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1 Introduction

While a class of dynamic Markov games was formalized many years ago, see
Maskin and Tirole (1988) and Ericson and Pakes (1995) for an empirical frame-
work, empirical applications have been limited until recently. Several papers,
including Jofre-Bonet and Pesendorfer (2003), Aguirregabiria and Mira (2007),
Bajari, Benkard and Levin (2007), Pakes, Ostrovsky and Berry (2007), Pe-
sendorfer and Schmidt-Dengler (2008), Arcidiacono and Miller (2011), Kasahara
and Shimotsu (2012), and Srisuma and Linton (2012), proposed two-step esti-
mation methods for dynamic Markov games under varying assumptions. They
led to a number of empirical papers that apply these methods to empirically
analyze dynamic interactions between multiple players.

The basic idea of these two-step methods is described as follows.1 In the
first stage, players’ policies and state transition probabilities are estimated di-
rectly from the data as functions of observable state variables. These functions
are reduced-forms in that the estimated parameters are not the parameters of
the underlying economic model. In the second stage, a search for the struc-
tural model parameters which best rationalizes observed behaviors of players
and state transitions is conducted. The second stage uses the estimated poli-
cies as estimates for the equilibrium beliefs, since these two should coincide in
Markov perfect equilibria. In this approach structural model parameters can be
estimated without solving an equilibrium even once.

The two step methods significantly broadened the research scope on dynamic
problems that can be empirically addressed. In practice, some of the necessary
conditions for these methods to work are not easily satisfied. To obtain reason-
able estimates of policy functions and state transition probabilities, the data
need to contain rich information on actions and state transitions for every ob-
servable state which are generated from the same equilibrium. A typical IO
application may not have long time series data. Researchers are tempted to
pool data from different markets (or games) to perform the first stage policy
function estimation. To do so, researchers assume that the data are generated
from a single and identical equilibrium in every market. This assumption has
become popular in a number of recent papers.2 If this assumption is violated,
then the estimated policies are inconsistent, so are the estimated structural pa-
rameters. The assumption may be very restrictive as multiplicity of equilibria is
a well known feature inherent to games. Incorrectly imposing this assumption
leads to erroneous inference.

This paper proposes several test statistics to test the null hypothesis that
the data are generated from a single and identical equilibrium in a class of finite-

1The two-step method itself was pioneered by Hotz and Miller (1993) in a single agent
set-up.

2Examples include Beresteanu, Ellickson and Misra (2010), Collard-Wexler (2013), Dunne,
Klimek, Roberts and Xu (2013), Fan and Xiao (2012), Jeziorski, (2012), Lin (2011), Maican
and Orth (2012), Minamihashi (2012), Nishiwaki (2010), Ryan (2012), Sanches and Silva Ju-
nior (2012), Snider (2009), Suzuki (2013), and Sweeting (2013). They impose this assumption
either explicitly or implicitly. The empirical sections of Aguirregabiria and Mira (2007) and
Arcidiacono, Bayer, Blevins and Ellickson (2012) also impose the same assumption.
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state Markov games. Specifically, we test multiplicity of equilibria in three ways.
The first test directly compares the set of conditional choice or state transition
probabilities estimated from the pooled (across markets) sample with the ones
estimated from each market separately. The second test is based on the result
that there is a unique steady-state distribution associated with a transition
matrix of states under the assumption of communicating states. Based on this
result, the second test compares the steady-state distribution estimated from
the pooled sample with the one from each market. The third test uses the
conditional state distribution given the initial (observed) state. We form a
test statistic by contrasting the observed relative frequencies of states to the
theoretical predictions given the initial state. It turns out that the third test
does not require several assumptions on Markov chains that are imposed for
other tests. Each test has its own advantage.

To illustrate the finite sample performance of our tests, we first apply the
tests to simulated data using an example of multiple equilibria in Pesendor-
fer and Schmidt-Dengler (2008). Our tests, particularly the one based on the
steady-state distribution, perform well and have high power even with small
numbers of markets and time periods. We then apply our tests to the empirical
study of Ryan (2012) that analyzes dynamics of the U.S. Portland Cement in-
dustry and test if his assumption of single equilibrium is supported by the data.
We find that the null hypothesis of single equilibrium is rejected in the data.

To the best of our knowledge, this is the first paper that proposes tests of
multiple equilibria in a general class of dynamic Markov games. Our tests may
give a researcher guidance on whether she can pool different markets to estimate
policy functions in the first stage. It should be emphasized that multiplicity of
equilibria is observationally equivalent to time-invariant unobservable market-
level heterogeneity in our framework. Our tests apply when there exist multiple
equilibria, unobservable heterogeneity, or both.3 Thus, a rejection of our tests
points to an inconsistency of the first stage estimates that arise from pooling
different markets. Naturally, since the framework of this paper nests single agent
settings as a special case with only one player, our tests can also be thought of
as testing the existence of unobservable types in single agent dynamic models.

There is a recent literature on identification of finite mixture models. Since
the number of equilibria is generically finite, dynamic games with multiple equi-
libria could be viewed as a finite mixture model provided that distinct equilibria
arise in fixed proportions as the number of markets increases. Kasahara and
Shimotsu (2009) provide a condition to identify the lower bound of the number
of mixture components. Their result could be used as a basis for testing for
multiplicity. Our approach differs. In our case, the fixed proportions assump-
tion would be one special alternative in which nature initially draws the type
of equilibrium according to a multinomial distribution. Our approach is more

3Aguirregabiria and Mira (2012) discuss difficulties of identifying and estimating models
with both unobservable heterogeneity and multiple equilibria. Arcidiacono and Miller (2011)
develop a two step method that can account for unobservable heterogeneity with finite support.
Since the knowledge of the number of points in the support is required, this method is not
directly applicable to the case where multiple equilibria are present in the data.
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general as we do not specify the alternative and consider all possible alterna-
tives including settings where equilibria do not arise in fixed proportions as the
number of markets increases.

Our paper also relates to de Paula and Tang (2011) that use tests of con-
ditional independence between players’ actions to test multiplicity of equilibria
in the context of static games with incomplete information. Since our tests
exploit the panel structure of the data and rely on the way that the game and
states evolve, our tests are fundamentally different from theirs. One notable
difference is that while de Paula and Tang (2011) maintain the assumption of
independent-across-players private shocks, we can allow for within-period cor-
relation in players’ private shocks.

This paper is organized as follows. Section 2 lays out a class of general
dynamic Markov games we work with and provides some background on Markov
chains. Section 3 proposes several test statistics. In Sections 4 we conduct
a Monte Carlo study to examine finite-sample properties. Section 5 applies
our tests to data of Ryan (2012). Section 6 concludes. Appendix A contains
technical details.

2 Model

This section describes elements of a general dynamic Markov game with discrete
time t = 1, 2, . . .. We focus on the description of players’ state variables and
actions. These states and actions are the observable outcome variables for some
underlying dynamic game which we do not observe. We leave the details of
the game unspecified. Instead we shall focus on testable implications of the
observed outcomes. Our setting includes the single agent case as a special case
when there is one agent per market. We first describe the framework which
applies for all markets j = 1, . . . ,M .

Players. A typical player is denoted by i = 1, . . . , N . The single agent case
arises when N = 1. The number of players is fixed and does not change over
time. Every period the econometrician observes a profile of states and actions
described as follows.

States. Each player is endowed with state variables sti ∈ {1, . . . , L} in fi-
nite support. The state variable sti is publicly observed by all players and the
econometrician. The vector of all players’ public state variables is denoted by
st = (st1, . . . , s

t
N ) ∈ S = {1, . . . , L}N whose cardinality is ms = LN .

Actions. Each player chooses an action ati ∈ {0, 1, . . . ,K} in finite support.
The decisions are made after the state is observed. The decisions can be made
simultaneously or sequentially. The decision may also be taken after an id-
iosyncratic random utility (or a random profit shock) is observed. We leave the
details of the decision process unspecified. Our specification encompasses the
random-utility modelling assumptions, and allows for within-period correlation
in the random utility component across actions and across players. The vector
of joint actions in period t is denoted by at = (at1, . . . , a

t
N ) ∈ A = {0, 1, . . . ,K}N

whose cardinality is ma = (K + 1)N .
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Choice probability matrix. Let σ(a|s) = Pr{at = a|st = s} denote the
conditional probability that an action profile a will be chosen conditionally on
a state s. Throughout the paper, we assume that σ is time invariant and is
conditionally independent from other past actions and states. The matrix of
conditional choice probabilities is denoted by σ, which has dimension ms ×
(mams). It consists of conditional probabilities σ(a|s) in row s, column (a, s),
and zeros in row s, column (a, s′) with s

′ 6= s.
State-action transition matrix. Let g(s′|a, s) = Pr{st+1 = s′|at = a, st = s}

denote the state-action transition probability that a state s′ is reached when
the current action profile and state are given by (a, s). We also assume that
g is time invariant and is conditionally independent from other past actions
and states. We use the symbol G to denote the (mams) × ms dimensional
state-action transition matrix in which column s′ ∈ S consists of the vector of
probabilities {g(s′|a, s)}a∈A,s∈S.

State transition matrix. Under the above assumptions on σ and G, the
state variables st obey a (first-order) Markov chain with the (stationary) state
transition matrix P = σG whose dimension is ms × ms. A typical element
p(s′|s) =

∑
a∈A σ(a|s)g(s′|a, s) of P equals the probability that state s′ is

reached when the current state is given by s. Hereafter we focus on the first-
order Markov chain. However, our testing procedures can be extended to higher-
order Markov chains since higher-order Markov chains can be reformulated as
first-order ones by modifying the state space (see, e.g., Billingsley, 1961).

Limiting steady-state distribution. When the limit exists, let Q(s′, s) =

limT→∞ T−1
∑T
t=1 1{st = s′, s0 = s} denote the long run proportion of time

that the Markov chain P spends in state s′ when starting at the initial state
s0 = s, where 1{·} is the indicator function. Suppose the unconditional long

run proportion of time Q(s′) = limT→∞ T−1
∑T
t=1 1{st = s′} that the Markov

chain P spends in state s′ satisfies Q(·) = Q(·, s) for all initial states s. Then
the ms dimensional row vector of probabilities Q = {Q(s)}s∈S is called the
steady-state distribution of the Markov chain. Observe that the state space is
finite and Q describes a multinomial distribution.

The properties of Markov chains are well known. We next describe some
property useful for our purpose. To do so, we introduce the concept of commu-
nicating states.

Communicating states. We say that a state s′ is reachable from s if there
exists an integer T and a sequence of states (s1, . . . , sT ) so that the chain P will
be at state s′ after T periods. If s′ is reachable from s, and s is reachable from
s′, then the states s and s′ are said to communicate.

Lemma 1. Suppose all states of the Markov chain P communicate.4 Then the
steady-state distribution Q exists and is unique. It satisfies Q(s) > 0 for all
s ∈ S and Q = QP.

This lemma guarantees existence and uniqueness of the steady-state distri-
bution and states that the long run proportion of time that the Markov chain

4This is also called that the Markov chain P is ergodic or irreducible.
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P spends in state s is strictly positive for any state s ∈ S and the equation
Q = QP must hold. A proof of the above properties is given in Levin, Peres
and Wilmer (2009, Proposition 1.14 and Corollary 1.17) for example.

Communicating states are typically invoked in applied work, see Ericson
and Pakes (1995). Communicating states naturally emerge in dynamic discrete
choice models using a random utility specification, see McFadden (1973). The
random component having full support in the real numbers implies that all
actions arise with strictly positive probability for any state s ∈ S. Thus, states
will communicate if the state-action transition matrix allows that state s′, or
s, can in principle be reached when starting from state s, respectively s′, for
any pair of states s, s′ ∈ S. The full support assumption is made in standard
dynamic discrete choice models, see Arcidiacono and Miller (2011) for a recent
formulation.

The feature that all states communicate may also emerge when actions are
chosen with probability one for some (or all) states. Our set-up includes these
settings as well. What is required for states to communicate in this case is that
there exists a sequence of state-action profiles {(a1, s1), . . . , (at, st)} so that the
chain starting at state s will be at state s′ after t periods for any s, s′ ∈ S.

3 Tests for multiplicity

This section describes hypotheses that we aim at testing and proposes statistical
tests for those hypotheses. For each market j, a sequence of action-state profiles
(atj , s

t
j)t=1,...,T is observed, where T is the length of time periods in the data set.

Our null hypothesis is that the observed profiles are generated from an identical
data generating processes in all markets, and the alternative is that the data
generating process is distinct for some markets. Based on the set-up described
in the previous section, the data generating process of the profiles (atj , s

t
j)t=1,...,T

is characterized by the conditional choice probability matrix σj and state-action
transition matrix Gj that imply the transition matrix of states Pj = σjGj . In
particular, we focus on homogeneity of σj and Pj across markets, and test the
following null hypotheses:

Hσ
0 : σ1 = · · · = σM ,

HP
0 : P1 = · · · = PM , (1)

and the alternatives are their negations. The null hypothesis Hσ
0 is based on

the idea that the equilibrium choice probabilities are identical across markets.
The null HP

0 has a similar motivation given that the state-action transition is
identical across markets. Economic models may have the feature that the state-
action transition matrix G is exogenously given and by construction identical
across markets. In such cases, testing the conditional choice probabilities is
equivalent to testing the state transition probabilities. However, in general,
the tests may not be equivalent. A rejection of the null HP

0 could arise either
because of multiplicity of choice probabilities σj or because of heterogeneous
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state-action transition matrices Gj . Which test is most suitable depends on the
economic application at hand and each test has its own rationale.

If all states of the Markov chain P communicate, then by Lemma 1, there
exists a unique steady-state distribution Q and the identical equilibrium hy-
pothesis may be tested by homogeneity of the steady-state distribution,

HQ
0 : Q1 = · · · = QM . (2)

As discussed in the next subsection, if the cardinality of the action or state space
is large, then the power of the test for Hσ

0 or HP
0 tends to be low relative to that

for HQ
0 because a decrease in the degrees of freedom can be expected. Thus,

the power of the multiplicity test can be increased by testing the steady-state
distribution.

Lemma 1 says that the null HP
0 of equal transition matrices implies the

null HQ
0 of equal steady-state distributions. Thus, a rejection of HQ

0 provides

a strong evidence for a rejection of HP
0 . By testing HQ

0 first, we may exploit

the property that the power of testing the null HQ
0 is typically higher than the

power of testing the null HP
0 . However, it should be noted that the converse is

not true: the equivalence of the steady-state distribution does not necessarily
imply that of the transition matrix.

To test the above hypotheses, we consider the situation where for each mar-
ket j, we observe the action-state profiles (atj , s

t
j)t=1,...,T with sufficiently large

T . The test procedures discussed in the next subsection are theoretically justi-
fied when the time length T increases to infinity. Alternatively, the researcher
may face the situation where the length of time periods T is relatively small
compared to the number of markets M . In such a scenario, it would be natural
to treat the action-state profiles with fixed T across markets as an i.i.d. sample
(over j = 1, . . . ,M) from the distribution parametrized by a common choice
probability σ or a common transition matrix P. For example, testing may be
based on the conditional state distribution st|s1 = s given the initial state s
for t = 2, . . . , T . By conditioning on the initial state we do not require that
states communicate so that the industry at hand can reach the steady-state
distribution. This situation arises naturally in new or growing industries. Us-
ing the transition matrix P, the conditional distribution st|s1 = s is described
by ι′sP

t, where ιs takes one at the element corresponding to s and zero other-
wise. There are many ways to compare the vector of conditional probabilities
{Pr{st = s′|s1 = s}}s′∈S with the theoretical prediction ι′sP

t. For example, at
a given initial state s, we can consider the null hypothesis in the form of

Hs
0 :

{
1

T − 1

T∑
t=2

Pr{st = s′|s1 = s}

}
s′∈S

=
1

T − 1

T∑
t=2

ι′sP
t. (3)

This hypothesis focuses on the average probabilities of visiting each state given
the initial state s. We may do so for selected initial states. Alternatively, one
may consider all possible initial states jointly by testing the null H0 : Pr{st =
s′|s1 = s} = ι′sP

t for all s ∈ S and t or its linear combinations. We note that
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the null Hs
0 tests the validity of the i.i.d. parametric model for (sj)j=1,...,M with

sj = (s1
j , . . . , s

T
j ) for fixed T . Thus, a rejection of Hs

0 may be interpreted as
multiplicity of equilibrium or misspecification of the parametric model.

3.1 Testing choice and transition probabilities

Let us first consider testing for Hσ
0 and HP

0 in (1) based on the conditional choice
and transition probabilities, respectively. We form a generally applicable chi-
squared test statistic based on the conditional choice or transition probability,
that is

TP =

M∑
j=1

∑
d∈D

Wj(d){P̂j(d)− P̂ (d)}2, (4)

where P̂j(d) is a nonparametric estimator of the probability of interest for a

market j without imposing the null hypothesis of interest, P̂ (d) is another non-

parametric estimator under the null of homogeneity of P̂j(d) across markets, and
Wj(d) is a weight or standardization to obtain a standard limiting distribution.

For example, to test homogeneity of the conditional choice probabilities Hσ
0 ,

we set d = (a, s) and D = A×S. Let fj(a, s) =
∑T
t=1 1{atj = a, stj = s} be the

frequency of action state profile (a, s) in market j and fj(s) =
∑T
t=1 1{stj = s}

be the frequency of state s in market j. Then we estimate the conditional choice
probabilities for the action profile a given the current state s in market j,σj(a|s),
by the relative frequencies

P̂j(d) =
fj(a, s)

fj(s)
, P̂ (d) =

∑M
j=1 fj(a, s)∑M
j=1 fj(s)

, (5)

with and without imposing Hσ
0 , respectively. To obtain the chi-squared limiting

distribution, we set the weight as Wj(d) = fj(s)/P̂ (d).
Also, to test the equivalence of the transition matrices HP

0 , we set d = (s′, s)

and D = S × S. Let f1
j (s′, s) =

∑T−1
t=1 1{st+1

j = s′, stj = s} and f1
j (s) =∑T−1

t=1 1{stj = s}. Then we estimate the transition probability pj(s
′|s) by

P̂j(d) =
f1
j (s′, s)

f1
j (s)

, P̂ (d) =

∑M
j=1 f

1
j (s′, s)∑M

j=1 f
1
j (s)

, (6)

with and without imposing HP
0 , respectively. The weight is set as Wj(d) =

f1
j (s)/P̂ (d).

The limiting null distribution of the statistic TP is obtained in the following
proposition (see Appendix A.1 for the proof).

Proposition 1. Consider the set-up of Section 2. Suppose that all states of the
Markov chain Pj communicate for each j = 1, . . . ,M and that the observations
(atj , s

t
j)t=1,...,T are mutually independent over j = 1, . . . ,M . Then under Hσ

0
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(or respectively HP
0 ), the statistic TP converges in distribution to the chi-squared

distribution with degrees of freedom (M − 1)ms(ma − 1) (or respectively (M −
1)ms(ms − 1)) as the length of time periods T increases to infinity.

Bootstrap critical value. The chi-squared limiting distributions of the statis-
tic TP gives us critical values to control the asymptotic null rejection probabili-
ties. Alternatively one may compute critical values by some bootstrap method.

For example, to test the null HP
0 , we can randomly pick an initial state

s0 ∈ S and then draw the bootstrap counterpart f1,b
j (s′, s) of f1

j (s′, s) from

the estimated conditional probability P̂ (d) in (6) for s, s′ ∈ S, j = 1, . . . ,M ,
and b = 1, . . . , B. Note that we start the sampling process only after a certain
number of time periods in order to neutralize the effect of the arbitrary choice of
the initial state. Then the bootstrap counterpart T bP of the statistic TP is given

by replacing f1
j (s′, s) and f1

j (s) in (6) with f1,b
j (s′, s) and f1,b

j (s), respectively.
Also, to test the null Hσ

0 , we can use the fact that action profiles a ∈A
conditional on a state s ∈ S are multinomially distributed with probabilities
σj(a|s) in market j. State s ∈ S occurs with frequency fj(s) and the proba-
bility of observing action state profiles (a, s) from fj(s) trials is given by the
multinomial

{fj(a, s)}a∈A|fj(s) ∼ Multinomial(fj(s), {σj(a|s)}a∈A),

for each j = 1, . . . ,M . We can use this distribution to implement a parametric
bootstrap. More precisely, we fix s ∈ S and draw the bootstrap counterpart
{f bj (a, s)}a∈A of {fj(a, s)}a∈A for b = 1, . . . , B from the multinomial distri-

bution with the number of trials fj(s) and the weight vector {P̂ (a, s)}a∈A in
(5). Then the bootstrap counterpart T bP is given by replacing fj(a, s) in (5)
with f bj (a, s). Here we only resample f bj (a, s) and the number of trials fj(s)
is held fixed by the original sample. Based on a similar argument to Andrews
(1997, Corollary 1), we can see that the (1−α)-th quantile of T 1

P , . . . , T BP is an
asymptotically valid critical value.

Similarly, to test the null HP
0 on the transition matrices, we draw a bootstrap

counterpart {f1,b
j (s′, s)}s′∈S of {f1

j (s′, s)}s′∈S from the multinomial distribution

with the number of trials f1
j (s) and weight vector {P̂ (s′, s)}s′∈S in (6). Then the

bootstrap counterpart T bP is given by replacing f1
j (s′, s) in (5) with f1,b

j (s′, s).
Optimal test statistic. The test statistic TP is constructed by measuring

the chi-squared distance between the nonparametric estimators P̂j(d) and P̂ (d)
for the discrete distribution over D with and without imposing the null hy-
pothesis, respectively. There are many other ways to measure the discrepancy
between the single market and full-sample estimates. For example, we can mea-
sure discrepancy of conditional probabilities by the (weighted) Kullback-Leibler
divergence

T ∗P = 2

M∑
j=1

∑
d∈D

Wj(d)P̂j(d) log
P̂j(d)

P̂ (d)
. (7)
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In order to test the null hypothesis Hσ
0 on the conditional choice probabilities,

we can set as d = (a, s) and D = A × S and estimate P̂j(d) and P̂ (d) as in
(5). Also, to test the null hypothesis HP

0 on the transition probabilities, we set

as d = (s′, s) and D = S × S and then estimate P̂j(d) and P̂ (d) as in (6).
For both cases, we set the weight as Wj(d) = fj(s) to obtain the chi-squared
limiting distribution. The test statistic T ∗P is a likelihood-ratio version of the
chi-squared statistic TP . These statistics are asymptotically equivalent under
the null and local alternative hypotheses (e.g. van der Vaart, 1998, Lemma
17.3).

On the other hand, in the literature of hypothesis testing for multinomial dis-
tributions, Hoeffding (1965) discovered that the likelihood ratio statistic for the
simple hypothesis on multinomials enjoys some global power optimality which is
not shared by the chi-squared statistic. In particular, under some restriction on
the convergence rate of the type I error probability, the likelihood ratio statistic
achieves the highest power under fixed alternatives. This optimality is called
the generalized Neyman-Pearson optimality and has been extended to several
contexts (see, Gutman, 1989). By extending the argument in Gutman (1989)
to our set-up, we derive the following optimality for T ∗P (see Appendix A.2 for
the proof).

Proposition 2. Under the same set-up of Proposition 1 with fixed initial states
(s0

1, . . . , s
0
M ), consider the statistic T ∗P with Wj(d) = fj(s) and (5) to test Hσ

0 .
There exists a positive sequence δT = O(T−1 log T ) such that

lim
T→∞

1

T
log Pr{T ∗P ≥ 2T (α− δT ) : Hσ

0} ≤ −α, (8)

for α > 0, and that for any test statistic TA for Hσ
0 satisfying

lim
T→∞

1

T
log Pr{TA rejects Hσ

0 : Hσ
0} ≤ −α, (9)

it holds
Pr{T ∗P ≥ 2T (α− δT ) : Hσ

1} ≥ Pr{TA rejects Hσ
0 : Hσ

1}, (10)

for all T large enough.
Also the same result holds for the statistic T ∗P with Wj(d) = fj(s) and (6)

to test HP
0 by replacing Hσ

0 , Hσ
1 , and T with HP

0 , HP
1 , and T − 1, respectively.

This proposition says that in the class of test statistics satisfying the restric-
tion on the exponential decay rate of the type I error probability in (9), the
Kullback-Leibler statistic T ∗P attains the highest power. This optimality result
is a natural extension of the generalized Neyman-Pearson optimality analysis to
homogeneity testing of conditional choice or transition probabilities.

Parametric model for σ and P. Suppose we parametrize the choice proba-
bility σj or transition matrix Pj by a parametric model σ(a|s; θj) or p(s, s′; θj),
such as logit. We assume that the functional forms are identical across markets
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and the different equilibria are characterized by different parameter values of
θj . In this case, the null hypothesis of interest can be written as

Hθ
0 : θ1 = · · · = θM .

Since this is a parameter hypothesis for a discrete parametric model, standard
maximum likelihood theory applies. In particular, the score test would be con-
venient since the test statistic requires only the full sample estimator.

Large number of markets M . The asymptotic distribution of the test statistic
TP is derived under the assumption that the number of markets M is fixed.
However, there are some cases where M is large relative to the length of time
T ; e.g., Collard-Wexler (2013) and Dunne, Klimek, Roberts and Xu (2013).
When M is large, it may be useful to investigate the limiting behavior of the
statistic TP as both M and T diverge to infinity. Let {MT } be a sequence
satisfying MT → ∞ and MT /T → 0 as T → ∞. In this case, intuitively, the
degree of freedom for the limiting distribution of TP grows to infinity. Thus after
standardization, the limiting distribution of TP is characterized by the standard
normal. For example, the test statistic for Hσ

0 based on (5) satisfies

TP − (MT − 1)ms(ma − 1)√
2(MT − 1)ms(ma − 1)

d→ N(0, 1),

as T →∞ under Hσ
0 . A similar result applies for the test of HP

0 .
Comparison with de Paula and Tang (2011). Note that our test can allow for

within-period correlation in the random utility component across actions and
across players. In the context of static games with incomplete information, de
Paula and Tang (2011) test conditional independence between players’ actions to
check if there are more than one equilibria in the data generating process. This
test relies on the assumption of independent-across-players private shocks. Our
test is more flexible and permits within-period correlation in players’ shocks.
The permissible information structure and set of games our framework can deal
with is more general. Our tests explore the way that the game and states evolve
and require repeated observations for each market.5

3.2 Testing steady-state distribution

We now consider testing of HQ
0 in (2), which examines the steady-state distri-

bution in individual markets and compares it to the average (across markets)

5Tests of independence are used in various contexts to find evidence for unobserved vari-
ations in data that non-trivially affect agents’ actions. For example, Chiappori and Salanié
(2000) test the conditional independence of the choice of better coverage and the occurrence of
an accident using data of automobile insurance, and attributes a violation of the conditional
independence to the existence of asymmetric information between customers and insurance
companies. de Paula and Tang (2011) assume independent private shocks in games with
incomplete information and regard additional variations (after controlling for observable co-
variates) as coming from multiple equilibria being played in data. On the other hand, Navarro
and Takahashi (2012) interpret a violation of the conditional independence as a rejection of
models of pure private shocks.
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steady-state distribution. Under the null hypothesis of identical steady-state
distributions, the market specific and average market distributions are close to
each other. The test statistic is more intuitive in the sense that it compares two
steady-state distributions directly. However, the test requires that the steady-
state distributions exist and that the Markov chain is in the steady-state, see
Lemma 1. That is, regardless HQ

0 or HQ
1 , we assume that all states in the chain

Pj communicate for all markets j. The relative frequencies Q̂j = {T−1fj(s)}s∈S
are nonparametric estimates of the steady-state distribution Qj . By Billingsley

(1961, Theorem 3.3), the limiting distribution of Q̂j is obtained as

T 1/2(Q̂j −Qj)
d→ N(0,Vj), (11)

where the asymptotic variance Vj is defined in Appendix A.3. Since rank(Vj) =

ms − 1, we can obtain a test statistic for HQ
0 as

TQ = T

M∑
j=1

(Q̂j − Q̂)′V̂−(Q̂j − Q̂)
d→ χ2((M − 1)(ms − 1)), (12)

under HQ
0 , where Q̂ = M−1

∑M
j=1 Q̂j and V̂− means a generalized inverse of V̂,

which is defined in Appendix A.3. Although this statistic validates the use of
the chi-squared critical value for the asymptotic test, the estimator V̂ may not
be easy to compute and requires a bandwidth choice. Thus in our simulation
and empirical studies below, we replace V̂ in (12) with the identity matrix and
employ some bootstrap critical value.

3.3 Testing conditional state distribution given the initial
state

Our final test does not require that the Markov chain has a unique steady-state
distribution or that all states communicate. Such situations may arise in new
or growing industries when the steady-state has not been reached yet. It may
also arise in situations when there is no unique steady-state distribution. For
example, when some states are absorbing. These situations share the feature
that the limiting state distributions may depend on the initial state. To develop
a test for this case we consider the conditional state distribution given the initial
state. We assume that the number of markets M is large (and the length of
time periods T can be small).

To describe a suitable test statistic, we treat the state profiles across markets
as an i.i.d. sample from the distribution parametrized by the transition matrix
P, and propose a test for the null hypothesis Hs

0 in (3). Let P̂ be the frequency
estimator of the state transition matrix based on the whole state profiles. Also

let Q̂t
s =

{∑M
j=1 1{stj=s′,s1j=s}∑M

j=1 1{s1j=s}

}
s′∈S

be the relative frequency estimator for the

vector of conditional probabilities
{

Pr{st = s′|s1 = s}
}

s′∈S for t = 2, . . . , T for
a given initial state s. If our model parametrized by P is correct, the contrast
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between Q̂t
s and ι′sP̂

t should be close to zero for all t = 2, . . . , T . We evaluate

the contrast C′s = (T − 1)−1(
∑T
t=2 Q̂

t
s− ι′s

∑T
t=2 P̂

t). The test statistic satisfies

Ts = MC′sV̂
−
s Cs

d→ χ2(ms − 1), (13)

as M → ∞ with fixed T under Hs
0, where V̂−s is a generalized inverse of an

estimator of the asymptotic variance of
√
MCs under Hs

0.6 As in (12), the

estimator V̂s may not be easy to compute. Thus in our simulation and empirical
studies below, we replace V̂s in (13) with the identity matrix and employ some
bootstrap critical value.

3.4 Relationships among test statistics

The three test statistics provided in the previous subsections have different
advantages depending on the application and the type of data. Given that in
standard dynamic discrete models, player’s behavior is described in the form
of conditional choice probabilities, the test based on Hσ

0 (TP and T ∗P using (5))
would be a natural starting point. It is also reasonable to use the test based
on HP

0 . Under the assumption that Gj is identical for all markets j, testing HP
0

plays a similar role to testing Hσ
0 . In general, however, rejecting the null HP

0

may also arise because of differences in Gj even if Hσ
0 holds.

Multiplicity of equilibria can also be tested by the null hypothesis HQ
0 us-

ing the steady-state distribution test statistic TQ. Since the dimension of the
hypothesis decreases, we expect it to have higher power compared to TP . It
should also be emphasized, however, that there is a region where multiple equi-
libria exist but the test based on TQ is not able to detect. Put differently, if

the test based on TQ rejects the null hypothesis HQ
0 , we would reject the null of

unique equilibrium; on the other hand, if it does not rejects the null, there may
still be multiple equilibria (two distinct transition matrices may yield the same
steady-state distribution). Therefore, we recommend the following procedure in

practice. First, the test of HQ
0 based on TQ is applied to take advantage of its

desirable power property. If the null HQ
0 is rejected, then we stop and conclude

that there are multiple equilibria. If the test does not reject the null HQ
0 , then

we proceed to apply TP for Hσ
0 or HP

0 . By proceeding in this way, it can be
made sure that the tests are consistent and the power property of TQ can be
exploited.

There are also situations where states do not communicate or initial con-
ditions matter. In such cases, the conditional state distribution test Ts can be
used. It is also worth emphasizing that Ts is suitable when M becomes large,

6We can also consider the hypothesis

Hs,T
0 : Pr

{
st = s′|s1 = s

}
= ι′sP

t for all t = 2, . . . , T.

Under Hs,T
0 , the Wald statistic for this hypothesis will converge to χ2(T (ms− 1)) as M →∞

with fixed T . Also its normalized version converges to the standard normal distribution as
M,T →∞ but T/M → 0.
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while T is fixed (i.e., short panel). Some empirical applications in IO have this
data structure; e.g., Collard-Wexler (2013) and Dunne, Klimek, Roberts and
Xu (2013).

4 Monte Carlo

This section examines the practical aspects of the proposed tests in a Monte
Carlo study. We consider a simple and transparent dynamic oligopoly game
with multiple equilibria. The game was illustrated and analyzed in more detail
in Pesendorfer and Schmidt-Dengler (2008). It has the following features.

There are two players, binary actions ati ∈ {0, 1}, and binary states sti ∈
{0, 1}. The distribution of the profitability shocks is the standard normal. The
discount factor is fixed at 0.9. The state transition law is given by st+1

i = ati.
Period payoffs are symmetric and parametrized as follows:

π(ai, aj , si) =



0 if ai = 0; si = 0
0.1 if ai = 0; si = 1

π1 − 0.2 if ai = 1; aj = 0; si = 0
π2 − 0.2 if ai = 1; aj = 1; si = 0
π1 if ai = 1; aj = 0; si = 1
π2 if ai = 1; aj = 1; si = 1

where π1 = 1.2; and π2 = −1.2. The period payoffs can be interpreted as
stemming from a game with switching costs and/or as entry/exit game. A
player that selects action 1 receives monopoly profits π1 if she is the only active
player, and she receives duopoly profits π2 otherwise. Additionally, a player
that switches states from 0 to 1 incurs the entry cost 0.2; while a player that
switches from 1 to 0 receives the exit value 0.1.

Multiplicity. The game illustrates the possibility of multiple equilibria which
is a feature inherent to games. The following analysis focuses on two asym-
metric equilibria of the three equilibria described in Pesendorfer and Schmidt-
Dengler (2008). In equilibrium (i), player two is more likely to choose action
0 than player one in all states. The ex ante probability vectors for both play-
ers are given by σ(a1 = 0|s1, s2) = (0.27, 0.39, 0.20, 0.25), σ(a2 = 0|s2, s1) =
(0.72, 0.78, 0.58, 0.71), where the order of the elements in the probability vec-
tors corresponds to the state vector (s1, s2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

In equilibrium (ii), player two is more likely to choose action 0 than player
one in all states with the exception of state (1, 0). The probability vectors
are given by σ(a1 = 0|s1, s2) = (0.38, 0.69, 0.17, 0.39), σ(a2 = 0|s2, s1) =
(0.47, 0.70, 0.16, 0.42).

Design. The simulated data are generated by randomly drawing a time series
of actions from the calculated equilibrium choice probabilities described above
for each of the equilibria (i)-(ii) respectively. The initial state is taken as (0, 0)
and we start the sampling process after 100 periods. The number of markets
and the length of the time series is varied in the experiment with the aim at
staying close to typical industry applications. We choose M = 20, 40, . . . , 640
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and T = 5, 10, . . . , 640. The parameter λ denotes the fraction of markets that
adopt equilibrium (i) while 1 − λ denotes the fraction of markets that adopt
equilibrium (ii).

Implementation. The Monte Carlo study considers the conditional choice
probability multiplicity test by TP , its optimal version by T ∗P , the steady-state
distribution test by TQ, and the conditional state distribution test by Ts as
described in Section 3. In this example, at = st+1 and the state transition
probabilities P equal the conditional choice probabilities σ. Therefore, the null
hypotheses Hσ

0 and HP
0 and their tests are identical. To implement TP in (4)

and T ∗P in (7), we employ the formula in (6).7 The steady-state probabilities
Q are estimated by the relative frequencies. For the steady-state distribution
test by TQ, we use the identity matrix for the variance matrix in (12). For the
conditional state distribution test by Ts, we consider the sum TS =

∑
s∈S Ts

instead of focusing on a particular initial state. To compute Ts, we replace the
variance matrix V̂s in (13) with the identity matrix.

The critical values of these test statistics are calculated using a bootstrap
procedure. For every bootstrap iteration b, we simulate choice/state profiles

{sbj} from the transition matrix based on P̂ (d) defined in (6) for every market
j. For the first three tests (i.e., the tests by TP , T ∗P , and TQ), as in the data
generating process, the initial state is taken as (0, 0) and we start the sampling
process after 100 periods. For the test by Ts, for each market, we use the same
initial state as is observed in the simulated sample and start the game from
that state. The bootstrap counterparts of the test statistics are calculated for
b = 1, . . . , B. The critical values are obtained by the 95th percentile of the
bootstrapped statistics.

Results. The experiment is based on B = 999 repetitions for the bootstrap
sample and 1, 000 Monte Carlo repetitions. Tables 1-4 report the results of the
experiments. These Tables report the percentages of rejections of our tests for
selected values of M , T , and λ.

We first study the size properties of our tests. Tables 1 and 2 consider the
cases of λ = 1 and λ = 0, respectively. For these cases, there is a unique
equilibrium and the null hypotheses are satisfied. All tests perform reassuringly
well leading to a five percent rejection frequency as T and/or M increase.

We next assess the power properties of our tests. Table 3 considers the case
of λ = 0.5, where the first and second equilibria arise with equal probability. It
shows that as the number of time periods T and/or markets M increases, all the
tests typically reject the null more frequently. The two conditional choice prob-
ability tests (TP and T ∗P ) and the steady-state distribution test (TQ) perform
better than the conditional state distribution test (Ts) for moderate values of M
(e.g., M = 20 or 40). When M becomes large (M = 320 or 640), Ts dominates
TP and T ∗P especially when T is relatively small. Comparing the conditional
choice probability tests and the steady-state distribution test, we find that TQ
performs better than TP and T ∗P . A possible reason is that TQ uses fewer cells

7When
∑T

t=1 1{stj = s} = 0 (or
∑M

j=1

∑T
t=1 1{stj = s} = 0), we set Pj(d) = 0 (or

Ptotal(d) = 0).
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than TP and T ∗P . TQ is based on ms cells while TP and T ∗P are based on (msma)
cells. Table 3 also illustrates that for a typical industry application with about
40 markets and 20 time periods the performance of TQ is satisfying. Also the
test by TP and the optimal test by T ∗P have similar performance. For a better
comparison based on the result in Proposition 2, we compute the size-adjusted
power for TP and T ∗P . We find that the size-adjusted power for T ∗P is higher
than that for TP in most cases.8 To further investigate the power properties of
these tests, Table 4 considers the case of λ = 0.9. That is, the first equilibrium
is played in 90% of M markets. While all the tests have lower power than in
Table 3, the relative performances of these tests appear the same. TQ has still
the best performance among all tests.

Overall, our Monte Carlo illustrates that the steady-state distribution test
by TQ performs well for moderate sample sizes of T and M . It seems well suited
for typical industry applications.

8For example, when M = 40, T = 20, and λ = 0.5, Table 3 suggests that the power for TP
is higher than the power for T ∗P . On the other hand, the size-adjusted power for TP is 16.1,
while the size-adjusted power for T ∗P is 21.8.
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Table 1. Monte Carlo Results: λ = 1

M T TP T ∗P TQ Ts
20
20
20
20
20
20
20

5
10
20
40
80
320
640

13.2
7.0
4.4
5.1
5.7
4.4
6.1

5.9
4.5
5.0
6.2
6.6
4.4
5.3

1.3
2.5
3.5
4.3
5.0
4.8
4.9

3.2
3.9
4.9
4.0
2.9
3.4
3.5

40
40
40
40
40
40
40

5
10
20
40
80
320
640

6.5
3.8
4.3
4.5
5.3
5.2
5.3

2.3
2.7
3.4
5.3
5.3
5.4
5.4

1.3
2.9
3.5
3.4
5.7
4.5
4.9

3.7
5.0
4.1
4.8
3.0
5.3
4.4

80
80
80
80
80
80
80

5
10
20
40
80
320
640

5.3
3.2
5.2
3.9
4.7
4.9
4.2

1.5
1.2
3.5
3.9
4.6
5.5
4.1

1.2
2.5
2.5
3.5
5.0
5.4
5.3

4.8
4.8
4.3
5.7
4.7
5.1
5.7

160
160
160
160
160
160
160

5
10
20
40
80
320
640

4.9
3.4
3.3
4.8
4.5
5.4
4.7

0.6
0.9
2.4
4.8
4.6
5.7
4.2

2.0
2.1
4.1
3.9
5.4
6.2
5.3

5.1
4.2
4.5
3.3
4.7
3.8
4.4

320
320
320
320
320
320
320

5
10
20
40
80
320
640

5.0
3.6
4.3
4.5
4.8
4.8
6.0

0.5
0.8
1.9
4.6
4.1
5.6
5.8

1.4
3.2
3.8
3.9
4.3
5.0
5.6

4.5
4.5
5.3
5.4
5.3
5.1
5.7

640
640
640
640
640
640
640

5
10
20
40
80
320
640

4.3
3.2
4.7
4.8
5.4
5.1
5.6

0.4
0.9
2.9
4.3
4.8
4.9
5.5

0.7
1.9
3.6
4.4
4.0
4.4
5.7

4.2
4.3
5.3
3.4
5.0
4.5
4.3
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Table 2. Monte Carlo Results: λ = 0

M T TP T ∗P TQ Ts
20
20
20
20
20
20
20

5
10
20
40
80
320
640

13.5
7.9
5.8
4.8
5.1
5.0
3.5

12.7
8.4
7.1
5.4
5.2
4.9
3.6

0.5
2.5
3.4
3.6
4.4
5.9
4.7

4.8
4.3
5.3
3.8
5.5
5.4
4.4

40
40
40
40
40
40
40

5
10
20
40
80
320
640

8.0
5.2
6.2
3.9
5.6
5.0
5.1

6.4
4.9
6.9
5.3
4.5
4.7
5.2

1.2
2.3
3.5
3.6
3.8
5.2
4.2

4.7
5.2
4.0
3.7
3.9
5.7
4.0

80
80
80
80
80
80
80

5
10
20
40
80
320
640

4.6
5.6
4.9
4.7
5.3
3.3
4.0

3.7
5.1
5.7
5.1
5.0
3.7
4.1

1.6
1.9
3.8
3.1
4.8
4.5
4.3

5.2
4.7
5.5
4.4
4.8
4.7
3.8

160
160
160
160
160
160
160

5
10
20
40
80
320
640

4.0
4.7
4.5
6.3
5.5
4.6
5.3

1.4
3.9
4.5
5.5
5.2
4.8
5.1

1.3
2.6
2.9
3.3
3.4
3.3
4.1

5.1
6.0
3.7
5.1
4.9
5.1
4.2

320
320
320
320
320
320
320

5
10
20
40
80
320
640

4.1
4.8
4.6
5.0
5.8
6.4
5.2

1.7
2.8
3.6
4.4
6.1
6.5
5.5

0.8
1.4
3.8
3.8
4.5
4.2
5.3

4.9
5.6
4.4
6.0
6.1
6.0
4.7

640
640
640
640
640
640
640

5
10
20
40
80
320
640

4.2
4.9
4.0
5.3
4.4
4.7
5.2

2.2
2.0
3.9
4.6
4.8
4.5
5.6

1.2
1.7
3.2
3.7
4.9
3.5
5.1

5.8
5.0
4.8
6.0
6.0
6.3
5.3
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Table 3. Monte Carlo Results: λ = 0.5

M T TP T ∗P TQ Ts
20
20
20
20
20
20
20

5
10
20
40
80
320
640

10.3
6.5
27.8
79.7
99.9
100.0
100.0

8.3
7.4
27.4
76.1
99.8
100.0
100.0

2.9
20.2
63.9
97.9
100.0
100.0
100.0

5.9
13.7
23.5
47.7
72.4
97.1
98.2

40
40
40
40
40
40
40

5
10
20
40
80
320
640

4.7
7.4
44.6
97.4
100.0
100.0
100.0

4.1
5.5
36.2
94.3
100.0
100.0
100.0

6.9
37.8
89.0
99.9
100.0
100.0
100.0

8.1
15.8
36.5
64.4
83.8
98.1
99.8

80
80
80
80
80
80
80

5
10
20
40
80
320
640

3.3
10.8
68.5
100.0
100.0
100.0
100.0

2.3
5.8
55.5
99.9
100.0
100.0
100.0

12.4
64.3
99.1
100.0
100.0
100.0
100.0

10.3
27.9
53.2
84.3
95.8
99.9
99.9

160
160
160
160
160
160
160

5
10
20
40
80
320
640

2.9
12.4
92.3
100.0
100.0
100.0
100.0

0.9
5.8
78.6
100.0
100.0
100.0
100.0

22.8
89.5
100.0
100.0
100.0
100.0
100.0

18.7
48.9
82.6
95.9
99.5
100.0
100.0

320
320
320
320
320
320
320

5
10
20
40
80
320
640

2.2
20.8
99.7
100.0
100.0
100.0
100.0

1.1
6.8
96.3
100.0
100.0
100.0
100.0

44.9
99.5
100.0
100.0
100.0
100.0
100.0

35.2
77.1
98.0
100.0
100.0
100.0
100.0

640
640
640
640
640
640
640

5
10
20
40
80
320
640

1.5
33.2
100.0
100.0
100.0
100.0
100.0

0.6
10.5
100.0
100.0
100.0
100.0
100.0

78.0
100.0
100.0
100.0
100.0
100.0
100.0

69.3
98.0
100.0
100.0
100.0
100.0
100.0

19



Table 4. Monte Carlo Results: λ = 0.9

M T TP T ∗P TQ Ts
20
20
20
20
20
20
20

5
10
20
40
80
320
640

10.7
6.5
11.7
32.7
75.8
100.0
100.0

6.0
4.8
12.8
35.3
76.5
100.0
100.0

2.4
11.4
30.1
64.6
94.2
100.0
100.0

6.4
14.7
20.0
29.2
44.6
71.5
82.9

40
40
40
40
40
40
40

5
10
20
40
80
320
640

4.5
5.4
16.0
49.0
93.5
100.0
100.0

2.5
4.2
14.8
50.1
92.5
100.0
100.0

3.1
19.0
45.5
87.1
99.9
100.0
100.0

10.0
17.0
26.0
41.5
58.8
89.4
94.2

80
80
80
80
80
80
80

5
10
20
40
80
320
640

3.4
5.9
23.3
72.8
99.7
100.0
100.0

1.7
3.2
19.7
73.2
99.6
100.0
100.0

4.3
28.9
71.3
98.0
100.0
100.0
100.0

10.7
21.1
33.9
53.5
73.2
95.2
98.4

160
160
160
160
160
160
160

5
10
20
40
80
320
640

4.0
6.0
38.2
93.4
100.0
100.0
100.0

0.9
2.1
30.6
92.4
100.0
100.0
100.0

8.8
46.6
92.5
100.0
100.0
100.0
100.0

16.8
28.9
47.0
68.1
85.7
98.9
99.5

320
320
320
320
320
320
320

5
10
20
40
80
320
640

2.9
9.1
60.2
99.8
100.0
100.0
100.0

1.0
3.7
49.7
99.7
100.0
100.0
100.0

14.7
73.3
99.9
100.0
100.0
100.0
100.0

22.2
45.0
68.6
88.4
96.7
99.7
100.0

640
640
640
640
640
640
640

5
10
20
40
80
320
640

2.7
12.3
86.6
100.0
100.0
100.0
100.0

0.5
4.8
77.2
100.0
100.0
100.0
100.0

32.1
93.3
100.0
100.0
100.0
100.0
100.0

40.9
69.9
91.0
98.2
100.0
100.0
100.0
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5 Empirical Application

Recently, a number of empirical papers apply a dynamic game to data and es-
timate parameters of the game using two step methods. These papers include
Ryan (2012), Collard-Wexler (2013), Sweeting (2013), Beresteanu, Ellickson
and Misra (2010), and the empirical section of Aguirregabiria and Mira (2007),
among others. Panel data frequently contain a number of markets over a rel-
atively short time period. Researchers tend to pool different markets together
to estimate policy functions in the first stage. To do this pooling, an impor-
tant assumption is that a single equilibrium is played in every market. This
section tests this single equilibrium assumption using the data of Ryan (2012).
We chose Ryan (2012) because it is one of a few papers already published and
because the number of state variables is relatively small so that it fits well our
illustrative purpose.

To evaluate the welfare costs of the 1990 Amendments to the Clean Air Act
on the Portland cement industry in the U.S., Ryan (2012) develops a dynamic
oligopoly model based on Ericson and Pakes (1995) and estimates the model
using a two-step method developed by Bajari, Benkard and Levin (2007). In
his application, there are 23 geographically separated markets. To estimate
firms’ policy functions in the first stage, Ryan (2012) assumes that the data are
generated by a single Markov Perfect Equilibrium. We apply our test to check
this assumption. One caveat is that we use a discrete state space framework,
while Ryan (2012) uses a continuous state space. Thus, we have to discretize the
state variables in Ryan (2012)’s application to perform the test. For a fine grid,
however, little differences between the two frameworks are expected in practice.

We first summarize Ryan (2012)’s model. Then, we explain the procedure
of our test in this context.

5.1 Ryan (2012)’s model

Ryan (2012) assumes that N firms play a dynamic oligopoly game in each
regional cement market. Firms make decisions to maximize the discounted
sum of expected profits. The timing of the decisions is as follows. At the
beginning of each period, incumbent firms draw a private scrap value and decides
whether to exit the market or not. Then, potential entrants receive a private
draw of entry costs and investment costs. At the same time, incumbent firms
who have not decided to exit the market draw private costs of investment and
divestment. Then, all entry and investment decisions are made simultaneously.
Firms compete in the product market and profits realize. Finally, firms enter and
exit, and their capacity levels change according to the investment/divestment
decisions in this period.

Let s = (s1, . . . , sN ) ∈ S be the capacity levels of N firms and let εi be
a vector of all private shocks to firm i. Assuming that εi is iid over time and
focusing on pure Markovian strategies, firm i’s strategy is a mapping from states
and private shocks to actions; ai : S×E → Ai, where E is the domain of εi. The
collection a = (a1, . . . , aN ) denotes the profile of strategies. Let σi(a|s) denote
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firm i’s belief that action profile a is observed in state s. The game payoff for
firm i is defined as the discounted sum of expected period payoffs given the
beliefs σi now and in the future. The collection (a1, . . . , aN , σ1, . . . , σN ) is a
MPE if (i) for all i, the strategy ai is a best response to a−i given the beliefs
σi at all states s ∈ S and (ii) for all i, the beliefs σi are consistent with the
strategies. The existence of pure strategy equilibria in a class of dynamic games
is provided in Doraszelski and Satterthwaite (2010). The model of Ryan (2012)
also falls in this class. Furthermore, multiplicity of equilibria is prevalent.

Ryan (2012) follows the two-step method developed by Bajari, Benkard and
Levin (2007). In the first stage, Ryan (2012) estimates the entry, exit, and
investment policies as a function of states. Because of the issue of multiplicity,
different equilibria may be played in different markets. However, since Ryan
(2012) has only 19 years of time series compared to a large state space, estimat-
ing policy functions market by market is not practical. Thus, he imposes the
following assumption:

Assumption 1 The same equilibrium is played in all markets.

Based on this assumption Ryan pools all markets when estimating policy func-
tions. Our aim is to test the validity of this assumption.

In addition to Assumption 1, Ryan (2012) assumes flexible functional forms
for the policy functions. First, the probability of entry is modeled as a probit
regression,

Pr{firm i enters in period t| si = 0, s} (14)

= Φ
(
ψ1 + ψ2(

∑
j 6=i

stj) + ψ31{t > 1990}
)
,

where Φ(·) is the cdf of the standard normal. The dummy 1{t > 1990} is
introduced to account for the change in firms’ behavior after the introduction
of the 1990 Amendments.

Second, the exit probability is also modeled as probit,

Pr{firm i exits in period t| si > 0, s} (15)

= Φ
(
ψ4 + ψ5s

t
i + ψ6(

∑
j 6=i

stj) + ψ71{t > 1990}
)
.

Finally, the investment policy is modeled using the empirical model of the
(S,s) rule by Attanasio (2000). Specifically, firms adjust the current capacity
level to a target level of capacity when current capacity exceeds one of the bands
around the target level. The target level s∗ti is given by

ln s∗ti = λ′1b1(sti) + λ′2b2(
∑

j 6=i
stj) + u∗ti , (16)

where u∗ti is iid normal with zero mean and a homoscedastic variance, the func-
tions b1(·) and b2(·) denote cubic b-spline, which is to capture flexible functional
forms in the variables sti and

∑
j 6=i s

t
j . The lower and upper bands are given by

sti = s∗ti − exp
(
λ′3b1(sti) + λ′4b2(

∑
j 6=i

stj) + ubti

)
(17)
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and
sti = s∗ti + exp

(
λ′3b1(sti) + λ′4b2(

∑
j 6=i

stj) + ubti

)
, (18)

where ubti and ubti are assumed iid normal with zero mean and equal variance. It
is assumed that the upper and lower bands are symmetric functions of the target
capacity. To estimate (16), Ryan (2012) simply replaces ln s∗ti with ln st+1

i and
runs OLS using the sample with sti 6= st+1

i . To estimate parameters in (17) and
(18), Ryan (2012) regresses ln |st+1

i − sti| on b1 and b2 using the sample with
sti 6= st+1

i . The implicit assumption here is that the level of capacity observed
before the change (i.e., sti) is equal to either the lower or the upper bands
depending on whether the investment is positive or negative.9 To estimate the
variances of u∗ti , u

bt
i , and ubti , Ryan (2012) calculates the sum of the squared

residuals at the estimated parameters and divide it by (n− kλ), where n is the
sample size used in least squares and kλ is the number of parameters in λ for
each equation.

Once all these reduced form parameters are estimated, the value functions
can be computed by forward simulation. If Assumption 1 holds and the func-
tional forms are flexible enough, the first stage delivers consistent estimates of
choice probabilities associated with the equilibrium that is played in the data.
However, if there are more than one equilibria in the data, estimates of choice
probabilities are not consistent, and estimates of structural parameters in the
second stage are not consistent either.

The model specified above implies the Markov transition probability P and
the corresponding steady-state distribution Q. Although Ryan (2012) uses a
parametric specification in his first stage estimate for the feasibility reason, we
apply our test directly to P and Q. It is a major advantage of our tests that
the model’s details do not have to be specified.

5.2 Data

We download the data from the Econometrica webpage. The dataset contains
information on all the Portland cement plants in the United States from 1980 to
1998. Following Ryan (2012), we assume that every plant is owned by different
firms. For each plant, we observe the name of company that owns the plant and
the location of the plant. A plant consists of several kilns. For each kiln, we
observe the fuel type, process type, and the year when the kiln was installed.
We organize the data in the following way. The capacity of a plant is simply
defined as the sum of capacity of all kilns that are installed in the plant. Plants
sometimes change their company name. One reason is that plants are sold to
a different company. Another possibility is that two or more firms merge and
names change accordingly. In such cases, it appears as if the old plant exits the
market and a new firm (plant) enters the market at the same time. To deal with
such spurious entry/exit, we check information of kilns (fuel type, process type,
year of installation) installed in the plant that changed the company name, and

9For an interpretation and justification of this implicit assumption, see Attanasio (2000).
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if those information have not changed at all, we assume that the plant stays in
the market (we assume that no entry and exit took place associated with this
name change).

As a result, we obtained the same plant-level data as Ryan (2012). Table 5
shows its summary statistics.

Table 5. Summary Statistics of Plant-Level Data

Min Mean Max Std. Dev.
Sample

size
Quantity (1,000 tons) 177 699 2348 335 2233
Capacity (1,000 tons) 196 797 2678 386 2233
Investment (1,000 tons) -728 2.19 1140 77.60 2077

5.3 Testing assumption of the same equilibrium

Ryan (2012)’s panel data contain states and actions over 19 years for 23 dif-
ferent markets.10 Since our Monte Carlo study indicates that the steady-state
distribution test by TQ performs better than the other tests when the number
of markets is small, we first apply the steady-state distribution test to Ryan
(2012)’s data. Then to account for the possibility that multiple equilibria exist
but the test based on TQ is not able to detect, we also apply the state transition
probability test by TP and its optimal version T ∗P . For the sake of completeness,
we apply the test based on Ts as well. The original state space of Ryan (2012)
consists of firm-level capacities. We focus on a lower-dimensional state variable
consisting of the total market-level capacity stj obtained by summing capacity

levels across firms, i.e. stj =
∑
i s
it
j . Hereafter we consider testing the null hy-

potheses HQ
0 , HP

0 , and Hs
0 based on stj . Note that a rejection of the null based

on the market-level capacity implies a rejection of the null for the full model
with firm-level capacities, but that the converse is not true.

Our test proceeds as follows. Ryan (2012) assumed that the same equilibrium
was played in all markets before 1990 and that another identical equilibrium
was played in all markets after 1990. We test these hypotheses in different time
periods by the statistics TQ, TP , T ∗P , and Ts .

To implement these tests, we discretize the support of stj into 50 bins with
equal intervals of 250 thousand tons (0-250 thousand tons, 250-500 thousand
tons, and so on). Figure 1 depicts the discretized state distributions before and
after 1990.

10Ryan (2012)’s Java code available at the Econometrica website generates only 22 markets,
while his first-stage estimation appears to be using 23 markets (23 markets times 18 years
equals 414 observations). One natural way to increase the number of markets is to disaggregate
one large market into two. In California, we can observe two clusters of plants; one in Northern
California around the San Francisco area and another in Southern California around the Los
Angeles area. These two clusters are remote by more than 350 miles. Thus, we believe that
Northern and Southern California can be considered two separate markets.
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Figure 1: Steady-State Distribution of Market-Level Capacity (1,000 tons)

Before 1990 After 1990

For these samples, the steady-state distributions are estimated by the rela-
tive frequencies

Q̂before
j (s) =

1

T before

1990∑
t=1980

1{stj = s} for s ∈ {1, . . . , 50} and j = 1, . . . , 23,

Q̂after
j (s) =

1

T after

1998∑
t=1991

1{stj = s} for s ∈ {1, . . . , 50} and j = 1, . . . , 23.

Then the test statistic TQ is obtained as

T lQ = T l
23∑
j=1

50∑
s=1

{Q̂lj(s)− Q̂l(s)}2, (19)

for l = {before, after}. Also for d = (s′, s) ∈ {1, . . . , 50}2, the state transition
probabilities are estimated by

P̂ before
j (d) =

∑1990
t=1980 1{s

t+1
j = s′, stj = s}∑1990

t=1980 1{stj = s}
for j = 1, . . . , 23,

P̂ after
j (d) =

∑1997
t=1991 1{s

t+1
j = s′, stj = s}∑1997

t=1991 1{stj = s}
for j = 1, . . . , 23,

and P̂ before(d) and P̂ after(d) are defined as in (6). The test statistic TP is
obtained as

T lP =

23∑
j=1

∑
d∈D

W l
j(d){P̂ lj(d)− P̂ l(d)}2 for l = {before, after}, (20)
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where W l
j(d) =

∑T l−1
t=1 1{stj = s}/P̂ l(d). The test statistic T ∗P is given by

T ∗lP = 2

23∑
j=1

∑
d∈D

W l
j(d)P̂ lj(d) log

P̂ lj(d)

P̂ l(d)
for l = {before, after}. (21)

Finally, the test statistic Ts is defined accordingly as in (13).11

The bootstrap critical values for the first three tests are computed as fol-
lows. For each bootstrap iteration b, we simulate the game for 19 years and
23 markets. More precisely, we draw an initial state from the distribution
M−1

∑M
j=1 Q̂

before
j (·) and generate Markov chains by the transition matrix P̂ before(·)

for t = 1980, . . . , 1990. In the same way, we use M−1
∑M
j=1 Q̂

after
j (·) and P̂ after(·)

to generate a sequence of states for t = 1990, . . . , 1998. For the simulated
b-th bootstrap sample, we estimate {Q̂l,bj (s), P̂ l,bj (d), P̂ l,b(d), f l,bj (s)} for all

j = 1, . . . , 23, l = {before, after}, s = 1, . . . , 50, and d ∈ {1, . . . , 50}2. We then
compute the bootstrap counterparts T bQ, T bP , and T ∗bP using (19), (20) and (21),
respectively. For the test by Ts, we use the same initial state as is observed for
each market. Other steps that follow are the same as other tests. The number
of bootstrap iterations is B = 999.

Table 6. Baseline Results

Before 1990
TP T ∗P TQ Ts

Test statistics 199.481 159.426 101.549 273.867
5% critical value 174.548 144.663 113.454 292.766
p-value 0.009 0.010 0.330 0.125

After 1990
TP T ∗P TQ Ts

Test statistics 89.430 90.579 81.032 131.867
5% critical value 93.275 91.780 95.543 179.406
p-value 0.089 0.055 0.599 0.619

Table 6 summarizes the test results. TP and T ∗P imply that we reject the
hypothesis that the equilibrium played in the data is identical at the 1% signif-
icance level for the period before 1990 and at the 10% significance level for the
period after 1990. The fact that the test by TQ does not reject the null, while
the tests by TP and T ∗P reject it implies that there are multiple equilibria whose
conditional choice probabilities have similar (or perhaps identical) steady-state
distributions. The result of the test by Ts may be because the power is low
under the current sample size.

As a robustness check, we exclude seemingly outlier markets. Figure 2 re-

ports the average (over 19 time periods) total capacity, 1
T

∑T
t=1

(∑N
i=1 s

t
ij

)
, by

market.

11We replace the variance matrix with the identity matrix.
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Figure 2: Average Market-Level Capacity from 1980-1998

As we can see in Figure 2, Markets 5 (Southern California), 21 (Pennsylva-
nia), and 23 (Texas) appear to be outliers. We perform the test by TP and T ∗P
for the subsample without using data from these three markets.

Table 7. Test using subsample (TP and T ∗P )

TP T ∗P
Before 1990 After 1990 Before 1990 After 1990

Test statistics 194.481 82.216 152.834 82.664
5% Critical value 171.205 89.031 141.954 86.162
p value 0.011 0.125 0.010 0.089

Table 7 summarizes the results of the robustness check. This suggests that
we still reject the hypothesis HP

0 of identical equilibrium especially for the period
before 1990.

6 Conclusion

This paper proposes several statistical tests for finite state Markov games to
examine the null hypothesis that the data are generated by a single equilibrium.
The tests are based on the conditional choice and state transition probabilities,
the steady-state distribution, and the conditional state distribution. We perform
a Monte Carlo study and find that the steady-state distribution test works well
and has high power even with a small number of markets and time periods. We
apply our tests to the empirical application of Ryan (2012) and reject the null
hypothesis of single equilibrium in the data.

Three caveats need to be emphasized. First, multiplicity of equilibria and
the existence of unobservable market level heterogeneity are observationally
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equivalent in our framework. Our tests detect both, multiple equilibria and
unobservable heterogeneity. However, in case of a rejection, a researcher is left
agnostic about causes of the rejection. Our framework gives no guidance for
the researcher on a next step. In principle, unobservable heterogeneity and
multiplicity of equilibria are different in that the former is payoff-relevant, while
the latter is not. We could separate these two sources of mixing at the cost of
fully specifying the payoff structure of the game12. This is left for future work.

Second, in case of rejection, researchers may be tempted to apply the tests
repeatedly to subsamples until the null hypothesis is no longer rejected. While
this exercise may be informative for identifying the cause of the rejection, it is
not statistically justified. In general, if the same test is applied to the subsample
after a rejection based on the full sample, the test statistic should be modified
to incorporate the fact that the test rejects the null with the full sample. Such a
sequential testing procedure would involve more sophisticated statistical theory
and is beyond the scope of our paper.

Third, our test statistics are proposed within the finite state discrete time
Markov class. The theory of finite state Markov chains is well developed and
allows us to borrow well known results from the probability theory literature.
To extend the tests to a richer state space, we would need to borrow results from
a more involved statistical literature making the tests perhaps less accessible to
researchers. However, we believe that our tests cover a wide class of dynamic
games that are used in the empirical IO literature. With a bounded state space,
as is typical the case in IO applications, the observable difference between games
with finite state and games with a continuous state space seem superficial and
not essential as in practice the data are finite. Researchers may use a finer grid
when the data become richer.

12In a broader context, while leaving the details of the game unspecified makes our frame-
work general, a researcher could be better off by exploiting some theoretical restriction implied
by a specific model, and thereby having higher power. There is a trade-off between generality
of the framework and power of the test. How much a researcher wants to specify her model
for testing purposes depends on the application in question.
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A Appendix

A.1 Proof of Proposition 1

We first consider the statistic TP for Hσ
0 defined by (5), that is

TP =

M∑
j=1

∑
(a,s)∈A×S

{fj(a, s)− fj(s)σ̂(a|s)}2

fj(s)σ̂(a|s)
,

where σ̂(a|s) =
∑M

j=1 fj(a,s)∑M
j=1 fj(s)

. Let ξj(a, s) = {fj(a, s) − fj(s)σj(a|s)}/fj(s)1/2

and define the (mams)-dimensional vector ξj = {ξj(a, s)a∈A}∈s∈S. Since atj |stj
is conditionally independent from past values, the Markov chain P is stationary,
and all states of P communicate, the same argument to the proof of Billingsley
(1961, Theorem 3.1) implies

ξj
d→ N(0,diag{Vj(s)}s∈S),

for each j = 1, . . . ,M , where [Vj(s)](k,l) = 1{k = l}σj(ak|s) − σj(ak|s)σj(al|s)
for k, l = 1, . . . ,ma. Thus, we obtain∑

(a,s)∈A×S

{fj(a, s)− fj(s)σj(a|s)}2

fj(s)σj(a|s)
d→ χ2(ms(ma − 1)), (22)

for each j = 1, . . . ,M . Note that under the set-up of Section 2, σ̂(a|s) is the
maximum likelihood estimator of σ(a|s) under Hσ

0 : σ1 = · · · = σM = σ using
the full-sample (atj , s

t
j)t=1,...,T for j = 1, . . . ,M . Therefore, based on (22), the

asymptotic theory of the chi-squared statistic (e.g., Lemma 17.3 of van der
Vaart, 1998) implies the conclusion.

We now consider the statistic TP for HP
0 defined by (6), that is

TP =

M∑
j=1

∑
(s′,s)∈S×S

{f1
j (s′, s)− f1

j (s)p̂(s′|s)}2

f1
j (s)p̂(s′|s)

,

where p̂(s′|s) =
∑M

j=1 f
1
j (s′,s)∑M

j=1 f
1
j (s)

. In this case, Billingsley (1961, Theorem 3.1) di-

rectly implies the asymptotic normality of {f1
j (s′, s) − f1

j (s)pj(s
′|s)}/f1

j (s)1/2.
Thus, a similar argument yields the conclusion.

A.2 Proof of Proposition 2

We prove the optimality for T ∗P to test HP
0 . The case for testing Hσ

0 is shown in
the same manner although the notation becomes more complicated.

Let ωj = (s1
j , . . . , s

T
j ) ∈ Ωj and Ω = Ω1 × · · · × ΩM be the sample space

of the observables ω = (ω1, . . . , ωM ). The sample space Ω is partitioned into
different types {Λl}l=1,...,L, where {Λl}l=1,...,L is a collection of disjoint subsets
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of Ω satisfying Ω = ∪Ll=1Λl and any element in Λl yields the same joint counts
{f1
j (·, ·)}j=1,...,M . A test is defined as a partition (ΩA,ΩR) of Ω, where ΩA and

ΩR mean the acceptance and rejection regions, respectively.
First, we show that for any test (ΩA,ΩR), there exists a test (Ω̃A, Ω̃R) based

only on the joint counts {f1
j (·, ·)}j=1,...,M such that

lim
T→∞

1

T − 1
log Pr{Ω̃R : HP

0 } ≤ lim
T→∞

1

T − 1
log Pr{ΩR : HP

0 },

lim
T→∞

1

T − 1
log Pr{Ω̃A : HP

1 } ≤ lim
T→∞

1

T − 1
log Pr{ΩA : HP

1 }, (23)

Note that the subset ΩA or ΩR contains at least half of the elements in Λl
for each l = 1, . . . , L. Thus, for any (ΩA,ΩR), we can define (Ω̃A, Ω̃R) as
follows. For each l = 1, . . . , L, if ΩA (or respectively ΩR) contains at least half
of the elements in Λl, then let Ω̃A (or respectively Ω̃R) include all elements in
Λl. Observe that (Ω̃A, Ω̃R) depends only on {f1

j (·, ·)}j=1,...,M by construction.

Now, pick any type Λl such that Λl ⊂ Ω̃R. It holds

Pr{ΩR : HP
0 } ≥ Pr{ΩR ∩ Λl : HP

0 } ≥
1

2
Pr{Λl : HP

0 }

=
1

2

M∏
j=1

Pr{Λl,j : HP
0 }, (24)

where the first inequality follows from the set inclusion relationship, the second
inequality follows from the facts that at least half of elements of Λl is contained
in ΩR (due to Λl ⊂ Ω̃R) and that all elements in Λl occur with same probability,
and the equality follows from independence of (ω1, . . . , ωM ) and Λl = Λl,1×· · ·×
ΛM . By Gutman (1989, Lemma 1), if the initial values (s0

1, . . . , s
0
M ) are fixed,

for any probability measure P on Ω given by a Markov chain, there exists a
positive sequence δT = O(T−1 log T ) such that

exp (−(T − 1){K(qj,l, p) + δT }) ≤ Pr{Λl,j : P} ≤ exp (−(T − 1){K(qj,l, p)− δT }) ,
(25)

where qj,l(·, ·) is the two-period joint empirical measure given by the type Λl,j ,
p(·, ·) is the two-period joint measure given by P , and

K(qj,l, p) =
∑
s∈S

qj,l(s)
∑
s′∈S

qj,l(s
′|s) log

qj,l(s
′|s)

p(s′|s)

is the Kullback-Leibler divergence for qj,l and p. Combining (24) and (25),

Pr{ΩR : HP
0 } ≥

1

2
exp

−(T − 1)


M∑
j=1

K(qj,l, p) + δ1T


 , (26)

for some δ1T = O(T−1 log T ). Here p is the common joint measure under HP
0 .
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Thus, we have

Pr{Ω̃R : HP
0 } = Pr{ΩR : HP

0 }+
∑

l:Λl⊂Ω̃R

Pr{ΩA ∩ Λl : HP
0 }

≤ Pr{ΩR : HP
0 }+

∑
l:Λl⊂Ω̃R

exp

−(T − 1)


M∑
j=1

K(qj,l, p)− δ2T




≤ Pr{ΩR : HP
0 }+

∑
l:Λl⊂Ω̃R

Pr{ΩR : HP
0 } exp((T − 1)δ3T )

= Pr{ΩR : HP
0 }{1 + LR exp((T − 1)δ3T )},

for some δ2T , δ3T = O(T−1 log T ), where the first equality follows from the
construction of Ω̃R, the first inequality follows from Pr{ΩA∩Λl : HP

0 } ≤ Pr{Λl :
HP

0 } and (25), the second inequality follows from (26), and the last equality

follows from the definition of LR =
∑L
l=1 1{Λl ⊂ Ω̃R}. Therefore, the first

inequality in (23) follows by (T − 1)−1 logLR → 0. The second inequality in
(23) is obtained in the same manner (by replacing Ω̃R, ΩR, and HP

0 with Ω̃A,
ΩA, and HP

1 , respectively). By (23), we can focus on the test defined by the
joint counts {f1

j (·, ·)}j=1,...,M .

Next, we show (10). Pick any test (Ω̃A, Ω̃R) based only on {f1
j (·, ·)}j=1,...,M

that satisfies (9). Then there exists δ4T = O(T−1 log T ) such that

e−α(T−1) ≥ Pr{Ω̃R : HP
0 } =

∑
l:Λl⊂Ω̃R

M∏
j=1

Pr{Λl,j : HP
0 }

≥ exp

−(T − 1)


M∑
j=1

K(qj,l, p) + δ4T


 , (27)

for any l satisfying Λl ⊂ Ω̃R and all T large enough, where the first inequality
follows from (9), the equality follows from independence of (ω1, . . . , ωM ) and
Λl = Λl,1 × · · · × ΛM and the fact that Ω̃R depends only on the types, and

the second inequality follows from (25). Thus, if the rejection by Ω̃R occurs,
then the observed empirical joint empirical measure {qj}j=1,...M satisfies (27)

and setting p as the joint empirical measure qtotal(·, ·) = 1
M(T−1)

∑M
j=1 f

1
j (·, ·)

in (27) implies

α− δ4T ≤
M∑
j=1

K(qj , qtotal) =
T ∗P

2(T − 1)
,

for all T large enough, and (10) follows.
Finally, we show (8). Define the entropy of a two-period joint measure q(·, ·)

as
H(q) = −

∑
s∈S

q(s)
∑
s′∈S

q(s′|s) log q(s′|s).
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Then by the definition of K(·, ·), the test statistic is written as

T ∗P
2(T − 1)

= MH(qtotal)−
M∑
j=1

H(qj). (28)

Let Ω∗R be the rejection region of the test 1{T ∗P ≥ 2(T − 1)(α− δ4T )}. Also, let
q
ωj

j (·, ·) be the two-period joint empirical measure based on ωj and qωtotal(·, ·) =

M−1
∑M
j=1 q

ωj

j (·, ·). We have

Pr{Ω∗R : HP
0 } =

∑
ω∈Ω∗R

M∏
j=1

Pr{ωj : HP
0 }

≤
∑
ω∈Ω∗R

exp(−(T − 1)MH(qωtotal))

≤ exp(−(T − 1)(α− δ4T ))
∑
ω∈Ω∗R

exp

−(T − 1)

M∑
j=1

H(q
ωj

j )


≤ exp(−(T − 1)(α− δ4T ))

M∏
j=1

∑
ωj∈Ωj

exp(−(T − 1)H(q
ωj

j ))

≤ exp(−(T − 1)(α− δ4T ) + (T − 1)O(T−1 log T )),

where the equality follows from independence of (ω1, . . . , ωM ), the first inequal-

ity follows from the fact that under HP
0 the log likelihood

∑M
j=1 log Pr{ωj : HP

0 }
of observed ω is maximized by qωtotal with maximum −M(T−1)H(qωtotal), the sec-

ond inequality follows from ω ∈ Ω∗R and (28) (i.e., MH(qωtotal)−
∑M
j=1H(q

ωj

j ) ≥
2(α−δ4T )), the third inequality follows from the Jensen inequality and Ω∗R ⊂ Ω,
and the last inequality follows from the upper bounds of the entropy and num-
ber of types of Markov chains in Davisson, Longo and Sgarro (1981, Theorem
1 combined with eq. (4)). Therefore, (8) follows.

A.3 Detail for the test statistic TQ

The asymptotic variance Vj in (11) has the (k, l)-th element

vjkl = 1{k = l}qjk − q
j
kq
j
l + qjk

∞∑
m=1

(p
j(m)
kl − ql) + qjl

∞∑
m=1

(p
j(m)
lk − qk),

qjk is the k-th element of Qj , p
j(m)
kl is the (k, l)-th element of (Pj)m. It should be

noted that rank(Vj) = ms−1 due to the linear constraint (1, . . . , 1)′Fj = T −1.

Under HQ
0 , it holds V = V1 = · · · = VM and the common asymptotic variance

V can be estimated by e.g. Newey and West’s (1987) estimator V̂ whose (k, l)-th
element is defined as

v̂kl = 1{k = l}q̂k − q̂kq̂l + q̂k

bT∑
m=1

(p̂
(m)
kl − q̂l) + q̂l

bT∑
m=1

(p̂
(m)
lk − q̂k),
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where q̂k is the k-th element of 1
M(T−1)

∑M
j=1 F

j , p̂
(m)
kl is the (k, l)-th element of

P̂m, and P̂ =
{

1
M(T−1)

∑M
j=1 f

1
j (s′, s)

}
s,s′∈S

. Also the bandwidth bT satisfies

bT →∞ and T−1/2bT → 0.
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[12] Chiappori, P. A. and B. Salanié (2000) Testing for asymmetric information
in insurance markets, Journal of Political Economy, 108, 56-78.

[13] Collard-Wexler, A. (2013) Demand fluctuations in the ready-mix concrete
industry, Econometrica, 81, 1003-1037.

[14] Davisson, L. D., Longo, G. and A. Sgarro (1981) The error exponent for
the noiseless encoding of finite ergodic Markov sources, IEEE Transactions
on Information Theory, 27, 431-438.

[15] de Paula, A. and X. Tang (2011) Inference of signs of interaction effects in
simultaneous games with incomplete information, Econometrica, 80, 143-
172.

34



[16] Doraszelski, U. and M. Satterthwaite (2010) Computable Markov-perfect
industry dynamics, RAND Journal of Economics, 41, 215-243.

[17] Dunne, T., Klimek, S., Roberts, M. and D. Xu (2013) Entry, exit and
the determinants of market structure, RAND Journal of Economics, 44,
462-487.

[18] Ericson, R. and A. Pakes (1995) Markov perfect industry dynamics: a
framework for empirical work, Review of Economic Studies, 62, 53-82.

[19] Fan, Y. and M. Xiao (2012) Competition and subsidies in the deregulated
U.S. local telephone industry, Working paper.

[20] Gallager, R. G. (1996) Discrete Stochastic Processes, Kluwer, Boston.

[21] Gutman, M. (1989) Asymptotically optimal classification for multiple tests
with empirically observed statistics, IEEE Transactions on Information
Theory, 35, 401-408.

[22] Hoeffding, W. (1965) Asymptotically optimal tests for multinomial distri-
butions, Annals of Mathematical Statistics, 36, 369-401.

[23] Horowitz, J. L. (2003) Bootstrap methods for Markov processes, Econo-
metrica, 71, 1049-1082.

[24] Hotz, J. and R. Miller (1993) Conditional choice probabilities and the es-
timation of dynamic models, Review of Economic Studies, 60, 497-529.

[25] Jeziorski, P. (2012) Estimation of cost efficiencies from mergers: application
to U.S. radio, Working paper.

[26] Jofre-Bonet, M. and M. Pesendorfer (2003) Estimation of a dynamic auc-
tion game, Econometrica, 71, 1443-1489.

[27] Kasahara, H. and K. Shimotsu (2009) Nonparametric identification of finite
mixture models of dynamic discrete choices, Econometrica, 77, 135-175.

[28] Kasahara, H. and K. Shimotsu (2012) Sequential estimation of structural
models with a fixed point constraint, Econometrica, 80, 2303-2319.

[29] Levin, D. A., Peres, Y. and E. L. Wilmer (2009) Markov Chains and Mixing
Times, American Mathematical Society.

[30] Lin, H. (2011) Quality choice and market structure: a dynamic analysis of
nursing home oligopolies, Working paper.

[31] Maican, F. and M. Orth (2012) Store dynamics, differentiation and deter-
minants of market structure, Working paper.

[32] Maskin, E. and J. Tirole (1988) A theory of dynamic oligopoly I: overview
and quantity competition with large fixed costs, Econometrica, 56, 549-569.

35



[33] McFadden, D. (1973) Conditional logit analysis of qualitative choice behav-
ior, in P. Zarembka (ed.), Frontiers in Econometrics, 105-142, Academic
Press: New York.

[34] Minamihashi, N. (2012) Natural monopoly and distorted competition: ev-
idence from unbundling fiber-optic networks, Working paper.

[35] Navarro, S. and Y. Takahashi (2012) A semiparametric test of agent’s in-
formation sets for games of incomplete information, Working paper.

[36] Newey, W. K. and K. D. West (1987) A simple, positive semidefinite, het-
eroskedasticity and autocorrelation consistent covariance matrix, Econo-
metrica, 55, 703-708.

[37] Nishiwaki, M. (2010) Horizontal mergers and divestment dynamics in a
sunset industry, Working paper.

[38] Pakes, A., Ostrovsky, M. and S. Berry (2007) Simple estimators for the
parameters of discrete dynamic games (with entry/exit examples), RAND
Journal of Economics, 38, 373-399.

[39] Pesendorfer, M. and P. Schmidt-Dengler (2008) Asymptotic least squares
estimators for dynamic games, Review of Economic Studies, 75, 901-928.

[40] Pollard, D. (1984) Convergence of Stochastic Processes, New York:
Springer-Verlag.

[41] Ryan, S. (2012) The costs of environmental regulation in a concentrated
industry, Econometrica, 80, 1019-1061.

[42] Sanches, F. and D. Silva-Junior (2012) Public banks improve private banks
performance: evidence from a dynamic structural model, Working paper.

[43] Snider, C. (2009) Predatory incentives and predation policy: the American
Airlines case, Working paper.

[44] Srisuma, T. and O. Linton (2012) Semiparametric estimation of Markov
decision processes with continuous state space: discrete control, Journal of
Econometrics, 166, 320-341.

[45] Suzuki, J. (2013) Land use regulation as a barrier to entry: evidence from
the Texas lodging industry, International Economic Review, 54, 495-523.

[46] Sweeting, A. (2013) Dynamic product positioning in differentiated product
industries: the effect of fees for musical performance rights on the commer-
cial radio industry, Econometrica, 81, 1763-1803.

36


