two bidders and uniformly distributed

valuations the binary nature of the informational structure remains optimal, but the location

of the boundary point in the partition is altered by the symmetry restriction. It is now

optimal to set the boundary point in the partition at one third and to o¤er the bidders

the object at a �xed price of two third. If bidders valuations do not exceed one third the

seller retains the object. The event of no award can occur because the cost of information

revelation is high and o¤sets the gains from a sale when valuations are low.

Multiple Bidders: A natural question is whether the features of the optimal informa-

tion structure for two bidders with uniformly distributed valuations extend to more general

settings. We address this question in the subsequent sections. Before we start our formal

analysis we illustrate graphically optimal information structures with many bidders.3 The

following �gure depicts properties of optimal information structures with uniform distrib-

uted valuations as we vary the number of bidders. The dotted line illustrates the boundary

points for constrained symmetric partitions. The solid line illustrates the boundary points

for unconstrained (asymmetric) partition for the bidder with the largest interior boundary

point.

Insert Figure 1 here

As can be seen in the �gure the number of boundary points increases monotone with the

number of bidders participating in the auction. However, the increase is only very gradual.

For the optimal (asymmetric) information structure, we count three elements in the partition

with three to six bidders, four elements with seven to �fteen bidders and �ve elements with

sixteen or more bidders. The boundary points of the partitions for the constrained optimal

(symmetric) information structure look very similar to the unconstrained solution. We

count three elements in the partition with four to eight bidders, four elements with nine to
3The numerical calculations were implemented using the software package GAUSS.
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thirteen bidders and �ve elements with fourteen or more bidders.

Figure 1 illustrates further that in general it is not the case that the seller leaves no

informational rent to the bidder. With three or more bidders, binary partitions are no

longer optimal and as the auctioneer has to reward agents to report truthfully, he will have

to incur incentive costs. As the number of bidders increases, the information structure

becomes �ner. The intuition is that with more competition the incentive costs due to the

informational rents are lower and the revenue gains from improving allocative e¢ ciency due

to more information become more important, as the number of bidders increases.

4 Optimal Information Structure With Finite Signals

Motivated by the examples, this section describes the optimal auction and optimal infor-

mation structure given a �nite number of signals. In the next section, we then show that

the characterization and optimality of �nite information structure persists with an arbi-

trary number of signals, �nite or in�nite. Subsection 4.1 characterizes the seller�s expected

revenues and optimal mechanism for a given �nite information structure and hence �nite

types. In Subsection 4.2 we start the analysis of the optimal information structure by de-

riving several features of the virtual utilities of the bidders. Subsection 4.3 uses the revenue

structure of the optimal auction to show that the information structure has to be a partition

and that an optimal information structure for a given �nite number of signals exists.

4.1 Optimal Auction Design With Finite Types

Motivated by the examples, this section characterizes the seller�s expected revenues and

optimal mechanism for a given �nite information structure and hence �nite types. At this

stage we are merely interested in characterizing the expected revenues of the auctioneer

from bidder i. For a given distribution Gi (wi), we denote the �nite set of mass points by�
w1i ; :::; w

K
i

	
, and for every wki ,

gki , Gi
�
wki

�
�Gi

�
wk�1i

�
> 0;

with gki being the positive probability of mass point w
k
i . For notational ease, we shall denote

the value of the distribution function Gi (�) at wki simply as Gki , and likewise refer to the
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interim probability of winning at wki as Q
k
i and the interim transfer at wki as T

k
i . Lemma 1

describes the revenues the auctioneer receives from bidder i with a given prior distribution

Gi (�) and a given expected probability of winning Qi (�).

Lemma 1 (Revenues)

The expected revenues from bidder i in an incentive compatible mechanism are:

Ri (Gi; Qi) ,
KX
k=1

"
wki �

�
wk+1i � wki

� 1�Gki
gki

eQki
Qki

#
Qki g

k
i � Ui

�
w1i
�
, (2)

subject to Qi (�) being non-decreasing, Qki � eQki � Qk+1i and Ui
�
w1i
�
� 0.

Proof. The proofs for all results are provided in the appendix.

The similarity with the case of positive density analyzed in Myerson (1981) is immediate.

The modi�cation due to the discreteness appears in the obvious places. The density gi
�
wki
�

is now replaced with the positive probability gki . The local change dwi = 1 is being replaced

by the discrete change between wki and w
k+1
i , or wk+1i � wki .

There are two indeterminacies in the expression of revenues (2). First, as in the contin-

uous analogue, the utility for the lowest type, Ui
�
w1i
�
, is an arbitrary non-negative number.

Second, the probability eQki is an arbitrary number in hQki ; Qk+1i

i
. The second indetermi-

nacy arises due to the discreteness of types and is absent in the continuous analogue. With

discrete types, the utility increment for a bidder of type wki attributable to the (hypotheti-

cal) gain of mimicking the adjacent lower type can be weighed with probability Qki or Q
k+1
i .

In fact, any probability eQki contained in hQki ; Qk+1i

i
yields incentive compatible revenues.

Henceforth, we select eQki = Qki and Ui
�
w1i
�
= 0. This choice maximizes the seller�s

revenue for given (Gi; Qi). Since we seek the information structure and mechanism that

maximizes seller�s revenues, we can make this selection without loss of generality. This leads

us to the following expression for seller�s revenues:

Ri (Gi; Qi) =

KX
k=1

�
wki �

�
wk+1i � wki

� 1�Gki
gki

�
Qki g

k
i .

The associated interim transfers of agent i satisfy the incremental relationship:

T k+1i = T ki +
�
Qk+1i �Qki

�
wk+1i , (3)
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and the expected revenues from agent i can alternatively be represented as

Ri (Gi; Qi) =
KX
k=1

gki

"
kX
l=1

�
Qli �Ql�1i

�
wli

#
; (4)

with the convention that Q0i = 0.

The revenues of the auctioneer from bidder i are characterized as a function of the

expected probability of winning Qi (wi) with a value wi. The interaction with the valuation

of the other bidders is represented by expectations over the valuations w�i. Now, we

disaggregate the expression and consider the dependence on the realizations of all valuations

explicitly. The revenue of the auctioneer from all bidders is given by:

R (G; q) ,
K1X
k1=1

� � �
KIX
kI=1

"
IX
i=1

qi

�
wk11 ; :::; w

kI
I

�"
wkii �

�
wki+1i � wkii

� 1�Gkii
gkii

#
IY
i=1

gkii

#
; (5)

where qi (w) � 0 and
PI
i=1 qi (w) � 1. The optimal auction is then given by the probability

vector q (w) = (q1 (w) ; :::; qI (w)) which maximizes the expected revenue (5). De�ne the

virtual utility with discrete types by:


ki , wki �
�
wk+1i � wki

� 1�Gki
gki

.

If the virtual utilities are monotone, then the optimization problem can be solved pointwise,

i.e. for any type realization w =
�
wk11 ; w

k2
2 ; :::; w

kI
I

�
by solving

max
fqi(w)gIi=1

IX
i=1

qi

�
wk11 ; :::; w

kI
I

�"
wkii �

�
wki+1i � wkii

� 1�Gkii
gkii

#

subject only to the familiar restriction that qi (w) � 0 and
PI
i=1 qi (w) � 1. This point-

wise optimization becomes possible as the monotonicity of virtual utilities guarantees the

monotonicity of the interim winning probabilities Qi
�
wki
�
as a function of wki . We can now

readily describe some properties of the optimal auction.

Corollary 1

Suppose the virtual utilities are increasing for every agent. The optimal auction is described

by:

1. max
n

k11 ; ::::; 


kI
I

o
> 0)

PI
i=1 qi

�
wk11 ; :::; w

kI
I

�
= 1;
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2. qi
�
wk11 ; :::; w

kI
I

�
> 0) 
kii � 0 ^ 


ki
i � 


kj
j ; 8j;

3. qi
�
wk11 ; :::; w

ki
i ; :::; w

kI
I

�
> 0) 8wk

0
i
i > w

ki
i ; qi

�
wk11 ; :::; w

k0i
i ; :::; w

kI
I

�
= 1.

The characterization is the exact discrete type analog to the celebrated optimal auction

result for �regular environments�by Myerson (1981) with a continuum of types. If the virtual

utilities 
ki for a given distribution function G
k
i were not monotone, then the optimal auction

would be subject to a similar �ironing out�procedure as necessary in an optimal auction

with a continuum of types. We conclude the section with a partial characterization of the

�ironing out�procedure for future reference.

Corollary 2

The optimal mechanism satis�es for all 
ki ; 

k+1
i with 
ki > 


k+1
i : Qki = Q

k+1
i .

4.2 Virtual Utilities

We �rst argue that the optimal information structure will always generate virtual utilities

which are strictly increasing. Recall the basic incentive compatibility condition for any

Bayesian implementable auction is that the winning probability Qki is increasing in the val-

uation wki . The revenue formula (5) on the other hand implies that the winning probability

Qki is increasing in the virtual utility 

k
i of the agent i. If the virtual utilities 


k
i generated

by a given distribution Gki were not monotone, then the optimal auction would be subject

to an �ironing out�. The basic element in the former procedure is to maintain the expected

probability Qki constant over a set of types which covers the non-monotonicity in the virtual

utilities. As the constant probability essentially implies that the incentives and revenues are

also constant on the set, the question arises as to whether the auctioneer has any interest

in distinguishing between di¤erent types in this set. In fact, as the information structure is

chosen by the auctioneer, he may wish to bundle types to which identical allocations have

to be o¤ered in any case. In other words, when the auctioneer can choose the information

structure for the bidders, the �ironing out�of non-monotonicities in the virtual utility may

be achieved by a su¢ cient coarsening of the information structure rather than through

constant winning probabilities of the form: Qki = Q
k+1
i . The consequence of this argument

leads to the next result.
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Lemma 2 (Monotone Virtual Utilities)

The optimal virtual utilities are strictly increasing.

By Lemma 2, we can describe the set of optimal virtual utilities for bidder i by an ordered

set �i =
�

1i ; :::; 


k
i ; :::; 


K
i

	
, with 
1i < 
2i < ::: < 
Ki . The local argument regarding the

bene�ts of a coarser information structure has some additional implications for the structure

of the set of virtual utilities �i. Consider two adjacent and positive virtual utilities by agent

i, say 
ki and 

k+1
i . Suppose now that these two virtual utilities do not bracket any virtual

utility by a competitor, or more precisely thatn

j

���
ki < 
j < 
k+1i ; 
j 2 �j ; j 6= i
o
= ;: (6)

By Corollary 1, the virtual valuations 
ki and 

k+1
i would then win against the same type

realizations of the competitors and in turn they would receive the object with the same

probability: Qki = Qk+1i . But then we can use precisely the argument of Lemma 2 to

conclude that a coarser information structure would increase the revenues of the auctioneer.

Lemma 3 (Adjacent and Asymmetric Virtual Utilities)

1. For 8i;8k < K :
n

j

���
ki < 
j < 
k+1i ; 
j 2 �j ; j 6= i
o
6= ;:

2. 9i; j such that �i 6= �j.

A direct consequence of the alternating structure of the virtual utilities is the asymmetry

of the virtual utilities indicated by the second part of Lemma 3. With two bidders, the same

argument leads immediately to a stronger result, namely that �i \�j = ;. With more than

two bidders, our argument does not preclude the possibility that some bidders may have

virtual utilities in common.

The asymmetry of the virtual utilities implies asymmetry of the information structure

even if the underlying distributions over valuations are symmetric. For legal or fairness

reasons, symmetric treatment of bidders may be a requirement in the auction. It is worth

emphasizing that if we impose a symmetry requirement on the information structure, then
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the basic properties of the optimal symmetric information structure will qualitatively remain

identical to the ones without the symmetry requirement.4

4.3 Monotone Partitions

A partitional information structure can be represented without recourse to a joint distri-

bution over the space of valuations and signals by a partition of the original space Vi. A

partition is a collection of subsets, with slight abuse of notation, denoted by Si =
�
Ski
	

such that for all k; k0 we have Sk
0
i \ Ski = ; and

K[
k=1

Ski = Vi.

The partition is monotone if for any vi; v0i 2 Ski , �vi + (1� �) v0i 2 Ski for all � 2 [0; 1].

Theorem 1 (Monotone Partition)

1. For every �xed K <1, an optimal information structure exists.

2. The optimal information structure is a monotone partition.

The result that the optimal information structure is a partition as well as the monotonic-

ity of the partition itself stem from the same elementary argument based on a necessary

condition of optimality. The argument is local in the sense that we hold the information

structures and conditional winning probabilities of other bidders constant and look only

at the revenues to the auctioneer from bidder i. The focus on the single agent i allows us

to illustrate the result with a simple diagram, which represents the incentive compatible

revenues from bidder i: The diagram depicts the valuations wi of agent i on the x-axis and

the interim probabilities Qi on the y-axis. In the diagram every rectangle of surface wkiQ
k
i

represents the gross social surplus generated by type wki with the winning probability Q
k
i

determined by the optimal auction. We showed in Section 4.1 that the interim incentive

compatible transfers satisfy the relationship:

T k+1i = T ki +
�
Qk+1i �Qki

�
wk+1i . (7)

4The earlier example illustrates the similarity of the optimal information structure with and without the

symmetry requirement.
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The horizontal rectangles in Figure 2a represent the share of marginal surplus from the

next higher type which goes to the auctioneer and the vertical rectangle represents the

share which goes to agent i. Notably absent from the diagram are the probabilities gi of

agent i and indeed the interim transfer payments Ti are independent of gi. >From the

diagram, we can infer several general properties of the optimal auction. First, the social

surplus is increasing in wki and this property is shared by the indirect utility of the auctioneer

and the agent. Second, while there is genuine sharing of the surplus, the sharing rule is not

linear and depends on the winning probabilities determined by the optimal auction.

Insert Figure 2 Here

The optimality of a given information structure requires that the auctioneer does not

wish to introduce further randomization into the information structure. A speci�c and

local version of such a randomization can be represented as a mass preserving mixture

between two adjacent expected valuations, wki and w
k+1
i , which is given by the following

modi�cation:

wki (") =

�
gki � "

�
wki + "w

k+1
i

gki
; (8)

and

wk+1i (") =

�
gk+1i � "

�
wk+1i + "wki

gk+1i

, (9)

for some " satisfying, 0 < " � gki ; g
k+1
i . Clearly, we can �nd a signal structure and joint

distribution to generate the expected valuations for every ". The e¤ect of a positive " is

depicted in Figure 2b. It increases wki and the marginal revenue from type k, but decreases

wk+1i and likewise the marginal revenue from type k + 1. By mixing, we understand here

that we associate (via the signals) low true valuations with high expected valuations, and

conversely high true valuations with low expected valuations.

Suppose now that the optimal information structure (and auction) requires " = 0. In

consequence an increase in " would decrease the revenues. With the local changes as sug-

gested by (8) and (9) the marginal revenue as a function of " is linear as can be immediately

inferred from the incentive compatible revenue representation:
KX
k=1

gki

"
kX
l=1

�
Qli �Ql�1i

�
wli

#
,
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as we keep the conditional probabilities Qki and type probabilities g
k
i constant. The ar-

gument for a monotone partition is now based on the following idea. Suppose an optimal

information structure is not a monotone partition. Then by the �rst-order conditions fur-

ther mixing would decrease the revenues. But the same conditions also allow us to infer the

converse. Further de-mixing would increase the revenues. As every information structure

which is not a monotone partition presents the possibility of some de-mixing between at

least two adjacent types, this demonstrates the optimality of a monotone partition.

5 Optimal Information Structure without Finite Signals

So far we have obtained a number of qualitative results for optimal information structures

when the signal space of each agent contained at most K elements. In this section we

establish that the optimal information structure is indeed �nite and monotone partition in

the class of all measurable information structures as de�ned in Section 2.

Consider any incentive compatible mechanism (q; t) and the distribution G over expected

valuations induced by any arbitrary information structure. Types in the distribution G can

have zero density, positive density, or positive probability.

Proposition 1 (Approximation)

Let G be a distribution generated by an arbitrary information structure S and let (q; t) be

an incentive compatible mechanism. For any " > 0 there exists a distribution function bG
generated by a �nite information structure bS and an incentive compatible mechanism

�bq;bt	
such that

R
� bG; bq� � R (G; q)� "

Proposition 1 establishes that the set of revenues generated by any incentive compatible

mechanism with a �nite information structure is dense in the set of revenues generated by in-

centive compatible mechanism with an arbitrary information structure. Hence the incentive

compatible revenues generated by an arbitrary information structure can be approximated

arbitrarily well by a �nite information structure.5

5We would like to thank an anonymous referee for suggesting this continuity result.
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A similar local variation allows us to establish an important property of the condi-

tional winning probabilities Qi. This property will play a central role in the argument to

demonstrate that a �nite information structure is optimal.

Lemma 4 (Increasing Di¤erences)

The conditional winning probabilities Qki satisfy strictly increasing di¤erences.

Lemma 4 establishes that the conditional winning probabilities of any bidder have the

property of strictly increasing di¤erences, or that

Qk+1i �Qki > Qki �Qk�1i .

Henceforth we shall refer to this property for simplicity as the convexity of the conditional

winning probabilities even though they are de�ned over a �nite set of indices.6 The proof of

the above Lemma relies again on a local argument as we examine the revenue from bidder

i only.

Theorem 2 (Existence)

An optimal information structure in the class of all Borel measurable information structures

exists and it is a �nite monotone partition.

The proof of Theorem 2 proceeds in three steps: (1) an optimal information structure

and associated revenues exist in the class of �nite information structures; (2) the revenues

from the optimal �nite mechanism are maximal in the class of all discrete (possibly non-

�nite) information structures; and (3) the �nite information structure revenues are also

maximal in the class of all measurable information structures. Theorem 2 builds imme-

diately on our earlier results: By Proposition 1, we can restrict attention to sequences of

mechanisms with �nite information structures instead of arbitrary information structures.

By Theorem 1, for every �nite K a solution exists. If we consider any sequence, then by

6We chose to �rst establish properties of the virtual utilities in Lemma 2 and 3, and then use these

properties to derive the partition property of the information structure and increasing di¤erences of the

winning probabilities. Alternatively, we could start by establishing the increasing di¤erence property and

then proceed to virtual utilities and the partition property.
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Lemma 4 any element of the sequence must have convex conditional winning probabilities

for every bidder. It follows that the limiting values have to be convex as well. Consider

now the limit of the conditional winning probability of the type of agent i with the lowest

strictly positive virtual utility for every �nite K. If the limit Q
1
i is positive, then by Lemma

4 we can conclude that at most 1=Q
1
i signals can have a positive probability. In particular,

the convexity of the conditional winning probability allows us to assert that the conditional

winning probabilities of agent i have to satisfy for all i and k

Q
k
i �Q

k�1
i � Q1i ,

and thus the optimal information structure has to be �nite. If the limit Q
1
i is zero, then

the argument is a little more subtle. Essentially, we use the fact of Q
1
i = 0 to show that

there exists at least one agent j whose lowest type has strictly positive probability g1j and

strictly positive probability of winning Q
1
j . This in turn allows us to show that at most a

�nite number of types of agent i can win and win in particular against w1j . We are thus

lead to conclude that the optimal information structure exists, is �nite, and by Theorem 1

it has to be a monotone partition.

The joint optimality of discrete information structures and convex winning probabilities

is now illustrated using the following informal reasoning, based on well-known results for

continuous rather than discrete types. Consider again the interim problem with a single

bidder i. The social surplus from type vi is given by viQi (vi). We know that the marginal

indirect utility of type vi in an incentive compatible mechanism is Qi (vi). The residual

marginal gains viQ0i (vi) consequently belong to the auctioneer. It further follows that the

indirect utility of the agent is convex as Qi (vi) is increasing and that the social surplus

as well as the auctioneer�s surplus is convex if Qi (vi) is not too concave. The auctioneer

receives from agent i the expected revenue given by:Z 1

0

�Z vi

0
riQ

0
i (ri) dri

�
dFi (vi) : (10)

The single bidder scenario suppresses the decision as to how large Qi (vi) should be. This

will be naturally determined by the opportunity cost stemming from allocating the object

to the competing bidders. We now pursue the following thought experiment. Suppose
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the auctioneer had decided to give a small interval of types, say [vi; vi] a �xed aggregate

probability, say bQ, with Z vi

vi

Qi (vi) dFi (vi) = bQ; (11)

and all he had to decide is how to allocate this total probability inside the interval. If

further he were only concerned with maximizing the surplus that he can extract from all

higher types, then he should pursue the following objective function:

max
Qi(vi)

Z vi

vi

viQ
0
i (vi) dFi (vi) ;

subject to the constraint (11), to maximize the integral of marginal gains. As the marginal

increment in Qi (vi) is weighed by vi, it is then easily seen that the auctioneer would indeed

like to choose a very convex function for the winning probabilities as the marginal increases

Q0i (vi) would then receive the largest possible weight. However this exclusive concern with

the marginal revenue is mitigated in the �standard�optimal auction by the concern for the

inframarginal revenue as represented by the complete revenue function (10). However, by

controlling the information structure we can bundle types together to (locally) eliminate

the inframarginal concern and pursue only the maximization of the marginal revenues.

6 Discussion

This paper reconsidered the design of the optimal auction by making the information struc-

ture an integral part of the design problem. Notable features of the optimal information

structure were the partitional character, the �niteness of the partition and therefore of pri-

vate types as well, and the asymmetry of the information structures. The analysis reveals

an important trade-o¤ between the minimization of information rent and the maximization

of allocational e¢ ciency. The optimal information structure balances these two con�icting

objectives.

We would like to emphasize that the current results may not inform us directly about

auction design in practice.7 While we expect the trade-o¤ between information rent and

7There are many auctions in which the precision of the information available to the buyers is at least

partially controlled by the seller. In US o¤shore wildcat oil tract auctions, the bidding �rms are permitted to
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allocational e¢ ciency to remain important, the current analysis makes a number of assump-

tions which would have to be weakened to provide a better �t with empirical observations.

We brie�y discuss the restrictions imposed by the three key assumptions of the model: (i)

the seller has complete control over the precision of each bidder�s signal, (ii) each bidder is

initially uninformed and (iii) the seller cannot price the information directly (through ex

ante payments).

In the model, the seller is free to choose from the set of all information structures, and

in particular, the seller can choose to leave the bidder uninformed about her true valuation.

However, in practice the seller may be severely constrained in his choice of the information

structure. For example, the information structure might be restricted to a noisy sampling

process as in the o¤shore oil tract auctions, where the choice of informativeness is determined

by the number of samples. In addition, each bidder may have some private information and

thus leaving the bidder uninformed may not be a feasible information structure.

In our analysis, the seller o¤ers allocations and prices only after each bidder has re-

ceived her private signal. In particular, the seller cannot price the information structure

directly. This assumption might be justi�ed in light of the observable lack of direct pric-

ing of information in auctions, as in the auctions mentioned in the above footnote. Yet,

from a theoretical point of view there might be a tension between the ability to control the

information structure and an inability to price the information structure. In fact, Eso &

Szentes (2007) and Gershkov (2002) consider a similar setting to the one presented here,

but allow the seller to price the information. Gershkov (2002) shows that the optimal so-

lution then consists of participation fees equal to the expected bidders�rent followed by a

gather information about the lease value and their drilling costs prior to the sale using seismic information,

but no on-site drilling is allowed. In contrast, in US o¤shore drainage oil leases, some bidders are intentionally

given access to superior information by allowing them prior drilling in the area, see Porter (1995). Similarly,

Genesove (1993) reports that in wholesale used car auctions, di¤erent auctioneers adopt strikingly di¤erent

rules as to how potential bidders may inspect a used car before they place a bid on it. Auctions in which

the seller intentionally limits the amount of information are sometimes referred to as �blind auctions�

and documented examples are the licensing procedure for motion pictures, see Kenney & Klein (1983)

and Blumenthal (1988), and the competition of brokers for the trade of a large portfolio on behalf of an

institutional asset manager, see Kavajecz & Keim (2005) and Foucault & Lovo (2003).
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standard Vickrey auction. In Eso & Szentes (2007) each bidder receives an initial private

signal and possibly a second signal that can be released by the seller later on. They show

that the seller can extract the rent associated with the signal released by the seller, but

cannot extract the rent associated with the initial private signal. The empirical absence of

a price for information in auctions suggests that additional factors might be at work. In a

richer environment, the optimal information structure will then have to incorporate these

factors. The basic trade-o¤ analyzed here would then be augmented, but also rendered

more complex by the nature of the constraints.
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7 Appendix

The appendix contains the proofs to all lemmata, propositions and theorems in the text.

Proof of Lemma 1. The proof consists of two arguments: First, we establish a bound

on the utility di¤erence of two adjacent types, wk�1i and wki as a function of the expected

probability of winning Qk�1i and Qki . Second, we use the bound repeatedly to obtain an

expression for the expected transfer payment and thus revenue from bidder i. Along the

way we shall show that the expected probability of winning Qi (�) is non-decreasing.

Incentive compatibility requires that the allocation fQi (wi) ; Ti (wi)g satis�es the interim

incentive and participation constraints. The incentive constraint for a bidder wki mimicking

a bidder with expected valuation wk�1i yields:

Ui

�
wki

�
= wkiQ

k
i � T ki � wkiQk�1i � T k�1i : (12)

Similarly, for bidder wk�1i who considers mimicking a bidder with expected valuation wki

yields:

Ui

�
wk�1i

�
= wk�1i Qk�1i � T k�1i � wk�1i Qki � T ki : (13)

Now, subtracting (13) from (12) yields the following set of inequalities:�
wki � wk�1i

�
Qki � Ui

�
wki

�
� Ui

�
wk�1i

�
�
�
wki � wk�1i

�
Qk�1i ; (14)

which gives bounds on the utility di¤erence of two adjacent types, wk�1i and wki , as a

function of the expected probability of winning Qk�1i and Qki . We observe that the outer

inequality in (14) requires that:�
wki � wk�1i

��
Qki �Qk�1i

�
� 0;

which implies that Qi (�) is non-decreasing. Observe also that the interim participation

constraint implies that Ui
�
w1i
�
� 0.

Next, we repeatedly apply the inequality in (14) to obtain an expression for the expected

transfer payment and ultimately the revenue expression (2). An indeterminacy arises as the

utility gain based on mimicking the adjacent lower type can be weighed with the left or the
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right-hand side probability, or any number in between. Accounting for this indeterminacy,

the expression for the equilibrium utility equals:

Ui

�
wki

�
= Ui

�
w1i
�
+

kX
l=2

�
wli � wl�1i

� eQki ,
where eQl�1i 2

h
Ql�1i ; Qli

i
accounts for the indeterminacy. By de�nition, T ki = wkiQ

k
i �

Ui
�
wki
�
, and the expression for the expected transfer payment is given by:

Ti

�
wki

�
= wkiQ

k
i � Ui

�
w1i
�
�

kX
l=2

�
wli � wl�1i

� eQl�1i ,

which takes again the indeterminacy into account. The seller�s revenues are obtained by

the equivalent of integration by parts for the discrete probabilities. Doing so, leads to the

formula:

Ri (Gi; Qi) =

KX
k=1

"
wki �

�
wk+1i � wki

� 1�Gki
gki

eQki
Qki

#
Qki g

k
i � Ui

�
w1i
�
.�

Proof of Corollary 1. The characterization follows immediately from pointwise optimiza-

tion of the objective function (5) for any realization of values w =
�
wk11 ; :::; w

kI
I

�
.�

Proof of Corollary 2. Suppose to the contrary (and by Lemma 1) that Qki < Q
k+1
i . Then

there must exist w�i such that qi
�
wki ; w�i

�
< qi

�
wk+1i ; w�i

�
. The incentive compatibility

conditions of all agents except i, and in particular their conditional winning probabilities

remain constant under qi (�) and a modi�ed probability assignment bqi (�) as long as
gki qi

�
wki ; w�i

�
+ gk+1i qi

�
wk+1i ; w�i

�
= gki bqi �wki ; w�i�+ gk+1i bqi �wk+1i ; w�i

�
: (15)

By the hypothesis of 
ki > 
k+1i , any q̂i (�) such that (15) is maintained and displays

qi
�
wki ; w�i

�
< bqi �wki ; w�i� must strictly increase the revenues of the auctioneer, which

delivers the contradiction.�

Proof of Lemma 2. Suppose to the contrary and hence that there exists 
ki and 

k+1
i such

that 
ki � 
k+1i . Suppose initially that indeed 
ki > 

k+1
i . Then by Corollary 2, it follows
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that Qki = Q
k+1
i . In contrast, consider the revenues from agent i if the original information

structure were modi�ed by sending a single signal bsi whenever the original information
structure emitted the signal ski or s

k+1
i . The so modi�ed information structure e¤ectively

joins the types wki and w
k+1
i into a single type, denoted by bwi. The probability of the newly

created type is given by bgi = gki + gk+1i ;

and its conditional expected value is:

bwi = wki g
k
i + w

k+1
i gk+1i

gki + g
k+1
i

:

The di¤erence in the revenue between the original and modi�ed information structure is

given, after some initial cancellations, by

Ri

� bGi; Qi��Ri (Gi; Qi) = gki h� bQi �Qk�1i

� bwi � �Qki �Qk�1i

�
wki

i
+gk+1i

h� bQi �Qk�1i

� bwi � �Qki �Qk�1i

�
wki �

�
Qk+1i �Qki

�
wk+1i

i
+

KX
l=k+2

gli

8<:
h� bQi �Qk�1i

� bwi + �Qk+2i � bQi�wk+2i

i
�
h�
Qki �Qk�1i

�
wki +

�
Qk+1i �Qki

�
wk+1i +

�
Qk+2i �Qk+1i

�
wk+2i

i
9=; :

The combination of wki and w
k+1
i a¤ects only the revenue from all types starting at k. By

construction, the conditional winning probability of the new type satis�es bQi = Qki = Qk+1i ,

and thus the di¤erence simpli�es to

Ri

� bGi; Qi��Ri (Gi; Qi) = gki �Qki �Qk�1i

�� bwi � wki �
+gk+1i

�
Qk+1i �Qk�1i

�� bwi � wki �+ KX
l=k+2

gli

n� bQi �Qk�1i

�� bwi � wki �o ;
but by hypothesis, wk+1i > wki , and hence bwi�wki > 0, and thus each of the three terms are
positive, yielding the desired result. Finally, in the case that 
ki = 


k+1
i , there are several

optimal solution for Qki and Q
k+1
i , but since Qki = Q

k+1
i is always guaranteed to be one of

them, the same argument goes through for the case of 
ki = 

k+1
i .�

Proof of Lemma 3. (1.) Suppose to the contrary. Then there exist 
ki such thatn

j

���
ki < 
j < 
k+1i ; j 6= i
o
= ;.
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Observe next that if two adjacent virtual utilities belong to bidder i then the probability

of receiving the good has to be identical on both intervals, Qki = Qk+1i by Lemma 2 and

Corollary 1. But by the same argument as Lemma 2, we may then join the mass points wki

and wk+1i and the expected revenues for the auctioneer will strictly increase, a contradiction.

(2.) Suppose to the contrary and thus �i = �j for all i; j. Then there exists an optimal

auction such that for some i and some k, Qki = Q
k+1
i . We can now appeal to the same argu-

ment as in (1.) to conclude that the revenues of the auctioneers can be strictly increased by

joining the mass points wki and w
k+1
i , which destroys the symmetry in the virtual utilities.�

Proof of Theorem 1. We �rst establish that there is always a monotone partition which

achieves strictly higher revenues than any other �nite information structure. We then argue

that a optimal monotone partition exists.

(2.) A necessary condition for an optimal information structure is that given the type

probabilities gki and the winning probabilities Q
k
i , the auctioneer does not wish to introduce

further randomization into the information structure. A local version of such a randomiza-

tion is a mass preserving mixture between wki and w
k+1
i . If wki and w

k+1
i are candidate types,

then a local randomization between these two types is given by the following modi�cation:

wki (") ,
�
gki � "

�
wki + "w

k+1
i

gki
; (16)

and

wk+1i (") ,

�
gk+1i � "

�
wk+1i + "wki

gk+1i

, (17)

for some " satisfying, 0 < " � gki ; gk+1i . We denote the revenue resulting from the modi�ca-

tion as a function of " by Ri ("jGi; Qi) for given Gki and Qki . A necessary condition for the

optimality of the information structure is

R0i (0jGi; Qi) � 0. (18)

The function Ri ("jGi; Qi) is linear in " and the derivative R0i ("jGi; Qi) can be written as:

R0i ("jGi; Qi) = (19)�
wk+1i � wki

� �Qki �Qk�1i

�
gk+1i

�
1�Gk�1i

�
�
�
Qk+1i �Qki

�
gki
�
1�Gki

�
gki g

k+1
i

� 0:
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By hypothesis,
�
wk+1i � wki

�
> 0 and gki g

k+1
i > 0, and it follows that:

R0i ("jGi; Qi) � 0 ,

�
Qki �Qk�1i

�
�
Qk+1i �Qki

� � gki
�
1�Gki

�
gk+1i

�
1�Gk�1i

� . (20)

Next we argue that in fact the necessary condition for optimality has to be

R
0
i ("jGi; Qi) < 0 ,

�
Qki �Qk�1i

�
�
Qk+1i �Qki

� < gki
�
1�Gki

�
gk+1i

�
1�Gk�1i

� . (21)

The argument is by contradiction and thus suppose that R0i (") = 0 over the entire range

of ". An immediate implication is that the auctioneer would then be indi¤erent between

facing types wki and w
k+1
i and all convex combinations represented by (16) and (17). But

consider the virtual utilities of these two types, which are given by:


ki (") = w
k
i (")�

�
wk+1i (")� wki (")

� 1�Gki
gki

; (22)

and


k+1i (") = wk+1i (")�
�
wk+2i � wk+1i (")

� 1�Gk+1i

gk+1i

. (23)

As " increases wki (") approaches w
k+1
i (") and in consequence, eventually 
k+1i (") < 
ki (").

But by Lemma 2, every information structure with non-monotone virtual utilities is strictly

dominated by one with monotone increasing virtual utilities, and hence we have the con-

tradiction. It follows that (21) is a necessary condition for optimality. We argue now that

every information structure which is not a monotone partition necessarily fails to satisfy

condition (21). Suppose therefore that at least one agent i has an information structure

which is not a monotone partition. It follows that there must be two adjacent expected

valuations wki and w
k+1
i , where we recall that:

wki =

R 1
0 vidFi

�
vi
��ski �R 1

0 dFi
�
vi
��ski � ;

and an x 2 (0; 1) such that lower and upper segment of each conditional distribution has

strictly positive probability, or:Z x

0
dFi

�
vi

���ski � ;Z 1

x
dFi

�
vi

���ski � ;Z x

0
dFi

�
vi

���sk+1i

�
;

Z 1

x
dFi

�
vi

���sk+1i

�
> 0.
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It follows that R 1
x vidFi

�
vi
��ski �R 1

x dFi
�
vi
��ski � >

R x
0 vidFi

�
vi

���sk+1i

�
R x
0 dFi

�
vi

���sk+1i

� : (24)

We can represent the expected value wki and w
k+1
i as a bundling of the lower and upper

segment:

wki =
wki g

k
i
+ wki g

k
i

gk
i
+ gki

; wk+1i =
wk+1i gk+1

i
+ wk+1i gk+1i

gk+1
i

+ gk+1i

;

with the obvious identi�cation:

wki =

R x
0 vidFi

�
vi

���sk+1i

�
R x
0 dFi

�
vi

���sk+1i

� ; gk
i
=

Z x

0
dFi

�
vi

���sk+1i

�
;

and similar for the other components. We can restate (24) as wki > w
k+1
i even though by

hypothesis wki < w
k+1
i . It is this contrast which allows us to come to the conclusion that

the optimal information structure must be a monotone partition. For if we were to consider

a local modi�cation with the segments wki and w
k+1
i , we would get necessary �rst order

conditions of the form

�
wk+1i � wki

� �Qki �Qk�1i

�
gk+1i

�
1�Gk�1i

�
�
�
Qk+1i �Qki

�
gki
�
1�Gki

�
gki g

k+1
i

< 0 (25)

and in contrast a mixing with wki and w
k+1
i leads to a �rst order condition of the form

�
wk+1i � wki

� �Qki �Qk�1i

�
gk+1i

�
1�Gk�1i

�
�
�
Qk+1i �Qki

�
gki
�
1�Gki

�
gki g

k+1
i

< 0; (26)

but obviously (25) and (26) establish the desired contradiction.

(1.) From the previous argument, it follows that if an optimal information structure

exists, then it must be a monotone partition. An element P ki of a monotone partition Pi
is an interval P ki = [zk�1i ; zki ) and a point z

k
i is called a boundary point of S

k
i and S

k+1
i .

We denote by zi the vector of all boundary points between any two partition elements of

bidder i. For every bidder the set of feasible boundary points zi = fz1i ; : : : ; zKi g is the K

dimensional cone de�ned by the inequalities 0 � z1i � : : : � zKi � 1. The space of feasible

boundary points is compact. The expected valuation wki is continuous in the location of

the boundary points in the partition. Hence, the virtual utility 
ki and, thus, the objective
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function of the auctioneer are continuous in the location of each boundary point in the

partition. By Weierstrass�theorem an optimal partition is guaranteed to exist.�

Proof of Lemma 4. A di¤erent set of necessary conditions for an optimal information

structure is that the auctioneer does not wish to modify the type probabilities gki of agent

i without changing the aggregate winning probabilities of all the other agents. Given a

candidate information structure Gi and expected valuations
�
wki
	K
k=1

one such local change

would result from setting

gki (") = g
k
i + " and g

k+1
i (") = gk+1i � ",

for 0 < " � gk+1i . It is su¢ cient to consider a change in the expected value of wki through

wki (") =
gki w

k
i + "w

k+1
i

gki + "
;

and keep wk+1i unchanged. For this modi�cation to maintain the winning probabilities of

all other agents, it has to be that the aggregate expected probability of winning of agent i

remains unchanged for all ", or

gki (")Q
k
i (") + g

k+1
i (")Qk+1i = gki Q

k
i + g

k+1
i Qk+1i ,

where we choose to maintain Qk+1i (") = Qk+1i for all ". As in the earlier argument of

Theorem 1, the marginal revenue with respect to changes in " have to be less than or equal

to zero:

R0i ("jGi; Qi) = gki
�
�gki

��
Qk+1i �Qki

�
�
�
Qki �Qk�1i

��
+
�
Qk+1i �Qk�1i

�
"
��
wk+1i � wki

� 1�Gk�1i�
gki + "

�3 ;
(27)

and evaluated at " = 0, we have

R0i (0jGi; Qi) = �
��
Qk+1i �Qki

�
�
�
Qki �Qk�1i

���
wk+1i � wki

� 1�Gk�1i

gki
� 0: (28)

Finally (27) and (28) jointly imply that
�
Qk+1i �Qki

�
>
�
Qki �Qk�1i

�
for all k.�

Proof of Proposition 1. We construct a sequence of mechanisms with �nite information

structures to establish the desired limiting result. Our construction resembles the well
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known result that any (Riemann) integrable function is the limit of a sequence of step

functions. The proof is complicated by the fact that the mechanism along the sequence has

to remain incentive compatible. Fix the information structure G and the allocation (q; t).

The approximation argument is established by analyzing the associated interim probabilities

and transfers, Qi (wi) and Ti (wi), respectively. To prove the Proposition it is su¢ cient to

show that there is a sequence of discrete information structures fGni (wi)g
1
n=1 and associated

interim incentive and individually rational allocations fQni (wi) ; Tni (wi)g
1
n=1 for all i such

that:

lim
n!1

�Z 1

0
Tni (wi) dG

n
i (wi)

�
=

Z 1

0
Ti (wi) dGi (wi) ;8i; (29)

and

lim
n!1

�Z 1

0
Qni (wi) dG

n
i (wi)

�
�
Z 1

0
Qi (wi) dGi (wi) ;8i: (30)

Condition (29) guarantees that the expected revenues of information structure Gi (wi) can

be approximated arbitrarily close by a discrete information structure. Condition (30) guar-

antees that the expected probability by which agent i receives the object is not larger than

under the original mechanism and hence that the incentives for the remaining agents in

terms of providing the object are not adversely a¤ected by the discrete information struc-

ture and modi�ed allocation rule. Provided conditions (29) and (30) can be satis�ed, it

su¢ ces to give the argument for a particular agent i with independent distributions Fi (vi)

and hence independent information structures Gi (wi).

By the hypothesis of incentive compatibility, Qi (wi) and Ti (wi) are nondecreasing. By

the interim participation constraints, Qi (wi) ; Ti (wi) 2 [0; 1]. In consequence Qi (wi) and

Ti (wi) can have at most a countable number of discontinuities. It also follows from the

interim incentive constraints that Qi (wi) and Ti (wi) must have discontinuities on the same

set of points. De�ne the characteristic function of a set E as

IE (wi) ,

8<: 1, if wi 2 E;

0, if wi =2 E:

Based on the original allocation fQi (wi) ; Ti (wi)g and for every n = 1; 2; 3; :::;1 and

k = 1; 2; ::::; 2n, de�ne

Ek;ni ,
�
wi

����k � 12n
� Ti (wi) <

k

2n

�
. (31)
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By the monotonicity of Ti (wi), the set E
k;n
i is an interval for every k and n. For every n,

the sets Ek;ni generate a monotone partition, denoted by En :

En ,
n
Ek;ni

o2n
k=1

.

We identify the associated boundary points of the partition En in the domain of the valua-

tions, wi 2 [0; 1], by wk;ni , such that:

wk�1;ni � wi < wk;ni , k � 1
2n

� Ti (wi) <
k

2n
. (32)

For every interval Ek;ni , we de�ne the conditional expected valuations wk;ni by:

wk;ni ,
R
Ek;ni

widGi (wi)R
Ek;ni

dGi (wi)
: (33)

Based on the partition En, we de�ne an associated discrete distribution:

Gni (wi) , Gi
�
wk�1;ni

�
, if wk�1;ni � wi < wk;ni . (34)

We de�ne a simple transfer function Tni (wi), based on the partition En, by:

Tni (wi) , Ti
�
wk�1;ni

�
if wk�1;ni � wi < wk;ni .

and a simple probability function Qni (wi) by:

Qni (wi) , Qi
�
wk�1;ni

�
, if wk�1;ni � wi < wk;ni .

The simple functions, Qni (wi) and T
n
i (wi), converge uniformly to Qi (wi) and Ti (wi), re-

spectively (see Theorem 11.20, Rudin (1964)).

By construction of Tni (wi) and Q
n
i (wi) it follows thatZ

Tni (wi) dGi (wi) �
Z
Ti (wi) dGi (wi) ;

as well as Z
Qni (wi) dGi (wi) �

Z
Qi (wi) dGi (wi) ;

for all n. Moreover, by the dominated convergence theorem (see Theorem 1.6.9, Ash (1972))

it then follows that:

lim
n!1

Z
Tni (wi) dGi (wi) =

Z
Ti (wi) dGi (wi) ;
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as well as

lim
n!1

Z
Qni (wi) dGi (wi) =

Z
Qi (wi) dGi (wi) :

From the construction of fQni (wi) ; Tni (wi)g and Gni (wi) we have that for every n,Z
Tni (wi) dGi (wi) =

Z
Tni (wi) dG

n
i (wi) ;

as well as Z
Qni (wi) dGi (wi) =

Z
Qni (wi) dG

n
i (wi) .

The proof is complete if we show that the allocation rule fQni (wi) ; Tni (wi)g is interim

incentive compatible for the discrete information structure Gni (wi) and the set of ex-

pected valuations wk;ni 2
n
w1;ni ; ::::; w2

n;n
i

o
generated by (33). While fQni (wi) ; Tni (wi)g

will not generally be interim incentive compatible, a straightforward modi�cation, denoted

by
n bQni (wi) ; bTni (wi)o will be. Moreover, the allocation policies will be related as follows:

Qni (wi) = bQni (wi) ; Tni (wi) � bTni (wi) ; (35)

thus only strengthening our claim. The construction proceeds inductively. For a given n,

start with k = 1; 2. By construction, either one of the following four cases may occur

Qni

�
w2;ni

�
= Qi

�
w2;ni

�
Qni

�
w2;ni

�
< Qi

�
w2;ni

�
Qni

�
w1;ni

�
= Qi

�
w1;ni

�
(a) (b)

Qni

�
w1;ni

�
< Qi

�
w1;ni

�
(c) (d)

(36)

The local incentive compatibility conditions can be written as

w1;ni

h
Qni

�
w2;ni

�
�Qni

�
w1;ni

�i
�
h
Tni

�
w2;ni

�
� Tni

�
w1;ni

�i
; (37)

and

w2;ni

h
Qni

�
w2;ni

�
�Qni

�
w1;ni

�i
�
h
Tni

�
w2;ni

�
� Tni

�
w1;ni

�i
: (38)

We now discuss the cases (a)�(d) in (36) sequentially. In case (a), the incentive constraints

(37) and (38) are satis�ed by the hypothesis of fQi (wi) ; Ti (wi)g being incentive compatible.

In case (b), it follows that incentive compatibility is satis�ed for w1;ni and w2;ni as it is satis�ed

by construction for w1;ni and w1;ni � w2;ni . In case (c), the incentive condition for w1;ni , or
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inequality (37) might be violated as, by hypothesis, (37) is only valid for w0;ni � w1;ni .

However as w1;ni < w2;ni , we are guaranteed to �nd bTni �w2;ni �
> Tni

�
w2;ni

�
which would

restore the inequality (37) by means of an equality and leave (38) as a strict inequality.

Consider �nally case (d). Again, the incentive compatibility condition for w2;ni has to be

satis�ed as by hypothesis it is satis�ed for w1;ni < w2;ni . It thus follows that only (37)

can be violated and that it can again be restored by raising Tni
�
w2;ni

�
to bTni �w2;ni �

so

that (37) is restored as an equality. Finally if in either (c) or (d), we raised Tni
�
w2;ni

�
tobTni �w2;ni �

, then raise all transfers Tni
�
wk;ni

�
to bTni �wk;ni �

for k > 2 by the same amount,

namely bTni �w2;ni �
� Tni

�
w2;ni

�
. Observe that the participation constraint remains to hold

for all valuations wk;ni even under the higher payments as the lowest type is indi¤erent and

is by construction guaranteed to obtain a nonnegative surplus. Furthermore, the pairwise

incentive compatibility conditions for all types k and k + 1 for k � 2 remains identical

after the uniform raise of the transfers. We can now repeat the modi�cation inductively

for all local incentive conditions k and k + 1, starting with k = 2 and k + 1 = 3. As

the discrete information structure has a �nite number n of elements, the induction is well-

de�ned. Finally by the single crossing property of the payo¤, to verify global incentive

compatibility, it is su¢ cient to verify the local (pairwise adjacent) incentive constraints.

Thus we have shown the existence of an incentive compatible mechanism
n bQni (wi) ; bTni (wi)o

for every discrete information structure Gni (wi), which satis�es the properties (35) and this

completes the proof.�

Proof of Theorem 2. We �rst show that an optimal information structure exists in the

class of all �nite information structures. We then extend the argument to all discrete and

�nally to all Borel measurable information structures. The proof is by contradiction and

relies on the convexity of the conditional winning probabilities.

By Theorem 1, for every �nite K, the optimal information structure is a monotone

partition for every agent i. We recall from Theorem 1 that an element P ki of a monotone

partition Pi is an interval P ki = [zk�1i ; zki ) and a point z
k
i is a boundary point of P

k
i and

P k+1i . We denote by

zKi =
�
z0;Ki ; z1;Ki ; :::; zK;Ki

�
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a vector of boundary points of bidder i with k 2 f0; 1; :::;Kg. Without loss of generality,

we may take the �rst element in the partition
h
z0;Ki ; z1;Ki

i
=
h
0; z1;Ki

i
to be the partition

element with nonpositive virtual utility, or 
1;Ki � 0. Conversely, all remaining elements

have strictly positive virtual utility 
k;Ki > 0 for all k > 1. If it happens that all elements

in the partition have strictly positive virtual utility, then we can simply set z1;Ki = 0.

For every �nite K, we can take zKi to be an element of the in�nite countable product

space [0; 1]1, with the property that zki = 1 for all k > K. The space [0; 1]1 is compact

in the product topology by Tychono¤�s theorem (see Munkres (2000), Theorem 37.3). The

in�nite countable product space is metrizable in the product topology (see Munkres (2000),

Theorem 20.5). The Bolzano-Weierstrass property then states that in every compact metric

space every sequence has a convergent subsequence (see Munkres (2000), Theorem 28.2).

Suppose now by way of contradiction that as K ! 1, there is at least on agent i

who is assigned an ever increasing number of signals, all (but one) of which have a strictly

positive conditional expected probability. Consider the limiting information structure as

K !1 for this agent i. By the Bolzano-Weierstrass property this limit is well-de�ned (for

a subsequence if necessary). For notational convenience we denote all the limiting values

with an upper bar and the limiting partition is given zi =
�
z0i ; z

1
i ; :::

�
and correspondingly

the limiting conditional probabilities are given by Qi =
�
Q
1
i ; Q

2
i ; :::

�
. The limiting partition

preserves the monotonicity and the limiting conditional winning probabilities will satisfy

weak convexity.

It will be su¢ cient to look at the limit of the conditional probability of the type of agent

i with the lowest strictly positive virtual utility for every �nite K, or

lim
K!1

Q2;Ki = Q
2
i .

If Q
1
i > 0, then we have an immediate contradiction to the hypothesis of an in�nite

information structure. As the �rst order conditions for every �nite K require that the

conditional winning probabilities have to be strictly convex (see Lemma 4), the limiting

values have to be weakly convex as well. But as Qk;Ki 2 [0; 1] and hence Qki 2 [0; 1] as

well, Q
2
i > 0 implies that only a �nite number, and in fact at most 1=Q

2
i signals can have

a positive probability of winning in the limiting information structure.
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The case of Q
2
i = 0 can be discarded by a similar but slightly more subtle argument.

Suppose then that Q
2
i = 0. This implies that there must be at least one other agent, say j,

who has a positive probability of winning for all his true types in the limiting distribution,

or

lim
K!1

Pr
�
0 � vj � z1;Kj

�
= 0:

For else Q2;Ki could not converge to Q
2
i = 0 even though by construction 
2;Ki > 0 for

all K. Thus for every valuation vj > 0, it must be that as K becomes large, eventually

vj 2
h
zk�1;Kj ; zk;Kj

i
with k > 1 and hence

lim
K!1

z1;Kj = z1j = 0.

We can now show that limiting probability of the second element in the partition of agent

j must be strictly positive and bounded away from zero, or

Pr
�
z1j � vj � z2j

�
=

Z z2j

z1j

fj (vj) dvj > 0.

The proof is by contradiction and we suppose that

lim
K!1

Pr
�
z1;Kj � vj � z2;Kj

�
= 0. (39)

By construction, 
2;Kj > 0 for all K: The virtual utility 
2;Kj is given by


2;Kj = w2;Kj �
�
w3;Kj � w2;Kj

� 1�G2;Kj
g2;Kj

:

The virtual utility 
2;Kj is clearly bounded above by:


2;Kj = w2;Kj �
�
w3;Kj � w2;Kj

� 1�G2;Kj
g2;Kj

< w2;Kj �
�
z3;Kj � w2;Kj

� 1�G2;Kj
g2;Kj

; (40)

as z2;Kj < w3;Kj . By way of contradiction, we can now ask what would happen to the value

of this upper bound if z2;Kj were to converge to 0 as K grows large:

lim
z2;Kj #z1;Kj

(
w2;Kj �

�
z2;Kj � w2;Kj

� 1�G2;Kj
g2;Kj

)
: (41)
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If z2;Kj ! z1;Kj (and by construction z1;Kj ! 0), then we have
�
z2;Kj � w2;Kj

�
! 0 as well as

g2;Kj ! 0. We therefore have to use l�Hopital�s rule to establish the limit behavior of (41).

We can write

�
�
z2;Kj � w2;Kj

� 1

g2;Kj
= �

z2;Kj
R z2;Kj
z1;Kj

fj (vj) dvj �
R z2;Kj
z1;Kj

vjfj (vj) dvj�R z2;Kj
z1;Kj

fj (vj) dvj

�2
and after di¤erentiating denominator and numerator separately with respect to z2;Kj to get

�

R z2;Kj
z1;Kj

fj (vj) dvj + z
2;K
j fj

�
z2;Kj

�
� z2;Kj fj

�
z2;Kj

�
2

�R z2;Kj
z1;Kj

fj (vj) dvj

�
fj

�
z2;Kj

� ;

which after elimination of terms is equal to

� 1

2fj

�
z2;Kj

� .
As z2;Kj ! z1;Kj and also z1;Kj ! 0; we �nd that

lim
z2;Kj #z1;Kj

(
w2;Kj �

�
z2;Kj � w2;Kj

� 1�G2;Kj
g2;Kj

)
= � 1

2fj (0)
< 0.

By assumption, the density fj (vj) is positive everywhere and hence an upper bound for

the limiting virtual utility 
2j would become strictly negative if the hypothesis (39) were

to hold. This delivers the contradiction as by construction 
2j � 0. This shows that for

agent j the limiting probability of �rst partition element with positive virtual utility must

be strictly positive as z2j > 0. We denote the limiting probability by:

g2j = Pr
�
z1j � vj � z2j

�
= Pr

�
0 � vj � z2j

�
> 0.

The limiting conditional winning probability of agent j with his second partition element

is now

Q
2
j =

Y
l 6=j
Pr
�

l = 


1
l

�
> 0.

It follows that in the limiting information structure, all types k > 1 of all agents except j,

and in particular agent i have positive conditional probability of winning of at least:

Q
k
l � g2j

Y
l 6=j
Pr
�

l = 


1
j

�
, for k > 1
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by Corollary 1. But now we can again appeal to the convexity of the conditional winning

probabilities to conclude that at most a �nite number, in fact no more than

1

g2j
Q
l 6=j Pr

�

l = 


1
l

�
of types have a positive probability of winning, which contradicts the hypothesis of an

information structure with unboundedly many winning types. We have now established

that the limiting information structure has a �nite number of elements. In the product

topology, a function is continuous if it is continuous component by component. As we have

only a �nite number of components, by the convergence property of the sequence, it follows

immediately that the revenue at the limit is equal to limit of the revenues. We can then

conclude that the supremum of expected revenues is reached at a �nite K, and that the

supremum can therefore obtained as the maximal solution of a �nite information structure.

Consider next the class of all discrete information structures, �nite and in�nite. The

argument is again by contradiction. Suppose thus that no �nite information structure

obtains the supremum of revenues. By Proposition 1 there must exist a strictly increasing

sequence of Kn, with Kn < Kn+1, such that RKn < RKn+1 and such that limn!1RKn

attains the supremum. But by the �rst part of this theorem, there exists bK <1, such that

for all K > bK, RK < R bK . It then follows that the supremum is reached at a �nite K, and

that the supremum can be therefore obtained as the maximal solution of a �nite information

structure. Finally, the argument for all Borel measurable information structures is identical

to the previous one, simply by extending the argument from all discrete to all measurable

information structures.�
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Figure 2a: Surplus Sharing
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Figure 2b: Mixing of adjacent types by  ε  




