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Agents have to decide whether a polluting plant will be operated or not. Agents'
disutility (cost) from pollution is privately known, but correlated across agents.
Incentive compatible mechanisms are characterized under the assumption that
transfer payments are non-negative. The implementability constraint is similar to
the independence case, except that virtual utilities are diminished by a factor due
to the correlation of agents' types. As correlation vanishes, the implementability
constraint approaches the implementability constraint of the independent types
environment. It is established that the free-riding problem is relaxed as the number
of agents increases. With many agents, ex post efficiency is achievable under ex ante
budget balance. Journal of Economic Literature Classification Numbers: D82, H41.
� 1998 Academic Press

1. INTRODUCTION

It is well known that under the presence of external effects the market
mechanism need not provide an efficient allocation. Ronald Coase suggested
that this inefficiency can be alleviated by letting the involved parties
bargain over the outcome. The ``Coase Theorem'' was that, if bargaining
costs are negligible, side payments can be arranged such that the efficient
outcome prevails. Recently, Rob [8] and Mailath and Postlewaite [5]
proved this conjecture wrong: In large economies with independent private
information there exists no bargaining mechanism that yields the efficient
outcome; in fact, the probability of providing the efficient outcome is zero.
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The reason is the strong bargaining power of individual agents. Only
agents know their true valuations, and any incentive compatible mediation
plan has to provide large enough side payments to low type agents to pre-
vent them from imitating high type agents. In large economies, the addi-
tional incentive costs make it impossible for the mediator (government) to
provide the project when it is socially efficient and balance the budget.

The analysis of Rob, and Mailath and Postlewaite relies on the assump-
tion of independent private information. In many circumstances this does
not seem appropriate. Consider ``chloro-fluoro-carbons'' emitting plants:
Scientists findings that CFC emissions cause the shrinkage of the ozone
layer, with negative effects on humans, are very likely to result in correlated
opinions about these plants among economic agents. In general, if agents
are allowed to communicate in the formation stage of private information,
then private information may be correlated across agents. In this paper we
suggest that mediation plans can make use of the fact that agents private
valuations are correlated. The intuition is as follows: Each agent knows
only his own valuation and infers the other agents' types conditional on his
valuation. The mediator or government on the other hand, after having
observed the announcements of n&1 agents, can infer the distribution of
the valuation of the n th type conditional on the first n&1 valuations, and,
since types are correlated, this is better than any single agent can do.
Hence, in an incentive efficient mechanism the government knows more
about the true distribution of the agents' valuations in the economy than
any individual agent. Furthermore, this informational advantage of the
government results in a weaker bargaining position of any single agent. It
therefore seems plausible that the project will be provided more often than
with independent valuations.

In fact, Myerson [7], Cremer and McLean [2, 3], McAfee and Reny
[6] have shown in the context of auctions that, with correlated types,
incentive constraints are not binding and hence the seller can extract the
full surplus. The incentive efficient mediation plan exploits the differences in
the conditional distributions of different types, by giving each type a lottery
with possibly very large positive and negative payments.

When the correlation of types is small, these payments are very large.
The problem with this mechanism is that it relies heavily on the assump-
tion of risk neutral agents. This might be reasonable for example for oil
companies bidding for drilling rights, but it does not seem appropriate for
small economic agents who want compensation payments for pollution.
One way to proceed is to impose risk aversion on the agents' utility. With
this assumption the transfer payments have to be small in magnitude.
Another way, and this we are going to pursue, is to restrict the allowable
transfer payments, by imposing limited liability. We assume that the trans-
fer payments to the agents have to be non-negative.
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We consider a simple model with discrete types of agents and charac-
terize the set of incentive compatible mechanisms satisfying limited liability
and ex ante budget balance. The implementability constraint looks similar
to the independent type case except that the virtual costs are diminished by
a factor due to the correlation of types. Since the virtual costs are lower,
we can provide the project more often than with independent types. Robert
[9] has shown, in the context of auctions, that, under limited liability, the
optimal mechanism is continuous in the space of information distributions.
Thus, by continuity, the independent types case can be viewed as a limiting
case of the correlated information environment with limited liability. We
establish that this result continues to hold in our setting.

We analyze the situation as the number of agents increases. We find that
in large economies the project can be provided when it is socially efficient.
In particular, the mechanism that maximizes the expected profits of the
firm operating the polluting plant is efficient. Thus, the result of Rob, and
Mailath and Postlewaite is not robust, in the sense that it can not be
viewed as a limiting case of the correlated types environment with limited
liability. The intuition is as follows. The optimal mechanism involves
payments to high type agents only in the state where everybody is a high
type agent. As the number of agents increases, low type agents will assign
zero probability to the event that everybody else is a high type agent.
Therefore, the virtual cost of low type agents decreases in the number of
agents and vanishes in the limit.

Our analysis assumes ex ante budget balance. This has the advantage
that our model is compatible with Rob, and Mailath and Postlewaite, but
it has the disadvantage that the government, especially in the optimal
mechanism, receives a lottery with possibly large positive and negative
payments. It seems plausible that the transfer payments involved in a par-
ticular pollution claim settlement are small relative to the overall govern-
ment budget, but it would still be desirable to reduce the variance in the
government's lottery. An extreme way to do so is to impose ex post budget
balance. We find that in large economies and under ex post budget balance
the probability of provision is also positive.

The paper is organized as follows. Section 2 presents the model. Section
3 analyzes incentive compatible mechanisms under ex ante budget balance.
Section 4 considers incentive compatible mechanisms under ex post budget
balance. Conclusions are given in section 5.

2. MODEL

Let N=[1, 2, ..., n] be the set of economic agents. Let s, t1 , t2 , ..., tn be
distinct random variables with the following properties:
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Assumption (i). The support of s is S=[0, 1], and the support of ti is
Ti=[0, 1, ..., T] for i=1, 2, ..., n.1

Assumption (ii). The random variable s is drawn from a distribution
with continuous density f (s). The random variable ti # Ti is drawn from a
distribution conditional on s with conditional density g(ti | s) continuous in
s. The density for ti is given by

g(ti)=|
S

g(ti | s) } f (s) ds

The joint density of (s, t1 , t2 , ..., tn) is given by

h(s, t1 , t2 , ..., tn)= g(t1 | s) } g(t2 | s) } } } g(tn | s) } f (s)

We assume that conditional on s the random variables (ti)
n
i=1 are inde-

pendent and identical distributed across consumers. Correlation between
agents' types enters through the unobserved state variable s.2

Henceforth, we will denote by (ŝ, t̂1 , t̂2 , ..., t̂n)=(ŝ, t̂ ) the realizations
of the random variables (s, t1 , t2 , ..., tn) and by t we will denote a generic
element of T=_n

i=1 Ti . We will occasionally use the notation (t$i , t&i)=
(t1 , t2 , ..., ti&1 , t$i , ti+1 , ..., tn). With E we denote the expectations operator
with respect to the random variables (t, s) and E[ . , . | ti] denotes the
expectations operator with respect to (t&i , s) conditional on agent i being
of type ti .

3

The problem that we are going to consider is whether to provide a
project or not, for example whether to operate a polluting plant or not. If
the plant is operated, the utility to agent i is given by xi&ti , while if it is
not operated the utility to agent i is given by xi , where xi is the transfer
payment to agent i (i=1, 2, ..., n). The plant yields total revenues R(n), or
in per capita terms r, with R(n)=r } n.

We study direct revelation mechanisms in which the probability of
provision and the transfer payments are functions of the agents' reported

75POLLUTION CLAIM SETTLEMENTS

1 With the term support of a probability measure we mean the following: A point s is said
to be in the support of a probability measure + defined on B (the Borel sets) if and only if
every open neighborhood of s has strictly positive measure. The set of all such points is called
the support of +.

2 This formulation contains the independent types framework as a limiting case. To see this,
consider a sequence of densities fm(s) that converge to the density of a one-point distribution.
In the limit, as m � �, the random variables (ti)

n
i=1 are independently distributed.

3 For any real valued function G defined on T, the expectations operator is given by
E[G]=�t # T G(t) �S h(t, s) ds and the conditional expectations operator is given by

E[G(t$) | ti]= :
t$&i # T&i

G(t$&i , t$i) |
S

h(t$&i , ti , s)
g(ti)

ds.
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valuations. By the revelation principle, the restriction to direct revelation
mechanism is without loss of generality, in the sense that any equilibrium
outcome of some game will also be an equilibrium outcome of some
revelation mechanism in which the agents report their types truthfully.
A mechanism ((xi) n

i=1 , q) consists of a collection of transfer payments
xi ( t̂), xi : T � R, and a probability function of providing the project q(t̂),
q : T � [0, 1]. Since the conditional density g( } | s) is the same for all i,
imposing anonymity on the mechanism ensures that agents with the same
type are treated in the same way. A mechanism (x, q) is anonymous if for
any two agents i, j with reports t̂i= t̂j the transfer payments are equal, that
is xi ( t̂)=xj (t̂).

For an anonymous mechanism to be incentive compatible it must satisfy
the incentive constraint and the voluntary participation constraint. By impos-
ing voluntary participation, we assume that each agent has a veto power
and hence the decision whether to operate the plant has to be unanimous.

E[xi (t&i , ti)&ti } q(t&i , ti) | ti]

�E[xi (t&i , t$i)&ti } q(t&i , t$i) | ti] \ti , t$i # Ti ; (IC)

E[xi (t&i , ti)&ti } q(t&i , ti) | ti] �0 \ti # Ti . (VP)

There are two possible feasibility constraints that we can impose on
mechanisms. The first, ex ante budget balance, assumes that the mediator
has access to risk neutral credit markets. The second, ex post budget
balance, assumes that the mediator does not have access to risk neutral
credit markets.

E[R(n) } q(t)& :
n

i=1

xi (t)]�0; (AB)

q(t) R(n)& :
n

i=1

xi (t)�0 \t # T. (PB)

An anonymous mechanism satisfies limited liability if the transfer
payments are non-negative:

xi (t)�0. (LL)

An anonymous mechanism is ex post efficient if it provides the project
when it is socially optimal:

q(t)={1, if R(n)� :
n

i=1

ti ;
(EF)

0, otherwise.
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In Section 3 we characterize mechanisms satisfying ex ante budget
balance, and in Section 4 we consider ex post budget balance.

3. EX ANTE BUDGET BALANCE

In this section mechanisms are characterized under ex ante budget
balance. We first consider mechanisms with the restriction that the type
space consists of only two elements, Ti=[0, 1]. This simplification of the
type space allows us to derive results in a simple and intuitive way and per-
mits a richer characterization of mechanisms. We first study mechanisms
with finitely many agents and we examine their properties, as the number
of agents increases. Necessary and sufficient conditions for implementable
mechanisms are given in Theorem 1. We then solve for two specific mecha-
nisms: Theorem 2 derives the scheme that maximizes the probability of
provision, and Theorem 3 describes the mechanism that maximizes expected
profits to the firm. Next, we examine the properties of mechanisms as the
number of agents increases. Theorem 4 gives a sufficient condition for
mechanisms to satisfy ex post efficiency in large economies. Corollary 1
establishes that the two specific mechanisms studied, the profit-maximizing
and the probability-maximizing schemes, satisfy this condition. Thus, in
large economies, ex post efficiency can be achieved. We conclude this
section with an example, that characterizes the efficiency boundary. In
Section 3.2 the main result, that, as the number of agents increases,
efficiency is achieved, is established for the general type space.

3.1. Two Types

In this section the type space consists of two elements, Ti # [0, 1]. It is
assumed that the conditional density g(ti | s) can be written as ti=1 with
probability s and ti=0 with probability 1&s. In compact notation this can
be written as,

Assumption (iii). g(ti | s)=sti (1&s)1&ti.

Since the type space consists of only two elements, the number of type
one announcements, k=�n

j=1 t̂j , is a sufficient statistic for the aggregate
information available in the economy. The transfer payments to agent i can
be written as, x(�n

j=1 t̂j , t̂ i), x : [0, 1, ..., n]_[0, 1] � R (i=1, 2, ..., n), and
the probability of providing the project q(�n

j=1 t̂j), q : [0, 1, ..., n] � [0, 1].
To abbreviate notation, we will sometimes write the transfer payment to
type i as xkm , where k=�n

j=1 t̂ j and m= t̂ i . Assumptions (i), (ii), and (iii)
determine the distribution of k=�n

j=1 tj and l=�j{i tj . Let p(k) be the
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ex ante density of k=�n
j=1 tj , and p(l | ti) be the conditional density of

l=�j{i tj given ti .
We next state two lemmas which will be useful in the following. In these

we calculate p(k), the ex ante density that there are k=� ti type ones,
and p(l | ti), the conditional density that there are l=�j{i tj type ones
given ti using the distributional assumptions on the random variables
(s, t1 , t2 , ..., tn).

Lemma 1. The density p(k) and the conditional density p(l | ti= t̂i) are
given by

p(k)=\n
k+ } |

S

sk } (1&s)n&k } f (s) ds

for k=0, 1, ..., n.

p(l | ti= t̂i)=\n&1
l + }

�S sl } (1&s)n&l&1 } g( t̂i | s) } f (s) ds

g( t̂i)

for l=0, 1, ..., n&1.

The proof of Lemma 1 is obvious. The following lemma establishes a
relationship between the ex ante probabilities and the conditional
probabilities which will be used thereafter. The proof of Lemma 2 is given
in the Appendix. In the Lemma g(ti) denotes �S g(ti | s) } f (s) ds.

Lemma 2.

p(l&1 | t̂ i=1)=
l

n } g(1)
} p(l ) for l=1, 2, ..., n.

p(l | t̂ i=0)=
n&l

n } g(0)
} p(l ) for l=0, 1, ..., n&1.

Before proceeding with our analysis, we want to argue that limited
liability constitutes a ``reasonable'' assumption in our model. Myerson,
Cremer and McLean, McAfee and Reny have shown in a series of papers
on optimal auction design with correlated types that, in the absence of
limited liability, incentive constraints are not binding. Their result may be
stated in our setting, as follows.

Remark 1. There exists an anonymous incentive compatible mechanism
satisfying (EF) and (AB).

We give here a particular efficient mechanism and we show in the
Appendix that it satisfies (IC), (VP), and (AB): Let q(k) be given by (EF)
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and let the transfer payments to type zero agents be given by xl0=0 for
all l. Let the transfer payments to type one agents be given by

xn1=
p(0 | 0)

p(0 | 0) } p(n&1 | 1)& p(0 | 1) } p(n&1 | 0)
} :

n

l=1

p(l&1 | 1) } q(l ),

x11=
�n

l=1 p(l&1 | 1) } q(l )
p(0 | 1)

&
p(n&1 | 1)

p(0 | 1)
} xn1 ,

and xl1=0 for all l=2, 3, ..., n&1. This mechanism exploits the differences
in the conditional probability of different types and gives type one agents
a lottery over the possible outcomes with possibly very large positive
(respectively negative) payments. The expected value of this lottery for a
type one agent equals his expected disutility, whereas for a type zero agent
the expected value is zero. Cremer and McLean have shown that one can
always find such transfer schemes as long as there is some correlation
between types. The problem with these mechanisms is that, at the point
where correlation vanishes, the mechanisms will be discontinuous. In the
above mechanism the transfer payments go to infinity; x11 goes to minus
infinity and xn1 to plus infinity. In our setting, with small economic agents
seeking compensation payments, this property of the mechanism is not
very appealing. Specifically, we would like the transfer payments to be
bounded. One way to proceed is to assume risk aversion. With this
assumption the payments cannot be too negative and one might expect
``reasonable'' results. A second approach is to assume limited liability and
to allow only for non-negative transfer payments. This is the approach we
are going to pursue.

Theorem 1 gives necessary and sufficient conditions for incentive com-
patible mechanisms satisfying limited liability and ex ante budget balance.
The following lemma, which will be used in Theorem 1, characterizes the
minimum expenditures needed for a given probability of provision, q, so
that (IC0), (VP1), and (LL) are satisfied (we ignore (IC1) and (VP0)). The
proof of Lemma 3 is given in the Appendix.

Lemma 3. Suppose q(k) is given. The transfer payments (xk0 , xk1) that
minimize expenditures subject to (IC0), (VP1), and (LL) are given by
xk1=0 for k{n, xn1=1�(p(n&1 | 1)) } �n

l=1 p(l&1 | 1) } q(l ), xk0=0 for
k{0, and x00=(p(n&1 | 0))�(p(0 | 0) } p(n&1 | 1)) } �n

l=1 p(l&1 | 1) } q(l ).
Furthermore the minimal expenditures are given by �n

k=0 p(k) } q(k)
(k�n)[1+g(0)�g(1) } (p(n&1 | 0)�(p(n&1 | 1)].

The optimal transfers payments are of the following qualitative form.
Type one agents receive payments only if everybody announces type one.

79POLLUTION CLAIM SETTLEMENTS
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Type zero agents receive payments only if everybody announces type zero.
The intuition is that conditional on their type, type zero agents find it less
likely that a high state occurred than type one agents. Paying ones only in
the state where everybody announces one, makes zeros at least inclined to
mimic ones. As is mentioned in the proof, the optimal payments to type
zero agents can actually be arbitrarily chosen as long as they satisfy (IC0)
with equality.

We are now able to characterize anonymous mechanisms satisfying
(IC),(VP),(LL), and (AB).

Theorem 1. If an anonymous mechanism (x, q) satisfies (IC), (VP),
(LL,) and (AB), then q(k) satisfies

:
n

k=0

p(k) } q(k) {r&
k
n

} _1+
g(0)
g(1)

}
p(n&1 | 0)
p(n&1 | 1)&=�0. (1)

If q(k) is monotone decreasing and satisfies (1), then there exist transfers x
such that the anonymous mechanism (x, q) satisfies (IC), (VP), (LL), and
(AB).

Proof. ``O'' Ex ante budget balance implies that, in per capita terms,
0�� p(k) } [q(k) } r&(n&k)�n } xk0&(k�n) } xk1]. From Lemma 3 we know
that � p(k)[((n&k)�n)xk0+(k�n)xk1] � � p(k) q(k)(k�n)[1+(g(0)�g(1))
( p(n&1 | 0))�( p(n&1 | 1))]. Combining these two inequalities yields (1).

``o'' Given q(k), we want to show that the optimal transfers from
Lemma 3, x*l. solve our problem. Since by construction these transfers
satisfy (VP1), (IC0), (LL), and q(k) satisfies (1), we only have to verify
that these transfers satisfy (IC1) and (VP0). (VP0) is clearly satisfied
since x*l0�0. Using x* we can rewrite (IC1) as 0��n&1

l=0 p(l | 1) }
[( p(0 | 1))�( p(0 | 0)) } ( p(n&1 | 0))�( p(n&1 | 1)) } q(l+1)&q(l )]. Observe
that ( p(0 | 1))�( p(0 | 0)) } ( p(n&1 | 0))�( p(n&1 | 1)) is less than or equal to
one since ( p(n&1 | 0))�( p(n&1 | 1))�( p(l | 0))�( p(l | 1)) \l<n&1 (from
the proof of Lemma 3). Now, since q(k) is monotone decreasing in k, (IC1)
has to be satisfied. (Notice, though, if q(k) is not monotone then (IC1)
need not be satisfied.) Q.E.D.

Condition (1) is necessary for mechanisms to satisfy (IC), (VP), (LL),
and (AB) and it is also sufficient if the probability q(k) is monotone
decreasing in k. The term on the left hand side of (1) is the expected virtual
surplus in per capita terms. This is the expected surplus generated by the
provision rule q after the agents' costs have been increased by the amount
``(k�n)( g(0)�g(1)) } ( p(n & 1 | 0)�p(n & 1 | 1))''. This adjustment yields a
smaller expected surplus and is due to the private nature of agents' valua-
tions. In accordance with the literature, we call this the ``virtual cost'' of
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type zero agents. It is the payment to type zero agents necessary to prevent
them from imitating type one agents. Observe that the term ( p(n&1 | 0)�
p(n&1 | 1)) reflects the amount of correlation among agents' types. If types
are independent, that is in the limit as correlation vanishes, this ratio
equals one. If types are correlated this ratio will be positive (in the interior
of the unit interval) and if types are perfectly correlated this ratio equals
zero. Thus, the virtual cost of type zero agents is decreasing in the amount
of correlation among agents' types.

The question that naturally arises is whether, as correlation gets small,
the virtual cost of type zero agents converges to its respective term in a
model with independent types. Remark 2 gives an affirmative answer. This
is not surprising since Robert [9] has shown, in the context of auctions,
that under (LL) and�or risk aversion the optimal expected gain to the seller
is continuous in the space of information distributions. Remark 2 estab-
lishes that condition (1) is equivalent to the respective condition in a model
with independent types as we approach the independent types case. In that
sense, imposing limited liability creates a consistent extension of the inde-
pendent private information environment to correlated private information.

Remark 2. Consider a sequence of densities fj (s) that converges to the
density of a one point distribution. Specifically, suppose there exists a
number a # (0, 1) such that

lim
j � � |

x

0
fj (s) ds={1 if x�a;

0 otherwise.

Then condition (1) converges to the implementability constraint of the
independent types environment, as j � �.

Proof. Consider the independent type case: Type one agents receive at
least their cost, i.e., xl1=1 } q(l ) for all l, while type zero agents receive
at least their virtual cost, i.e., xl0=1 } q(l+1) for all l, to prevent them
from imitating type one agents. Therefore, expected revenues minus virtual
costs are given by �n

0 p(k) q(k)r&�n&1
0 (n&k)�n p(k) q(k+1)&�n

1 (k�n)
p(k) q(k). We have to show that condition (1) converges to this expression
as the correlation vanishes. In condition (1), the transfers to type one
agents equal (k�n) p(k) q(k) and transfers to type zeros agents equal
(g(0)�g(1))( p(n&1| 0)�p(n&1 | 1)) } (k+1)�n p(k+1)q(k+1). The assumption
on the sequence fj implies that lim j � � p(k)=lim j � �( n

k) �S sk(1&s)n&k

fj (s) ds=( n
k) ak(1&a)n&k. Similarly, in the limit, as j � �, p(k+1)=( n

k+1)
ak+1(1&a)n&k&1 which yields p(k+1)�p(k)=(n&k)�(k+1) a�(1&a). In
addition it follows immediately that p(n&1 | 0)�p(n&1 | 1) � 1, as j � �.
So in the limit, as j � �, the transfer payments to type zero agents are
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equal to (1&a)�a } 1 } (k+1)�n } a�(1&a) } (n&k)�(k+1) } q(k+1). Canceling
yields (n&k)�n p(k) q(k+1), as above. Q.E.D.

Theorem 2 characterizes the maximum probability of provision. The pro-
ject is provided if the number of type one announcements is less than or
equal to K*, where K* is the largest number such that expected revenues
are greater than or equal to virtual costs. The optimal transfer payments
are those characterized in Lemma 3.

Theorem 2. Let M be the class of anonymous mechanisms satisfying
(IC), (VP), (AB), and (LL) and let

(x*, q*) # argmax
(x, q) # M

:
n

k=0

p(k) q(k)

Then �K*&1
k=0 p(k)��n

k=0 p(k) q*(k)��K*
k=0 p(k), where K* is the largest

integer such that

:
K*&1

k=0

p(k) _r&
g(1)+ g(0) }

p(n&1 | 0)
p(n&1 | 1)

g(1)
}
k
n&�0.

Proof. Consider the following problem: max(q(i))n
0

�n
k=0 p(k) } q(k)

subject to (1) and q(k) # [0, 1]. Using a change of variable, i.e.,
{(k) := p(k) q(k), we can rewrite this problem as max{ �n

0 {(k) subject to

:
n

k=0

{(k) _r&
g(1)+ g(0) }

p(n&1 | 0)
p(n&1 | 1)

g(1)
}
k
n&�0 and {(k) # [0, p(k)].

Observe that the term in square brackets is strictly decreasing in k. Hence
there exists a K* such that it is optimal to set {(k)= p(k) for k<K* and
{(k)=0 for k>K*. We express our findings in terms of q(k). Formally, the
following q( } ) solves our problem:

1, if k<K*;

q(k)={# [0, 1], if k=K*;

0, if k>K*.

Observe that q(k) is monotone decreasing in k and satisfies (1). From
Theorem 1 we know that the mechanism satisfies (IC), (VP), (AB), and
(LL). Q.E.D.
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The mechanism in Theorem 2 is a benchmark for what mechanisms can
achieve. Other mechanisms will not perform that well, but are still of inter-
est. In particular, consider the mechanism designed by the firm that
operates the polluting plant. Assume that the firm is risk neutral and its
objective is to maximize expected profits. The following theorem charac-
terizes its optimal mechanism.

Theorem 3. Let M be the class of anonymous mechanisms satisfying
(IC), (VP), (AB), and (LL). If

q(k)={1, if r&
k
n _1+

g(0)
g(1)

p(n&1 | 0)
p(n&1 | 1)&�0;

0, otherwise,

and the transfer payments are the expenditure minimizing transfers given in
Lemma 3 then (x, q) maximizes profit over all mechanisms (x$, q$) # M.

Proof. Per capita profits are given by �n
0 p(k) q(k)[r&(k�n)xk1&

((n&k)�n)xk0]. Lemma 3 determines the expenditure minimizing transfers
for any given q(k). Using these our problem is to maxq � p(k) q(k)
[r&(k�n)(1+(g(0)�g(1))(p(n&1 | 0)�p(n&1 | 1)))]. Since the term in
square brackets is strictly decreasing in k, it is optimal to set q(k)=1
if r&(k�n)[1+(g(0)�g(1))(p(n&1 | 0)�p(n&1 | 1))]�0, and q(k)=0
otherwise. Observe that q(k) is monotone decreasing in k and that per
capita profits are non-negative. Theorem 1 implies that the mechanism
satisfies (IC), (VP), (AB), and (LL). Q.E.D.

The interpretation of the profit maximizing scheme is straightforward:
Operate the polluting plant if and only if the revenues are greater than or
equal to virtual costs. The optimal transfers are the expenditure minimizing
payments given in Lemma 3.

Next it is investigated what happens to the probability of providing the
project as the number of agents increases. Mailath and Postlewaite [5] and
Rob [8] have shown that, in large economies with independent types (in
general type spaces), the probability that the good be provided when it
should goes to zero. We show that this result is not robust in the following
sense: For any amount of correlation between types, the probability that
the good be provided when it should goes to one as the number of agents
goes to infinity. In this sense, the result of Rob and Mailath and Postle-
waite is not a limiting case of a correlated valuations model with limited
liability.

Lemma 4 determines what happens to the term in the implementability
constraint that reflects the virtual cost of type zero agents. The ratio
p(n&1 | 0)�p(n&1 | 1) declines with n and thus, as the number of agents
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increases, the implementability constraint is relaxed and the project will be
provided more often. In the limit, as n � �, the virtual cost of type zero
agents vanishes. The reason is that type zero agents find it more unlikely
than type one agents that everybody else announces to be a high type
agent. In particular, as n increases, the conditional probability that
everybody else is a type one agent goes faster to zero for type zero agents
than it does for type one agents.

Lemma 4. As n � �, p(n&1 | 0)�p(n&1 | 1) � 0.

Proof. Pick = with 0<=<1. Define the real valued function kn(s)=
[s�(1&(=�2))]n. Lemma 1 implies that

p(n&1 | 0)
p(n&1 | 1)

=
\n&1

n&1+
�1

0 (1&s) sn&1 f (s) ds
g(0)

\n&1
n&1+

�1
0 ssn&1 f (s) ds

g(1)

=
�1

0 (1&s) kn&1(s) f (s) ds
�1

0 skn&1(s) f (s) ds
}

g(1)
g(0)

.

The second equality is obtained by canceling and by dividing denominator
and numerator by [1&(=�2)]n&1. Consider the following inequalities
which we will show to be true for all large n:

�1
0 (1&s) kn&1(s) f (s) ds

�1
0 skn&1(s) f (s) ds

}
g(1)
g(0)

=
�1&=

0 (1&s) kn&1(s) f (s) ds+�1
1&= (1&s) kn&1(s) f (s) ds

�1&=
0 skn&1(s) f (s) ds+�1

1&= skn&1(s) f (s)
}

g(1)
g(0)

�
= �1

1&= kn&1(s) f (s) ds+�1
1&= (1&s) kn&1(s) f (s) ds

�1&=
0 skn&1(s) f (s) ds+�1

1&= skn&1(s) f (s)
}

g(1)
g(0)

�
= �1

1&= kn&1(s) f (s) ds+= �1
1&= kn&1(s) f (s) ds

0+(1&=) �1
1&= kn&1(s) f (s) ds

}
g(1)
g(0)

=
2= �1

1&= kn&1(s) f (s) ds
(1&=) �1

1&= kn&1(s) f (s) ds
}

g(1)
g(0)

=
2=

1&=
}

g(1)
g(0)

.
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The first equality is obtained by breaking up the range of integration into
two disjoint subsets. The second line uses the following argument. The
definition of kn(s) implies that for all s # [0, 1&=], kn(s) converges to zero,
as n � �. Since kn is bounded by 1 on [0, 1&=] for all n, the dominated
convergence theorem implies that �1&=

0 kn&1(s) f (s) ds � 0. Since 1&s is less
than 1, this implies that for any #>0 there exist a N such that for n>N,
�1&=

0 (1&s) kn&1(s) f (s) ds<#. Now, observe that for s # [1&(=�2), 1],
kn(s)�1 for all n. This implies that �1

1&= kn&1(s) f (s) ds��1
1&(=�2) 1 } f (s) ds.

By assumption (i), full support of the random variable s, the right hand
side in this inequality is positive. Combining these two statements implies
that for #== �1

1&(=�2) f (s) ds, there exists an N such that for all n�N,
�1&=

0 (1&s) kn&1(s) f (s) ds<= �1
1&(=�2) f (s) ds�= �1

1&= kn&1(s) f (s) ds.
The third inequality holds since the numerator is increased and the

denominator is decreased. To see this observe that 1&s�= for s # [1&=, 1]
and thus the numerator is not decreased. The denominator is decreased,
since s�1&= for s # [1&=, 1] and the other integral term is greater than or
equal to zero. The fourth equality is obtained by rearranging and the final
equality is obtained by canceling.

Since = is arbitrary small we have p(n&1 | 0)�p(n&1 | 1) � 0, as n � �.
Q.E.D.

Assumption (i), which states that the random variable s has support
[0, 1], is the important assumption in the Lemma. If the maximum in the
support of s is smaller than 1, the ratio p(n&1 | 0)�p(n&1 | 1) will still
decline as n increases, but it will not vanish in the limit. A similar argument
as in the proof yields that if the support of s is [0, s*] with s*<1, then as
n goes to infinity, p(n&1 | 0)�p(n&1 | 1) � (1&s*)�s* } g(1)�g(0)>0. So if
s*<1 then p(n&1 | 0)�p(n&1 | 1) does not vanish in the limit. (However,
(1&s*)�s* } g(1)�g(0) is less than 1.)

Theorem 4 gives a sufficient condition for mechanisms in large economies
to be ex post efficient, and Corollary 1 points out that this condition applies
to the mechanisms characterized in Theorems 2 and 3.

Theorem 4. Let (x, q) be an incentive compatible anonymous mechanism.
If the probability, q( . ), satisfies q(k)=1 if r�(k�n)[1+(p(n&1 | 0)�p(n&1 | 1))
(g(0)�g(1))] and q(k)=0 otherwise, then, as n � �, the probability of provi-
sion converges to the probability of provision under the ex post efficient rule.

Proof. Ex post efficiency requires that the project is provided if (k�n)�r
and not provided otherwise. The provision rule in the theorem is given by,
q(k)=1 if (k�n)�r�(1+(p(n&1 | 0)�p(n&1 | 1))(g(0)�g(1))) and q(k)=0
otherwise. From Lemma 4 p(n&1 | 0)�p(n&1 | 1) � 0, as n � �. This
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implies that the provision rule in the theorem converges to the ex post
efficient rule, as n � �. Q.E.D.

Corollary 1. As n � �, the profit maximizing mechanism satisfies
(EF). Furthermore, the probability of provision under the probability maxi-
mizing scheme is larger than (EF).

Lemma 4 offers the key insight to this result. The virtual costs of type
zero agents are declining with the number of agents in the economy and
vanish in the limit as n � �. Economic agents are eventually informa-
tionally small. In large economies, the implementability constraint is
relaxed and approaches the full information setting. With independent
types this reasoning is not valid. The ratio, p(n&1 | 0)�p(n&1 | 1), remains
constant and equal to one for all n. The virtual costs do not vanish as n
increases, and, as Rob and Mailath and Postlewaite have shown, the
implementability constraint is actually worsened and the probability
of provision, when it should be provided under full information, goes to
zero.

Example 1. This example illustrates how many agents are required so
that there exists an ex post efficient mechanism. Suppose s is drawn from
the beta distribution with parameters : and ;. The beta density is given
by f (s)=s:&1(1&s);&1 } 1(:+;)�(1(:) } 1(;)), where 1( } ) is the gamma
function. Note for :=;=1, f (s) is the uniform density on [0, 1]. The
mean of s equals :�(:+;) and the variance equals :;�((:+;)2 (:+;+1)).

FIG. 1. n* varying with _, :=;.
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Using that 1(:+1)=: } 1(:) we find that the ratio p(n&1 | 0)�p(n&1 | 1)
equals :�(:+n&1), and hence condition (1) is given by �K*

0 p(k)[r&(k�n)
(1+:�(:+n&1))]�0. We want to calculate the ex post efficiency bound-
ary for a given r. Formally, given : and ;, we want to find the smallest n*,
such that for all K with K�r } n*, it is true that �K

0 p(k)[r&(k�n)
(1+:�(:+n&1))]�0. To simplify the exercise let us fix the mean of the
prior of the random variable s at 1

2 so that :=;. Figure 1 illustrates the
efficiency boundaries for r=0.5 and r=0.6 respectively. On the horizontal
axis is the standard deviation of s which we denote by _, and on the verti-
cal axis is the minimal number of agents, n*. In the area above the curve
there exist mechanisms that satisfy efficiency.

From Fig. 1 we see that as r increases the efficiency boundary shifts to
the left. Therefore, for a given :, the number of agents n(r) required to
achieve efficiency is decreasing in r.

3.2. General Type Space
In this section, the main result of the Section 3.1 is generalized to finitely

many types. We replace Assumption (iii) in Section 3.1 with the following
assumption:

Assumption (iii$). For all _ # Ti there exists a state, s # S, such that
g(_ | s)=1.

This assumption states, that for every cost type there exists a state where
everybody has that cost. In other words the event that everybody has cost
_ is possible.

Lemma 5 gives the key result used in Theorem 5. It establishes that, as
n increases, the probability of the event that everybody else is of type _
goes faster to zero for a type {{_ than for a type _. The proof of Lemma 5
is similar to the proof of Lemma 4.

Lemma 5. For all _, { # Ti with _{{,

� g({ | s) } g(_ | s)n&1 } f (s) ds
� g(_ | s)n } f (s) ds

� 0, as n � �.

Proof. Pick = arbitrarily small with 0<=<1 and consider any _, { # Ti

with _{{. Let A=[s # S | g(_ | s)�1&=] and define the real valued
function kn(s)=[g(_ | s)�(1&(=�2))]n. Assumption (iii$) implies that the
set A is nonempty. Assumption (i), full support of s, and Assumption (ii),
continuity of g(_ | s) in s, imply that the measure of the set A is positive.
We claim that kn converges uniformly to zero on the complement of the set
A, which we denote by Ac. Indeed for all s # Ac, we have the uniform bound
|kn(s)|�((1&=)�(1&(=�2)))n and (1&=)�(1&(=�2))<1 which proves our
claim.
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We can write

� g({ | s) g(_ | s)n&1 f (s) ds
� g(_ | s)nf (s) ds

=
�Ac g({ | s) kn&1(s) f (s) ds+�A g({ | s) kn&1(s) f (s) ds

�Ac g(_ | s) kn&1(s) f (s) ds+�A g(_ | s) kn&1(s) f (s) ds

by dividing both numerator and denominator by (1&(=�2))n&1 and using
A _ Ac=S.

By the dominated convergence theorem �Ac g({ | s) kn&1(s) f (s) ds � 0, as
n � �, since kn&1 converges to zero on Ac and g({ | s) is bounded by 1. On
the other hand �A kn&1(s) f (s) ds does not converge to zero since the
set [s | g(_ | s)�1&(=�2)] contained in A has positive measure and
kn(s)�1 on this set. Thus there exists an N such that for all n�N,
�Ac g({ | s) kn&1(s) f (s) ds<= �A kn&1(s) f (s) ds.

Observe that by definition of the set A, g({ | s)�= and g(_ | s)�1&= for
all s # A. Using these two statements implies that for all n�N the following
inequality is satisfied:

�Ac g({ | s) kn&1(s) f (s) ds+�A g({ | s) kn&1(s) f (s) ds
�Ac g(_ | s) kn&1(s) f (s) ds+�A g(_ | s) kn&1(s) f (s) ds

�
= �A kn&1(s) f (s) ds+�A =kn&1(s) f (s) ds

0+�A(1&=) kn&1(s) f (s) ds

=
2= �A kn&1(s) f (s) ds

(1&=) �A kn&1(s) f (s) ds

=
2=

1&=
.

The first inequality is satisfied if the numerator increases and the denomi-
nator decreases. The numerator increases, since �Ac g({ | s) kn&1(s) f (s) ds<
= �A kn&1(s) f (s) ds and g({ | s)�= for all s # A. The denominator decreases
since �Ac g(_ | s) kn&1(s) f (s) ds�0 and g(_ | s)�1&= for all s # A. The
second and third equality are obtained by rearranging and canceling. Since
= is arbitrarily small we have � g({ | s) g(_ | s)n&1 f (s) ds�� g(_ | s)n f (s) ds � 0,
as n � �. Q.E.D.

The following theorem is the main result of this section.

Theorem 5. There exists an N such that for all n>N there exist
anonymous mechanisms satisfying (IC), (VP), (LL), and (AB) that provide
the project when it is ex post efficient.
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The theorem states that ex post efficiency is achievable for large n. To
prove the theorem we construct an ex post efficient mechanism and show
that it satisfies (IC), (VP), (LL), and (AB) for all large n.

Proof. We construct a mechanism and show that this mechanism has
the desired properties. Let

q(t)={1 if
1
n

: ti�r;

0 otherwise.

be the ex post efficient provision rule. Consider transfers to agent i of type
_ # Ti such that the agent receives his expected cost of pollution in the
event where everybody announces to be of type _. The transfer payments
can be written as

x� _( t̂ )={_
E[q(t) | _]

E[1[t$ # T | t$j =_, \j{i] (t&i , _) | _]
if t̂=(_, _, ..., _);

0 otherwise;

where 1A(t) denotes the characteristic function of A; that is, 1A(t)=1 if
t # A, and 1A(t)=0 otherwise. For some types, for instance type _=0, the
transfers x� _ equal 0. In addition to types, with limn � � E[x� _(t) | _]=0, the
expected transfers eventually vanish. Since these agents may gain from
announcing a different type, we pay them the maximum between their own
E[x� _(t) | _] and the expected payment obtained by mimicking any other
type. We denote by E[x� {(t&i , {) | _] the expected transfer payment
received by an agent of type _ who announces { and we sometimes
abbreviate this transfer payment by E[x� { | _]. Formally, we split the set
of types Ti into two disjoint subsets T1 and T2, where T2=[_ # Ti |
limn � � E[x� _ | _]=0] and T1=Ti&T2. We define transfers to agents of
type _ # T1 as x_(t)=x� _(t). For agents with type _ # T2 the transfers are
defined as the maximum between their own x� _(t), the expected payment
obtained by mimicking types in Ti and the expected payment received by
any type {$ # T2. Specifically we define the transfers for agents with type
_ # T2 as

x_( t̂)={
max{ # Ti , {$ # T2 E[x� {(t&i , {) | {$]

E[1[t$ # T | t$j=_, \j{i](t&i , _) | _]
if t̂=(_, _, ..., _);

0 otherwise.

In this definition the maximum is also taken over {$ # T2 to ensure that an
agent of type _ # T2 receives at least as much as any type {$ # T2. As will
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be shown below, this is used to rule out that types in the set T2 can
profitably mimick other types in the set T2.

We have to show that there exists an N such that for all n>N this
mechanism satisfies (IC), (VP), (LL), and (AB). First, observe that (LL)
is satisfied, since x_(t)�0. Second, observe that (VP) is satisfied. This
follows from the definition of the transfer payments x_ , since for agents
with type _ # T1 the expected payment x_ exactly equals their expected
loss; that is, E[x_(t) | _]=_E[q(t) | _]. For agents with type _ # T2 the
expected payments are at least as large as the expected loss since
E[x_ | _]�E[x� _ | _]=_E[q | _]. This implies (VP). Next, it is shown
that (IC) is satisfied. Consider first agents of type _ # T2. By defini-
tion their expected payment is at least as large as the maximum payment
they could receive by announcing any other type { # T1. This ensures
that (IC) is satisfied with respect to announcements in the set T1. In
addition they receive at least as much as any other type in the set T2.
Now mimicking a type {$ in the set T2 eventually yields a smaller
expected payoff than reporting truthfully. To see this observe that the
expected payment received by mimicking a type {$ agent is given by
� g({$ | s)n � 1 g(_ | s) f (s) ds�� g({$ | s)n f(s) ds } g({$)�g(_) max{ # Ti , _$ # T2 E[x� { | _$]
�max{ # Ti , _$ # T2 E[x� { | _$] for large n, since from Lemma 5 the first term
on the left hand side of the inequality vanishes as n increases. This implies
that there exists an N such that for all n>N (IC) is satisfied for types in
the set T2. For agents of type _ # T1 the (IC) constraint can be written
as:

E[x_ | _]&_E[q | _]�E[x{(t&i , {) | _]&_ } E[q(t&i , {) | _].

The left hand side of this inequality equals zero, since E[x_ | _]=_E[q | _].
The right hand side is negative for sufficiently large n. To see this, we show
that the first term in the right hand side vanishes and the second term in
the right hand side converges to a negative number as n increases.

Consider first the second term on the right hand side. By Assumption (i),
{�T is finite, and the announcement of an individual agent has eventually
no effect on the probability of provision, as T�n � 0, as n � �. Therefore,
as n increases, the term _ } E[q(t&i , {) | _] approaches _ } E[q(t&i , _) | _],
which converges to a positive number, as n � �, by definition of the set
T1. (The limn � �E[q | _] exists and can be calculated using the law of
large numbers. Let A(_)=[s # S | �_ # Ti

_g(_ | s)�r] be the set of states
in which the expected cost of pollution is smaller than the revenues r. By
the law of large numbers the conditional probability of provision E[q | _]
converges to �A(_) h(s | _) ds, as n � �.)

Consider next the first term on the right hand side. We distinguish two
cases: an announcement { # T1 and an announcement { # T2. We begin
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with an announcement { # T2. In this case the first term on the right hand
side is given by

� g({ | s)n&1 g(_ | s) f (s) ds
� g({ | s)n f (s) ds

}
g({)
g(_)

} max_$ # Ti , {$ # T2 E[x� _$(t&i , _$) | {$].

From Lemma 5, the first term in this expression approaches zero as n
increases. The second term also approaches 0 as n increases. To see this,
observe that for {$=_$ the term equals E[x� {$ | {$] which approaches 0 by
definition of the set T2. For {${_$ the term is given by � g(_$ | s)n&1

g({$ | s) f (s) ds�� g(_$ | s)n f (s) ds } g(_$)�g({$) } _$ } E[q(t&i , _$) | _$] which
approaches 0 by Lemma 5. Consider next the second case. For an announ-
cement { # T1, the first term on the right hand side of the (IC) constraint
is given by � g({ | s)n&1 g(_ | s) f (s) ds�� g({ | s)n f (s) ds } g({)�g(_) } { }
E[q(t&i , {) | {]. Again from Lemma 5 the first part in this expression
approaches zero as n increases. So there exists an N such that for n>N the
right hand side is negative, and the (IC) constraint will be satisfied.

It is left to show (AB). First, consider the expected sum of the transfer
payments to agents announcing a type _ # T1:

E :
i, _ # T1

x_(t)=E :
i, _ # T1

E[x_(t) | _]

=E :
i, _ # T1

E[_ } q(t&i , _) | _]

=E _q(t) :
i, ti # T1

ti& .

The first equality is obtained by the law of iterated expectations. The
second equality follows from the definition of x_(t). The third equality is
obtained by the law of iterated expectations and replacing _ with ti . Next
it is shown that the payment to agents who announce a type _ # T2

approaches 0 as n increases. The expected payment, Ex_(t), is given by

E[max
{ # Ti

max
{$ # T2

E[x� {(t&i , {) | {$]]

=E _max \max
{$ # T2

E[x� {$(t) | {$],

max
{ # Ti , {$ # T2, {${{

� g({$ | s) g({ | s)n&1 f (s) ds
� g({ | s)n f (s) ds

}
g({)
g({$)

} { } E[q(t) | {]+& .

The first expression in the max approaches 0 as n increases, from the
definition of the set T2. The second term in the max approaches 0 as
n increases, from Lemma 5. Thus for $>0 arbitrarily small there exists
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N such for all n>N, Ex_(t)<$ } Eq(t). Using E �i, _ # T1 x_(t)=Eq(t)
�i, ti # T1 ti and for agents with _ # T2, Ex_(t)<$ } Eq(t), the (AB) con-
straint can be written in per capita terms as:

E _q(t) \r&
1
n

:
ti # T1

ti&$+&�0.

This inequality is satisfied since expected revenues minus expected costs are
strictly positive. To see this, observe that by Assumptions (ii) and (iii$), for
any =>0, there exists a neighborhood U(s0) around the state s0 , in which
type 0 agents occur with probability one, such that for all s # U(s0),
g(0 | s)�1&=. Since for ti >0, g(ti | s)�= and ti �T, the law of large
numbers implies that lim n � �(1�n) � ti �=T with probability one for all
s # U(s0). For = sufficiently small, that is, for =�r�(2T), the per capita costs
are less than r�2 and therefore the revenues strictly exceed the costs on
U(s0). Due to Assumption (i), full support of s, this neighborhood U(s0)
has positive probability. Moreover, since the per capita costs are less than
r�2 the efficient probability of provision includes the neighborhood U(s0)
in the limit, as n � �. This implies that there exist #>0 and N such that
for n>N, E[q(t)(r&(1�n) � ti)]�#. Picking $=# yields E[q(t)(r&(1�n)
� ti&$)]�0 and (AB) is eventually satisfied. Q.E.D.

Theorem 5 says that as the number of agents increases the free rider
problem is relaxed. For sufficiently many agents the free rider problem
vanishes completely. Mechanisms can be implemented that provide the
project when it is ex post efficient.

The intuition for this result can be illustrated by two effects. Both effects
arise as the number of agents increases. The first effect is that the announ-
cement of an individual agent has a negligible effect on the probability
of provision. The second effect is that the expected gain of lying, and
announcing a different type, decreases and vanishes in the limit.

To see the second effect, suppose initially that states where everybody is
of a particular type occur with positive probability. Define transfers to
agents of type _ equaling the expected cost of pollution for type _ and paid
only in the event where everybody announces to be of type _. These trans-
fers are bounded since by assumption agents of type _ always assign
positive probability to this event. Now consider an agent of a different
type, say {{_. This agent knows for sure that the state where everybody
is of type _ did not occur. So, with sufficiently many agents, this agent will
assign arbitrary small probability to the event that everybody else is of
type _. Therefore, the expected gain from lying, and mimicking a type _,
vanishes.

This illustration relied on the assumption that some states occur with
positive probability. Without it, the argument is a little more complicated.
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Essentially, the argument in the proof uses the fact that the conditional
probability of the event that all other agents are of type _ goes faster to
zero for a type { than for a type _, as shown in Lemma 5.

Under independent private information the second effect is not present,
since the posterior distribution after observing the own type is the same for
all types. Mechanisms cannot exploit differences in conditional probabilities.
Only the first effect, that eventually the announcement of an individual
agent has a negligible effect on the probability of provision, remains. As the
number of agents increases, the incentive constraint is actually worsened
and it becomes impossible to achieve efficiency as Rob [8] and Mailath and
Postlewaite [5] have shown.

The difference between independent and correlated information is also
reflected in the bargaining position of an individual agent. Under inde-
pendence, observing a type does not help predicting another agent's type.
Private information is complementary. The bargaining position of
individual agents does not get weaker as the number of agents increases.
With correlation, observing a type improves the inference about other
agents' types. The inference gets more accurate as the number of observed
types increases. Private information is substitutable and an increase in
the number of agents yields a weakening of the bargaining position of
individual agents.

The mechanisms studied in this section rely on transfer payments to
agents only if all agents announce to be of the same type. The mediator
receives revenues when the probability of provision is positive and incurs
costs only in a certain state, independent of whether the project is actually
provided or not. In other words, the mediator receives a lottery with
positive and negative payments. This does not pose any problems if the
project at hand is small in size relative to the overall budget of the govern-
ment or firm, and when there is access to a risk neutral credit market. But
still one might be interested in situations where there is no risk free credit
market or might at least want to decrease the variance in the lottery. An
extreme way to do so is to impose ex post budget balance. This not only
removes all the risk from the mediator, but also puts an upper bound on
the feasible transfer payments.

4. EX POST BUDGET BALANCE

Next it is established that even under ex post budget balance for a suf-
ficiently large number of agents the probability of provision is positive. We
restrict the type space to consist of two elements, Ti=[0, 1], and adopt
the same formulation as in Section 3.1. We assume that the conditional
density g(ti | s) can be written as ti=1 with probability s, and ti=0 with
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probability 1&s (assumption (iii) in Section 3.1). Since the type space con-
sists of two elements, the number of type one announcements, k=�n

j=1 t̂ j ,
is a sufficient statistic for the aggregate information available and the trans-
fer payments, and the probability of provision can be redefined to be a
function of k and ti . The distribution of k is determined by assumptions (i),
(ii), and (iii). We denote by p(k) the ex ante density of k=�n

j=1 t̂ j and by
p(l | ti) the conditional ex ante density of l=� j{i t̂j given ti . Lemmas 1
and 2 in Section 3.1 characterize p(k) and p(l | ti).

The following theorem states that for sufficiently many agents the probability
of provision is positive. The proof of the theorem is given in the appendix.

Theorem 6. Let M� be the class of anonymous mechanism satisfying (IC),
(VP), (PB) and (LL) and let (x*, q*) # argmax(x, q) # M� �n

k=0 p(k) q(k).
There exists an N such that for all n>N the probability of provision,
�n

k=0 p(k) q*(k), is positive.

In the proof we give a specific mechanism and show that the probability
of provision under this scheme is positive. This implies that the optimal
mechanism also achieves a positive probability of provision. The
mechanism constructed is of the following qualitative form. The project is
provided if the fraction of type ones falls into one of two separate intervals:
[0, =] and [r�2, r�2+$]. In the interval [0, =] all the revenues go to type
zeros. In the interval [r�2, r�2+$] all the revenues go to type ones.
Observe that this scheme satisfies (LL) and (PB). In the proof of the
theorem it is established that (VP) and (IC) are satisfied for $ and = suf-
ficiently small. The intuition is the following. Similar to the previous sec-
tion, zeros will assign more probability to the event that a small fraction
of agents are of type one than ones. For appropriately chosen $, = expected
payments in the interval [0, =] are larger for zeros than for ones. Similarly
expected payments in the interval [r�2, r�2+$] are higher for type ones than
for zeros, implying (IC). In addition, for $, = small (VP) is satisfied. Intuitively,
around r�2 every type one agent receives transfers of 2, compensating for the
additional loss in region [0, =], in which everything is paid to zeros.

This construction relies on the assumption that there is some correlation
between types. As correlation decreases, the above regions decrease as well.
In the limit they vanish completely, and the probability of provision in the
constructed mechanism is zero.4
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agents increases and then correlation vanishes, this bound goes to zero. So under ex post
budget balance the order of limits does not matter.
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5. CONCLUSION

We have examined in a simple model the properties of mechanisms under
the presence of negative externalities when agents types are correlated.
Under the assumption of limited liability and ex ante budget balance, we
found that the implementability constraint is similar to the independence
case, except for the fact that the virtual utilities are diminished by a factor
due to the correlation of agents' types. Furthermore, this factor increases as
the number of agents increases and therefore the project will be provided
more often.

In large economies, we found that, if there is some correlation between
agents types, then the project will be provided when it is socially efficient.
In particular, the mechanism that maximizes the expected profits of the
firm operating the polluting plant is efficient. Thus the free rider problem
is relaxed as the number of agents increases and vanishes for sufficiently
many agents.

Even under ex post budget balance in large economies, we found that, if
there is some correlation between agents' types, then the probability of
provision will be positive.

APPENDIX

Proof of Lemma 2.

p(l | 0)
(n&l ) } p(l )

=
\n&1

l + }
�S g(1 | s) l } g(0 | s)n&l } f (s) ds

g(0)

(n&l ) } \n
l+ } |

S

g(1 | s) l } g(0 | s)n&l } f (s)

ds.

Canceling �S g(1 | s) l } g(0 | s)n&l } f (s) yields

=

(n&1)!
(n&1&l )! l!

}
1

g(0)
(n&l ) } n!
(n&l )! l!

=
1

n } g(0)
;

p(l&1 | 1)
l } p(l )

=
\n&1

l&1+ }
�S g(1 | s) l } g(0 | s)n&l } f (s) ds

g(1)

l } \n
l+ } |

S

g(1 | s) l } g(0 | s)n&l } f (s) ds

.
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Canceling �S g(1 | s) l } g(0 | s)n&l } f (s) ds yields

=

(n&1)!
(n&l )! (l&1)!

}
1

g(1)
l } n!

(n&l )! l!

=
1

n } g(1)
. Q.E.D.

Proof of Remark 1. We give here a particular solution to the above
problem, and we show that it satisfies (IC), (VP), (AB) and (EF). Let the
transfer payments to type 0 be given by,

xl0=0, for all l, (A1)

and also let the transfer payments to type 1 agents be given by

xn1=
p(0 | 0)

p(0 | 0) } p(n&1 | 1)&p(0 | 1) } p(n&1 | 0)
} :

n

l=1

p(l&1 | 1) } q(l ), (A2)

x11=
:n

l=1 p(l&1 | 1) } q(l )
p(0 | 1)

&
p(n&1 | 1)

p(0 | 1)
} xn1 , (A3)

and

xl1=0 for all l=2, 3, ..., n&1. (A4)

(A1) implies that (VP0) and (IC1) are satisfied. (A3) and (A4) imply that
(VP1) holds with equality. (A4) implies that (IC0) can be written as:

0�p(0 | 0) } x11+ p(n&1 | 0) } xn1 .

Using (A3) yields,

=
p(0 | 0)
p(0 | 1)

} _ :
n

l=1

p(l&1 | 1) } q(l )& p(n&1 | 1) } xn1]+ p(n&1 | 0) } xn1 .

Using (A2) this yields,

=
p(0 | 0)
p(0 | 1)

} :
n

l=1

p(l&1 | 1) } q(l )&_p(0 | 0)
p(0 | 1)

} p(n&1 | 1)& p(n&1 | 0)&
}

p(0 | 0)
p(0 | 0) } p(n&1 | 1)& p(0 | 1) } p(n&1 | 0)

} :
n

l=1

p(l&1 | 1) } q(l ).

Canceling yields,

=
p(0 | 0)
p(0 | 1)

} :
n

l=1

p(l&1 | 1) } q(l )&
p(0 | 0)
p(0 | 1)

} :
n

l=1

p(l&1 | 1) } q(l )

=0.
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Therefore (IC0) is satisfied. Finally we have to show that (AB) and (EF)
hold. Using Lemma 2 we can write (AB) as:

r } :
n

k=0

p(k) } q(k)�g(1) } :
n

l=1

p(l&1 | 1) } xl1+ g(0) } :
n&1

l=0

p(l | 0) } xl0 .

From (A1) the second term on the right hand side vanishes. Furthermore,
since (VP1) holds with equality we can rewrite the first term on the right
hand side. This yields: r } �n

k=0 p(k) } q(k)�g(1) } �n
l=1 p(l&1 | 1) } q(l ).

Using again Lemma 2 the inequality simplifies, yielding: �n
k=0 p(k) } q(k) }

[r&(k�n)]�0. For k�r } n the term in square brackets is non-negative
and hence we have (EF). Q.E.D.

Proof of Lemma 3. Observe that the problem has a recursive structure
and we can solve it in two steps: In the first one, which we denote problem
A, we take (q(l ), xl1)n

l=0 as given and choose (xl0)n&1
l=0 to minimize expected

transfers to type 0 agents subject to (IC0) and (LL). Because of (LL), the
(IC0) constraint will be binding, and we can express the optimal transfers
to type 0 agents, xl0 , as a function of (q(l ), xl1)n

l=0. In the second step,
problem B, we choose (xl1)n

l=1 to minimize expected transfers to agents of
type 0 and type 1, subject to (VP1) and (LL). (VP1) will be binding, and
we can express (xl1)n

l=1 as a function of (q(l ))n
l=0. Substituting in the

optimal transfers (xl0)n&1
l=0 yields the required result. Problem A is given by:

min
xl0�0

:
n&1

l=0

(n&l ) } p(l ) } xl0 subject to :
n&1

l=0

p(l | 0) } xl0

� :
n

l=1

p(l&1 | 0) } xl1 .

Lemma 2 shows that p(l | 0)�((n&l ) } p(l ))=(1�(n } g(0)) and hence the
objective function is equal to the left hand side of the constraint times
n } g(0). The minimizing expenditures to type zero agents are therefore
equal to n } g(0) } �n

l=1 p(l&1 | 0) } xl1 and the optimal transfers to type
zero agents is any combination of xl0 's such that the constraint holds with
equality. We choose arbitrarily x*00=1�p(0 | 0) } �n

l=1 p(l&1 | 0) } xl1 and
x*l0=0 \l>0. Problem B is given by

min
xl1�0

:
n

l=1

[l } p(l )+ p(l&1 | 0) } n } g(0)] } xl1

subject to :
n

l=1

p(l&1 | 1) } xl1� :
n

l=1

p(l&1 | 1) } q(l ).
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Observe that the objective function and the left hand side of the con-
straint are both weighted sums of xl1 , but the weights differ. The ratio
of the weight in the objective function to the weight in the constraint is
given by (l } p(l )+ p(l&1 | 0) } n } g(0))�p(l&1 | 1). Since Lemma 2 shows
that (l } p(l ))�p(l&1 | 1)=n } g(1), this ratio equals to n } [ g(1)+ g(0) }
p(l&1 | 0)�p(l&1 | 1)]. To solve problem B we have to find an l* that
minimizes p(l&1 | 0)�p(l&1 | 1), i.e., l* # argmin p(l&1 | 0)�p(l&1 | 1).
Set xl*1=1�p(l*&1 | 1) } �n

l=1 p(l&1 | 1) } q(l) and xl1=0 for l{l*. Next we
show that l*=n. Define ,(s)=sn&1(1&s) f (s) and !(s, l )=sl (1&s)n&l f (s)
with l<n&1. Let d(s, l )=(s�(1&s))n&l&1 (�S !( y, l ) dy)�(�S ,( y) dy) and
observe that d(s, l ) is strict monotone increasing in s, for any l<n&1.
Next observe that the ratio (,(s)�!(s, l ))(�S !( y, l ) dy��S ,( y) dy) equals
d(s, l ). So ,(s)��S ,( y) dy=d(s, l )(!(s, l )��S !( y, l ) dy).

Notice, that

|
S

,(s)
�S ,( y) dy

ds=1=|
S

!(s, l )
�S !( y, l ) dy

ds for all l<n&1,

which can be rewritten as �S [d(s, l )&1](!(s, l )��S !( y, l ) dy) ds=0. Since
d(s, l ) is strict monotone increasing in s and !(s, l )��S !( y, l ) dy>0, this
implies that there exists an a # (0, 1) such that d(s, l )&1<0 for s<a
and d(s, l )&1>0 for s>a. Now s�(1&s) strict monotone increasing in s
implies that the following inequalities hold:

|
S

s
1&s

[d(s, l )&1]
!(s, l )

�S !( y, l) dy

=|
a

0

s
1&s

[d(s, l)&1]
!(s, l )

�S !( y, l) dy
ds+|

1

a

s
1&s

[d(s, l)&1]
!(s, l)

�S !( y, l ) dy
ds

>|
a

0

a
1&a

[d(s, l)&1]
!(s, l)

�S !( y, l ) dy
ds+|

1

a

a
1&a

[d(s, l )&1]
!(s, l )

�S !( y, l ) dy
ds

=
a

1&a |
1

0
[d(s, l )&1]

!(s, l )
�S !( y, l) dy

ds

=0.

The first equality follows from breaking up the range of integration. The
second inequality is strict. To see this observe that �a

0 [s�(1&s)&a�(1&a)]
[d(s, l)&1](!(s, l )��S !( y, l ) dy) ds>0 since s�(1&s)<a�(1&a) for s<a
and d(s, l )&1<0 for s<a. Similarly, �1

a [s�(1&s)&a�(1&a)][d(s, l )&1]
(!(s, l )��S !( y, l ) dy) ds > 0 since s�(1 & s) > a�(1 & a) for s > a and
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d(s, l )&1>0 for s>a. The third equality is obtained by rearranging and
the last equality follows sinc �S [d(s, l )&1](!(s, l )��S !( y, l ) dy) ds=0.
Using the definition of d(s, l ) we can rewrite this as,

|
S

s
1&s

,(s)
� ,( y) dy

ds>|
S

s
1&s

!(s, l )
� !( y, l ) dy

ds,

which can be rewritten as

p(n&1 | 0)
p(n&1 | 1)

=
� ,(s) ds

|
s

1&s
,(s) ds

}
g(1)
g(0)

<
� !(s, l ) ds

|
s

1&s
!(s, l ) ds

g(1)
g(0)

=
p(l | 0)
p(l | 1)

\ l<n&1,

and thus the ratio p(l&1 | 0)�p(l&1 | 1) is minimized at l*=n. The optimal
transfer payments are therefore x*n1=(1�p(n&1 | 1)) �n

l=1 p(l&1 | 1) q(l ),
x*k1=0 \k<n and x*00=(p(n&1 | 0)�p(n&1 | 1) p(0 | 0)) �n

l=1 p(l&1 | 1) q(l ),
x*k0=0 \k>0. Finally the minimal expenditures in per capita terms are
given by p(0) x*00+(n�n) p(n)x*n1 . Using the optimal transfers yields the
stated result. Q.E.D.

Proof of Theorem 6. We construct a mechanism that has a positive
probability of provision and satisfies (IC), (VP), (PB), and (LL). The
mechanism, which we call mechanism (*), is characterized in terms of two
variables $, = with =<(r�2). The probability of provision is given by

q(k)={1 if
k
n

# [0, =] or
k
n

# _ r
2

,
r
2

+$& ;

0 otherwise.

The transfers to agents of type 1 are given by

x1(k)={
rn
k

if
k
n

# _r
2

,
r
2

+$& ;

0 otherwise;

and to agents of type 0 the transfer payments are given by

x0(k)={
rn

n&k
if

k
n

# [0, =];

0 otherwise.
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By construction this mechanism satisfies (PB) since the payments are
always equal to the revenues. (LL) and (VP0) are satisfied since the
payments are non-negative. We show that for $, = sufficiently small there
exists an N such that for all n>N the constraints (VP1), (IC0), and (IC1)
are satisfied. We will establish this via two lemmas. In the first we show
that, for any $, =>0 satisfying three conditions (A.5), (A.6), and (A.7),
there exists an N such that for n>N the constraints are satisfied. In the
second lemma we show that there exist $, = positive (but small) satisfying
these three conditions: (A.5), (A.6), and (A.7). Since the probability density
function f has full support by Assumption (i), and the mechanism (*)
provides the project when k�n falls into the regions [0, =] or [r�2, r�2+$],
this completes the proof of the theorem. Before proceeding we give a notion
of the limiting distribution of the variable fraction of type 1 agents. This
notion will be used to give a bound for the probability of provision for
large n in the following lemmas.

Let y denote the fraction of type 1 agents and let F( y) denote �y
0 f (s) ds.

As n goes to infinity the probability of the event that at most a fraction y
of all agents are of type 1, converges to the probability of the event that a
state s� y occurred. Let pn(k) be the probability that there are k type ones
if the number of agents equals n. Formally, for any y # [0, 1], we have
� y } n

k=0 pn(k) � �y
0 f (s) ds. (Hald [4] discusses the limiting distribution.)

Since F( } ) is the limiting distribution, for any #>0 and for any fixed x� y,
there exists an N such that for all n>N, F( y)&F(x)&#<�yn

k=xn pn(k)<
F( y)&F(x)+#. (Here it is understood that the variable k takes on only
integer values even if xn or yn is not an integer.) So for given #, x, y this
gives an approximation for the probability �yn

k=xn pn(k) that holds for
n>N.

Lemma 6. Consider mechanism (*). For =, $>0 satisfying the following
three conditions, there exists an N such that for all n>N the constraints
(VP1), (IC0), and (IC1) are satisfied:

_ r
2

&$&_F \ r
2

+$+&F \r
2+&F(=) =&�=[F(=)+F(=)=], (A.5)

F(=)[1&=]�
2&r

r _F \r
2

+$+&F \r
2++F(=)=&,

(A.6)

_F \r
2

+$+&F \r
2+&F(=) =&�

=
1&=

[F(=)+=F(=)]. (A.7)
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Proof. Pick $, =>0. We establish that under condition (A.5) there
exists an N such that for n>N the (VP1) constraint is satisfied. Similarly
we establish that under condition (A.6) there exists an N such that for
n>N the (IC0) constraint is satisfied and that under condition (A.7) there
exists an N such that for n>N the (IC1) constraint is satisfied. This implies
that all constraints are satisfied if (A.5), (A.6), and (A.7) hold and N is the
largest of these three N 's.

We begin with (VP1). The transfer payments x1(k) and the probability
of provision q(k) determine (VP1). It is given by

:
((r�2)+$) n

k=(r�2) n

rn
k

p(k&1 | 1)� :
=n

k=1

p(k&1 | 1)+ :
((r�2)+$) n

k=(r�2) n

p(k&1 | 1). (VP1)

After using p(k&1 | 1)=k�(ng(1)) pn(k) from Lemma 2, canceling g(1) on
both sides and bringing the second sum on the right hand side to the left
hand side, the (VP1) constraint is given by

:
((r�2)+$) n

k=(r�2) n \r&
k
n+ pn(k)� :

=n

k=1

k
n

pn(k). (A.8)

We can approximate the sums in this equation using the above limiting dis-
tribution for pn . Specifically we show that there exists an N such that
(VP1) is satisfied for n>N if (A.5) is satisfied. To see this, consider first
the left hand side in (A.8). Observe that � ((r�2)+$) n

k=(r�2) n (r&(k�n)) pn(k)�
[(r�2)&$] � ((r�2)+$) n

k=(r�2) n pn(k)�[(r�2)&$][F((r�2)+$)&F((r�2))&F(=) =]
for large n. The first inequality uses that r&(k�n)�(r�2)&$ for
k�((r�2)+$) n. The second inequality follows from the fact that for
any #>0 there exists an N such that for all n>N, � ((r�2)+$) n

k=(r�2) n pn(k)�
[F((r�2)+$)&F(r�2)&#]. Using #=F(=) = yields the second inequality. So
the left hand side in (A.8) is greater than the left hand side in (A.5). Con-
sider next the right hand side in (A.8). The following inequalities are
satisfied for large n. �=n

k=1 (k�n) pn(k)�= �=n
k=1 pn(k)�=[F(=)+F(=) =]. To

see the first inequality observe that (k�n)�= for k�=n. To see the second
inequality observe that for any #>0 there exists an N such that for n>N,
�=n

k=1 pn(k)�F(=)&F(0)+#. Using #=F(=) = and F(0)=0 yields the
second inequality. The right hand side in (A.5) is greater than the right
hand side in (A.8). So, for any $, =, satisfying (A.5), there exists an N such
that for all n>N the constraint (VP1) is satisfied.

Next consider (IC0). The transfer payments x0(k), x1(k) and the
probability of provision q(k) determine (IC0). It is given by,

:
=n

k=0

rn
n&k

p(k | 0)� :
((r�2)+$) n

k=(r�2) n

rn
k

p(k&1 | 0). (IC0)
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After using p(k | 0)=((n&k)�ng(0)) pn(k) from Lemma 2 and canceling
r�g(0), the (IC0) constraint can be written as

:
=n

k=0

pn(k)� :
((r�2)+$) n

k=(r�2) n

n&k+1
k

pn(k&1). (A.9)

We again approximate the sums in Eq. (A.9) using the above limiting dis-
tribution of pn and this yields (A.6). Consider first the left hand side in
(A.9). For any #>0 there exists an N such that for n>N the sum
�=n

k=0 pn(k)�F(=)&#. Using #=F(=) = implies that the left hand side in
(A.9) is greater than the left hand side in (A.6). To see that the right hand
side in (A.6) is greater than the right hand side in (A.9) consider the follow-
ing inequalities,

:
((r�2)+$) n

k=(r�2) n

n&k+1
k

pn(k&1)

�_2&r
r

+
2
rn& :

((r�2)+$) n

k=(r�2) n

pn(k&1)

�_2&r
r

+
2
rn&_ :

((r�2)+$) n

k=(r�2) n

pn(k)+ pn \ r
2

n&1+&
�

2&r
r

:
((r�2)+$) n

k=(r�2) n

pn(k)+
2
rn

} 1+ pn \r
2

n&1+ }
2&r

r

�
2&r

r _F \r
2

+$+&F \r
2++#1&+#2 .

The first inequality uses that (n&k+1)�k is monotone decreasing in k, and
thus (n&k+1)�k�(2&r)�r+2�(rn) for k�(r�2) n. The second inequality is
obtained by augmenting the sum on the right hand side by pn(((r�2)+$) n).
The third inequality uses that the second term in square brackets is a prob-
ability and thus less than 1. The last inequality uses two statements.
The first is the approximation that for any #1>0 there exists an N such
that for n>N, �((r�2)+$) n

k=(r�2) n pn(k)�F((r�2)+$)&F((r�2))+#1 . The second
is that, 2�(rn) and pn((r�2) n&1) } (2&r)�2, vanish as n increases. To see
that pn(xn) � 0 as n � � we can use the limiting distribution. For any
#>0 there exists N such that for all n>N, pn(xn)=�xn

k=xn pn(k)�
F(x) & F(x) + # = #. So for any #2 > 0 there exists an N such that for
n>N, 2�(rn)+pn((r�2) n&1)((2&r)�r)<#2 . Combining these two statements
yields the last inequality. We can set #1 , #2 such that ((2&r)�r)#1+#2=
((2&r)�r) F(=) = and this yields the right hand side in (A.6). Observe that
the right hand side is at least as large as the right hand side in (A.9). So,
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if (A.6) is satisfied then there exists an N such that for all n>N the con-
straint (IC0) is satisfied.

Finally we consider (IC1). The transfer payments x1(k), x0(k) and the
probability of provision q(k) determine (IC1). It is given by,

:
((r�2)+$) n

k=(r�2) n

rn
k

p(k&1 | 1)& :
=n

k=1

p(k&1 | 1)& :
((r�2)+$) n

k=(r�2) n

p(k&1 | 1)

� :
=n+1

k=1

rn
n&k+1

p(k&1 | 1)& :
=n+1

k=1

p(k&1 | 1)

& :
((r�2)+$) n+1

k=(r�2) n+1

p(k&1 | 1). (IC1)

Canceling equal terms on both sides of the inequality, using
p(k&1 | 1)=k�(ng(1)) pn(k) from Lemma 2 and dividing by r�g(1), implies
that the (IC1) is satisfied if

:
((r�2)+$) n

k=(r�2) n

pn(k)� :
=n+1

k=1

k
n&k+1

pn(k)+
1
2

pn \rn
2 + . (A.10)

Observe that the right hand side in (A.10) is larger than the right hand side
in (IC1), since we dropped the terms &p(=n | 1) and &p(((r�2)+$) n | 1).
We next use the limiting distribution to approximate the sums and show that
(A.7) implies (A.10). First consider the left hand side in (A.10). For #>0
there exists an N such that for n>N the left hand side in (A.10) is greater
than [F((r�2)+$)&F((r�2))&#]. Using #=F(=) = yields that the left hand
side in (A.10) is larger than the left hand side in (A.7) for n>N. Consider
next the right hand side in (A.10). Observe that k�(n&k+1) is monotone
increasing in k. Thus the right hand side in (A.10) is less than or equal
to (=�(1&=+(1�n))) �=n

k=1 pn(k)+(=+(1�n))�(1&=) pn(=n+1)+ 1
2 pn(rn�2).

Using the above limiting distribution implies that there exists an N
such that for n>N, (=�(1&=+(1�n))) �=n

k=1 pn(k)�(=�(1&=))[F(=)+#1].
Observe that pn(=n+1) � 0 and pn(rn�2) � 0, as n � �. To see this, we
can use the limiting distribution. For any x # [0, 1] and #>0 there exists
an N such the for all n>N, pn(xn)=�xn

k=xn pn(k)�F(x)&F(x)+#=#.
Using this implies that there exists an N such that for all n>N,
((=+(1�n))�(1&=)) pn(=n+1)+ 1

2 pn(rn�2)<(=�(1&=))#2 . Let #1=#2= 1
2F(=)=

yields the right hand side in (A.7). So, there exists an N such that for n>N
the right hand side in (A.10) is smaller than the right hand side in (A.7).
Combining the two statements yields that if (A.7) is satisfied, then there
exists an N such that for n>N (IC1) is satisfied. Q.E.D.
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Lemma 7. There exist $, = positive such that constraints (A.5), (A.6), and
(A.7) are satisfied.

Proof. We first establish that condition (A.5) implies condition (A.7).
To see this, observe that (r�2)&$ is positive for $ small and we can divide
inequality (A.5) by this expression. This transformation yields:

_F \r
2

+$+&F \r
2+&F(=)=&�

1
(r�2)&$

=[F(=)+F(=) =]. (A.11)

Observe that the left hand sides in (A.11) and (A.7) are equal. The right
hand side in (A.11) is larger than the right hand side in (A.7) if
(r�2)&$<1&=. This is indeed satisfied for $, = small since r<1. So condi-
tion (A.5) implies condition (A.7) for $, = small.

Next we show that (A.5) and (A.6) are satisfied for $, = small. Bringing
the last term on the left hand side in (A.11) to the right, the condition is
given by:

F \r
2

+$+&F \r
2+�

1
(r�2)&$

=F(=) _1+=+
r
2

&$& , (A.12)

Similarly bringing the last term on the right hand side of (A.6) to the left,
multiplying by r�(2&r), and rearranging yields:

F(=) _1&=&=
2&r

r & r
2&r

�F \r
2

+$+&F \r
2+ . (A.13)

Next choose $ such that (A.13) is satisfied with equality. Observe that if =
is small, but positive, then $(=) is also positive, by strict monotonicity and
continuity of F. We can substitute (A.13) with equality in inequality (A.12).
Canceling F(=) on both sides yields:

_1&=&=
2&r

r & r
2&r

�
1

(r�2)&$(=)
= _1+=+

r
2

&$(=)& . (A.14)

As = goes to zero the right hand side in (A.14) goes to zero, but the left
hand side is positive and bounded away from zero. So for = sufficiently
small (A.14), and hence (A.5), is satisfied. By construction (A.12), and
hence (A.6), are satisfied as well. This completes the proof. Q.E.D.
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