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Abstract

Logging of tropical forests accounts for almost one-fifth of greenhouse gas emissions
worldwide and threatens some of the world’s most diverse ecosystems. This paper
demonstrates that local-level political economy substantially affects the rate of tropi-
cal deforestation in Indonesia. Using a novel MODIS satellite-based dataset that tracks
annual changes in forest cover over an 8-year period, we find three main results. First,
we show that increasing numbers of political jurisdictions leads to increased deforesta-
tion. This effect, particularly for illegal logging, is consistent with a model of Cournot
competition between jurisdictions determining how much wood to extract from their
forests. Second, we demonstrate the existence of “political logging cycles," where illegal
logging increases dramatically in the years leading up to local elections. Third, we show
that, for local government officials, logging and other sources of rents are short-run sub-
stitutes, but that this affect disappears over time as the political equilibrium shifts.
The results document how local political economy forces lead to substantial deviations
from optimal logging practices and demonstrate how the economics of corruption can
drive natural resource extraction.
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1 Introduction

Satellite imagery reveals vast expanses of forest extending across the Amazon Basin, the
Congo Basin, and South East Asia. Unlike the great forests in the Northern hemisphere,
these tropical forests have been experiencing rapid rates of deforestation (Hansen and DeFries
2004)). In fact, relative to a baseline of 1900 the majority of tropical forest has already been
felled, with the rate of deforestation accelerating in the last two decades (Holmes 2002;
FWI/GEFW 2002; Hansen et al. 2008).

Understanding what lies behind tropical deforestation is important not just for reasons
of preserving biodiversity, but also because of its critical role in global climate change (Stern
2006; Nabuurs et al. 2007). Tropical deforestation accounts for almost 20 percent of global
emissions of greenhouse gases (Hooijer et al. (2006); [PCC (2007); |[Kindermann et al.
(2008)). This is more than is contributed globally by the transportation sector as a whole,
and is roughly equivalent to the total greenhouse gas contribution of the United States.
In fact, tropical deforestation places Indonesia just behind the US and China as the third
largest producer of greenhouse gases worldwide.

While there is an extensive literature on the optimal management of forest resources
(e.g., Dasgupta and Heal 1974, Samuelson 1976, |Dasgupta 1982, Brown 2000), and while
most countries’ official policy seeks to implement these types of sustainable logging systems,
actual practice diverges significantly from best practice. Local bureaucrats and politicians
have much to gain by allowing logging to take place outside official concessions (Barr et al.
2006)) or by sanctioning the transport and processing of illegally harvested logs (Casson
2001a). On net, in many cases over fifty percent of the wood yield involves some illegal
action — the figure for Indonesia, for example, is estimated at 60-80% (CIFOR 2004)). In this
context, viewing deforestation as the result of optimal forest extraction policies implemented
by a central planner misses the reality of what happens on the ground. Instead, what matters
are the incentives that local politicians and bureaucrats face to either protect tropical forests
or to allow their destruction.

This paper investigates how these local political economy incentives affect deforestation
in Indonesia, home to one of the largest and most valuable tropical forest reserves in the
world (FWI/GFW 2002). Although all Indonesian forests are legally owned by the national
government, local district governments have a substantial de facto role in forest administra-
tion, particularly as the gatekeepers for illegal logging. By using imagery from the MODIS
satellite, which was put into orbit in December 1999, we are able to monitor, at a 250m by
250m resolution, what has happened to forest cover on an annual basis across the whole of
Indonesia for the period 2000 to 2008 (Hansen et al. 2009). The fineness at which we can
monitor forests also allows to compare and contrast deforestation across localities and in four
land use zones — the production and conversion zones where logging is legal (within specific
concessions) and the conservation and protection zones (where logging is strictly illegal).

Using this data, we investigate how the incentives faced by local bureaucrats and politi-
cians affect the rate of deforestation. First, we show that the rate of deforestation in a
province is increasing in the number of political jurisdictions. Between 1998 and 2008, the



number of districts in Indonesia increased by 65 percent, from 292 to 483, with districts splits
occurring at different times in different parts of the country. Using the MODIS satellite data,
we estimate that subdividing a province by adding one more district increases the overall
deforestation rate in that province by 7.8 percent, with the increase coming at roughly equal
rates in forest zones where logging may be legal or illegal (production and conversion) and
zones where all logging is illegal (conservation and protection).

While the increase deforestation in the production and conversion zones (where logging is
legal or illegal) could be due to a combination of many forces, including changes in how the
central government allocates the legal quotas across jurisdictions, we argue that the increase
in deforestation in the conservation and protection zones (where deforestation is illegal)
suggests that Indonesian district governments may be engaging in Cournot competition in
determining how much wood to extract from their forests. Consistent with the Cournot
model, we show that the increase in political jurisdictions drives down prices in the local
wood market: adding one more district to a province reduces local prices by 3.3 percent,
implying a local demand elasticity for logs of about 2.1. A back-of-the envelope calculation
suggests that the increase in deforestation we observe is consistent with what a Cournot
model would predict given this elasticity. We also show that the increase in illegal logging
is not just due a decline in enforcement, as the changes occur equally in the old and new
parts of the district and impact of the new jurisdiction only becomes stronger with time.
Combined, this suggests that the patterns of illegal logging are governed, in part, by the
industrial organization of corruption (Shleifer and Vishny 1993| (Olken and Barron 2009).

Second, we test whether local election pressures influence the rate of deforestation. Start-
ing in 2005, local district heads began to be chosen through direct popular elections rather
than being indirectly selected by the local legislature. When direct elections first arrived in
a district was determined by when the district head’s term came to an end, and the timing
of these terms, in turn, was determined by the timing of district head appointments under
Soeharto (Skoufias et al. 2010]). This introduces asynchronicity in district elections which is
plausibly orthogonal to patterns of forest loss and which we exploit to examine whether log-
ging, and in particular illegal logging, increases in the run-up to these elections. Using this
approach, we document a “political logging cycle” where local governments become more
permissive vis a vis logging in the years leading up to elections. We find that deforestation
in zones where all logging is illegal increases by as much as 42 percent in the year prior to
an election.

Third, just as the rents from facilitating logging may become more or less valuable de-
pending on where governments are in the political cycle, their value (and hence the incentive
to allow logging) will depend on what alternative sources of rents governments have access
to. Oil and gas reserves are highly unevenly distributed across Indonesia and the revenue
sharing rules put in place by post-Soeharto governments, which give greater weight to the
districts and provinces where these resources emanated from, mean that the distribution of
revenue from these sources is also highly unequal. We exploit the variable availability of
oil and gas revenues over time and space to examine whether they blunt or sharpen incen-
tives to extract forest resources both immediately after these hydrocarbon resources become



available and over the medium term. Consistent with other examples in the economics of
corruption (Olken 2007, Niehaus and Sukhtankar 2009), we find that these two alternate
sources of rents are substitutes in the short-run. In the medium term, however, this effect
disappears. We provide suggestive evidence that the effect disappears over time because the
higher oil and gas rents lead over time to a new, higher rent-extraction political equilibrium
(asin ?)

These results document that the incentives faced by local politicians and bureaucrats —
the potential rents they can obtain from restricting logging vs. allowing more, the timing of
rent extraction with regard to political needs, and the availability of alternative sources of
rents — strongly affect patterns of deforestation in Indonesia. If optimal logging rules were
being followed, none of these factors should matter. The fact that they do highlights the
lack of full control central governments have over natural resources in developing countries,
and suggests that incorporating the incentive compatibility constraints for local agents of
the state is crucial to designing effective forestry policies.

The remainder of this paper is organized as follows. In the next section we discuss the
background on how political change and deforestation in Indonesia and on how we study
these processes using a variety of data sets. Section [3|examines how the splitting of districts
affected deforestation, which we interpret in the light a model of Cournot competition.
In Section [4] we study the interaction between patterns of deforestation and the timing of
elections. Section [b|investigates whether having access to alternative sources of public finance
incentivizes or disincentivizes districts to engage in logging. Section [6] concludes.

2 Background and Data

Indonesia comprises an archipelago of islands in South-East Asia stretching from the Indian
Ocean to the Pacific Ocean. It is a vast country. From tip-to-tip (from Sabang in Aceh to
Merauke in Papua), Indonesia is 3250 miles across; this is the same as the distance from
Tampa, Florida to Juneau, Alaska. The conditions in Indonesia are ideal for the growth of
forests and without the involvement of humans, Indonesia would be largely covered in forest.

In this section we first trace out the dramatic political changes that Indonesia has expe-
rienced in its recent past, and document how these change have resulted in a tug of war over
the control of the forest sector. We then outline how we monitor forest loss using satellite
data, and discuss how we capture political changes in our data. This section thus prepares
the ground for the analysis of the political economy of deforestation which ensues in the
subsequent three sections.

2.1 Background
2.1.1 Decentralization in Post-Soeharto Indonesia

The East Asian crisis brought to an end the thirty-two regime of President Soeharto on May
21st, 1998. He and his family had governed Indonesia as a personal fiefdom since 1967, and



particularly in later years his New Order regime had become synonymous with the Soeharto
family extracting rents from all key sources of economic activity in the country (Fisman
2001).

Soeharto’s departure ushered in one of the most radical reconfigurations of a modern state
(Bertrand 2008), combining a democratic transition with a radical decentralization of power.
Amidst fears that the multi-ethnic country would break apart, substantial administrative
and fiscal authority was devolved to the approximately 300 district governments[] Off-Java
regions which were rich in natural resources like forests, and oil and gas were particularly
strident in their demands and wanted systems of control over these resources to be revised
and for more of the revenue from their extraction to accrue to them (Cohen 1998, Tadjoeddin
et al. 2001, WB 2003, Hofman and Kaiser 2004, Wulan et al. 2004). The decentralization
laws, which were passed in 1999 and took effect in 2001, devolved approximately 25% of
the national budget to the districts in the form of block grants and dramatically increased
their authority over almost all sectors of government. Local governments also received a
substantial share of the natural resource royalties originating from their district ]| Districts
were administered by Bupatis (district heads), who were in turn indirectly selected by local
legislatures.

The allure of self-government where districts could enjoy significant new political and
fiscal powers led to a significant amount of district splitting. The total number of districts
increased from 292 in 1998 to 498 in 2009. In contrast, the number of districts in Indonesia
had remained largely unchanged during the New Order regime (1967-1999) (BPS 2007).
District splits thus represented a significant mechanism for the further decentralization of
power in the country (Cohen 2003; Fitrani et al. (2005)). What they also did, however, was to
introduce a certain amount of disorganization as many districts lacked the human resources,
technical capacities and institutional structures to take on these new administrative powers
(Tambunan 2000).

Soon after decentralization took effect, pressure mounted for a new reform, since it was
felt that the 1999 regional governance law gave too much control to the local parliament
and, thus, made the system susceptible to corruption (Mietzner 2007) and elite capture (Erb
and Sulistiyanto 2009). Consequently, in 2004 a revised decentralization law considerably
increased accountability by introducing direct election of the district head. Direct elections

! Unusually, Indonesian decentralization transferred power to the approximately 300 district governments,
rather than the approximately 30 provincial governments, since districts, unlike provinces, were perceived to
be too small for separatist tendencies (Hull 1999; |Niessen 1999)).

2In particular, an oil-producing district receives 6% of oil royalties and 12% of natural gas royalties; a
further 6% (oil) and 12% (gas) is shared equally among all other districts in the same province. Districts
are allocated 80% of both the one-off license fee for large-scale timber concessions (IHPH) and the Forest
Resource Rent Provision (PSDH), a second volume-based royalty. Specifically, the producing and non-
producing districts are each allocated 32% of the royalties. Furthermore, the district that contains the
concession can keep 64% of the IHPH fee with the rest going to the central government. Exceptions to this
rule were made for the separatist provinces of Aceh (Special Autonomy Law 18 of 2001) and Papua (Special
Autonomy Law 21 of 2001), who received substantially larger shares. For a detailed discussion of Indonesia’s
transfer system refer to [Brodjonegoro and Martinez-Vazquez (2002)L



were to be held after the previous district head selected by the previous system had served
their full tenure. The tenure of appointed district heads, in turn, was dependent on when the
terms of district heads appointed under Soeharto had to come to an end. This introduces
asynchronicity in district electionsf] Since the timing was driven by idiosyncratic factors
from previous decades, it can be viewed as plausibly exogenous with respect to forest loss;
indeed [Skoufias et al. 2010 demonstrate that the timing of district elections is uncorrelated
to virtually all pre-existing socioeconomic or geographic characteristics.

2.1.2 Implications for the Forest Sector

During the Soeharto regime, the 1967 Basic Forestry Law (ROI 1967) gave the national
government the exclusive right of forest exploitation in the so-called ‘Forest Estate’ (Kawasan
Hutan); an area of 143 million hectares equivalent to three-quarters of the nation’s territory
(Barber and Churchill 1987; Barber 1990). The entire Forest Estate was managed by the
central Ministry of Forestry, based in Jakarta. The Ministry in turn awarded a small group
of forestry conglomerates (with close links to the regime’s senior leadership) most of the
timber extraction concessions in the Forest Estate, amounting to an area of about 69 million
hectares inside the area designated as ‘Production Forest’ (CIFOR 2004). These exploitation
rights were non-transferrable, issued for up to 20 years and required the logging companies
to manage the forest sustainably through selective logging (ROI 1970). The second category
inside the Forest Estate was the ‘Conversion Forest’, in which the largest wood producers
could use ‘Wood Utilization Permits’ (Izin Pemanfaatan Kayu or IPK) to clear-cut the forest
and set up plantations for industrial timber, oil palm or other estate crops. Logging was
prohibited in the remaining zones of the Forest Estate, which were designated for watershed
protection (the ‘Protection Forest’) and biodiversity protection (the ‘Conservation Forest’).

The control over these forest zones changed with the passing of the Regional Autonomy
Laws in 1999. In particular, the primary change was that the district forest departments
became part of the district government, answerable to the head of the district, rather than
a division of the central Ministry of Forestry.

The district forest office is the main point of control over much of the forest estate, both in
terms of authorizing and monitoring legal logging and in terms of controlling illegal logging.
For legal logging, the precise role of the district forest office varies depending on the forest
zone. For production forest, for example, the district forest office works with concession
holders to develop, monitor, and enforce annual cutting plansE] For conversion forest, the
district government initiates proposals to the central government that land be converted
from forest to other uses, such as oil palm, and is responsible for ensuring that conversion is

3For instance, only one-third of all (434) districts held direct elections in June 2005. By 2007, about 30%
of all districts still had a district head that had not been elected directly.

4In particular, each year the concession holder, working with the district forest office, proposes an annual
cutting plan (Renana Kerja Tebang), based on a survey they conduct in coordination with the district forest
office to determine how much can be sustainably cut. The district government then negotiates the cutting
plan with the national Forest Ministry, which coordinates all of the annual cutting plans nationwide to ensure
that they do not exceed the total national annual allowable cut.



carried out in the designated areas onlyJ’]

Given their central role in enforcing forest policy, the district forest office is the key
gatekeeper for illegal logging in these zones. For example, a district forest office employee
is supposed to be stationed at the gate of every concession to monitor all logs leaving the
concession, and at the entrance of all saw mills to check all logs entering the saw mills.
Extracting more than the legal quota from a concession, or bringing illegally sourced logs
into a mill, therefore requires the complicity of the district forest office.

District forest officials also play a key role in controlling deforestation in the protection
and conservation areas. For protection forest, the district forest office has the responsibility
to patrol and ensure that no illegal logging is taking place. Conservation forest — much
of which is national parks — is the only part of the forest estate legally still under central
control. However, since the district forest office enforces the processing of logs at sawmills and
monitors transportation of logs, logging in those zones also requires the de facto acquiescence
of the district forest officeff| Anecdotal evidence confirms that district governments play an
important role in facilitating illegal logging (Casson and Obidzinski 2002, [Smith et al. 2003,
Soetarto et al. 2003) Estimates suggest that illegal logging makes up as much as 60-80%
of total logging in Indonesia, making illegal logging a US $1 billion a year market (CIFOR
2004)), suggesting that these forces play a substantial role in determining the total amount
of deforestation.

2.2 Data
2.2.1 Constructing the satellite dataset

Given the prevalence of illegal logging, it is crucial to develop a measure of deforestation that
encompasses both legal and illegal logging. To do so, we use data from the MODIS satellites
to construct an annual measure of forest change for each year from 2001-2008. The resulting
dataset traces, at 250m by 250m resolution, the patterns of deforestation across the entire
country over time. This section describes how the forest change dataset is constructed from
the raw satellite images.

There are two main challenges in constructing satellite-based images of deforestation.
First, humid tropical regions like Indonesia have persistent cloud cover that shrouds the re-

°In addition, during the period from 1999-2002, district governments were legally allowed to issue a variety
of small-scale, short-term forestry permits themselves, without central government approval. These licenses,
both for the ‘Production’ and ‘Conversion Forest’, often directly overlapped with the large-scale logging
concessions and sometimes even the boundaries of national parks and protected areas (see, e.g., Barr et al.
(2001), [Casson (2001b), McCarthy (2001), |Obidzinski and Barr (2003), [Samsu et al. (2004) and [Yasmi
et al. (2005)). In 2002, under pressure from the main forest concession holders, the national government
revoked the right of district governments to issue these small-scale permits. Note that we have verified that
the main results in the paper are robust to dropping 2001, so that they are identified only from the period
2002-2008 where districts had no de jure power over forest licenses. See the Appendix for tables.

6Local police can also play an important role, since they can also instigate enforcement actions for illegal
logging (or threaten to do so). Police are not directly answerable to the head of the district, but are organized
on the district-by-district level.



gion year round. This makes it impossible to use high-spatial resolution sensors, like Landsat,
which are usually used to measure forest cover change (Asner 2001; Ju and Roy 2008) — since
these satellites typically only revisit the same area once every 1-2 weeks, cloud-free images
are rarely recorded. Instead, it is necessary to draw on moderate-resolution sensors, such
as the MODerate Resolution Imaging Spectroradiometer (MODIS) that pass over the same
spot every 1-2 days. This considerably increases the likelihood of obtaining some good qual-
ity images, but at the cost of 250m by 250m resolution instead of the approximately 40m
resolution available via Landsat. We start with the basic thirty-two day composites of the
MODIS Land Surface Reflectance bands (Vermote et al. 2002) and the MODIS Land Surface
Temperature Product (Wan et al. 2002)) available on the NASA website, which aggregate
daily images into monthly images to reduce cloud effects, and then we further aggregate
them into annual composites to produce a cloud-free image of each pixel.

Second, one needs to take the composited MODIS images and build a computer algorithm
to discriminate between forest and non-forest. For each pixel, the MODIS satellite collects 36
“bands,” each of which measures the strength of electromagnetic radiation in a particular part
of the spectrum, so each pixel is essentially a 36-dimensional representation of the average
electromagnetic radiation coming from a particular 250m by 250m spot. By contrast, the
human eye, with its three types of cones, measures only three “bands”, which correspond
to roughly to blue, green, and red areas of the visual spectrum, so the raw MODIS data is
considerably richer than just a visual image at comparable resolution.

The key idea of remote sensing is developing an algorithm that identifies what signatures
or set of signatures — i.e., what combinations of means and correlations among various parts
of the 36-dimensions of spectrum that MODIS sees — best discriminate between forest and
non-forest. For example, plants absorb electromagnetic radiation in the red visual range
for use in photosynthesis, but reflect or scatter radiation in the near-infrared range. One
common metric therefore examines the so-called NDVI (normalized difference vegetation
index), which captures the difference in intensity between light in the red range and in
the near-infrared range, and therefore identifies one signature for plant life (Gausman 1977;
Tucker 1979; |Curran 1980)

In practice, one can do much better than using NDVI by exploiting additional dimensions
of the data (see [Wulder (1998)| for a literature review). For example, forests tend to be
cooler than surrounding areas, so bands that measure temperature can also be used (Gholz
1982). Moreover, trees have different spectral signatures than other types of crops and
plants (Curran 1980). To take maximal advantage of the richness of the MODIS data, we
use a statistical learning procedure known as a “tree bagging algorithm” to determine which
spectral signatures best correspond to forest (Breiman et al. 1984; Breiman 1996)).

Specifically, we start with much higher resolution “training” images. For each of these
images (at 30m by 30m resolution), experts have manually examined the image and coded
each cell into forest, non-forest, or forest change (deforestation). We then apply the statistical
tree-bagging algorithm to automatically group the MODIS data into naturally occurring
groups that share common electromagnetic signatures, and then determine which of these
sets of signatures corresponds to the manually-coded forest, non-forest, or forest change



cells in the training dataset. This is akin to a regression, except that it allows for complex
correlations between bands to be used in the prediction, rather than just means, and allows
very flexible functional forms.

One then can extrapolate over the entire MODIS dataset to predict, for each year, the
probability that a given pixel was deforested. We code a pixel as deforested if the probability
exceeds 90% in any year; once it is coded as deforested, we consider it deforested forever.
The reason for this is that, especially in a humid tropical environment like Indonesia, once
the original forest is cleared other crops or scrub brush emerge quickly; since the forest takes
at least several decades to regrow, this regrowth is not actual tree cover. Deforestation
thus is often represented by a pixel that is “green” one year, “brown” the next year, and
then “green” again. Given this, [Hansen et al. (2009) have shown that the key to detecting
true forest change is the high probability of being deforested in a single year, rather than
appearing “brown” year after year.

The final output are annual forest change estimates for 2001-2008 for each of the 34.6
million pixels that make up Indonesia. Note that these estimates will provide a lower bound
for forest change, as a 250m by 250m pixel is only coded as deforested if the majority of the
area represented by the pixel is felled. This will reliably pick up clear-cutting, but will not
necessarily capture selective logging if the forest canopy remains largely intact, and therefore
may under-estimate total logging. They are instead to be treated as an indicator of likely
forest change. The measure will also capture deforestation due to large-scale burns, which
can be either intentional (for land clearing purposes, usually after logging of valuable trees
has already taken place) or unintentional[] This cell-level data is then summed by district
and forest zone (i.e., the four forest categories in the ‘Forest Estate’: the ‘Production’,
‘Conversion’, ‘Protection’ and ‘Conservation Forest’). This yields our final left-hand-side
variable deforesty,;, which counts the number of cells likely to have been deforested in
district d in forest zone z and year t.

Figure [1| gives an idea of what our underlying forest cover data looks like. To do this we
zoom in onto a small area, since the detailed nature of this dataset makes it impossible to
visualize the 34.6 million pixels that make up Indonesia in a single map. It focuses on one
of the main hotspots of deforestation during this time period (Hansen et al. 2009), namely
the province of Riau on the island of Sumatra. The deforested cells are indicated in red,
forest cover is shown in green and non-forest cover in yellow. The map clearly shows that
substantial amounts of forest have been deforested during the period from 2001 to 2008.
Furthermore, forest clearing seems to spread out from initial areas of logging, as access will
be easier from already logged plots.

In addition to the satellite data, we also examine official logging statistics from the annual
‘Statistics of Forest and Concession Estate’ (Statistik Perusahaan Hak Pengusahaan Hutan),
published by the Indonesian Central Bureau of Statistics for 1994-2007. These statistics
report the quantity of logs cut at the province level and the associated price by wood type,

"However, we show in Section [3| below that we obtain remarkably similar results in the Production zone
for the satellite-based deforestation measure and official logging statistics, suggesting that much of what we
are picking up is, indeed, logging.



for 114 different types of woodf| Because they are derived from production, they include
both clear-felling as well as selective logging; on the other hand, they capture only logging
that was officially reported by the forest concessions, and so likely miss most illegal logging.
Since they report the wood cut from the production forest, they should be compared to the
satellite data from the ‘Production’ zone. This data also includes data on the price of woods;
since market prices are determined by both legal and illegal logging, these prices will reflect
the market equilibrium for both types. We use this second dataset as a consistency check for
our satellite data and to examine impacts on prices, as described in further detail in Section
B below.

2.2.2 Descriptive statistics of forest change

Figure [2] illustrates the distribution of pixels coded as likely deforested at the district level
across Indonesia over time. In particular, it shows the number of cells coded as likely de-
forested at the district level in 2001 and 2008. We focus our analysis on the main forest
islands of Indonesia: moving from West to East, these are Sumatra, Kalimantan, Sulawesi
and Papua. The remaining islands (Java, Bali, NTB/NTT, and Maluku), shown in white,
have negligible forest cover in the baseline period and are not included in our sample. In
this map, low levels of likely deforestation are shaded in green, whereas high levels of likely
deforestation are indicated in orange and red. The figures suggest that most of the defor-
estation occurs in Kalimantan and in the lowlands of Sumatra along its eastern coast. From
2001 to 2008, there is a shift in deforestation in Kalimantan from the West to the East, and
there is an intensification in deforestation in Sumatra, particularly in the provinces of Riau
and Jambi in the east-center of the island. There is also some intensive deforestation in the
Southern part of Papua in 2001, but high deforestation rates are not maintained in this area
over time.

Table [1] reports the trends in forest cover over time in more detail, and Table [2| displays
the summary statistics for our main measure of deforestation. The data in both tables is
reported for the entire ‘Forest Estate’, the subcategories of the ‘Forest Estate’ where logging
may be legal (‘Production/Conversion Forest’) and where all logging is illegal (‘Conserva-
tion/Protection Forest’) as well as the individual subcategories of the ‘Forest Estate’. Table
shows the changes in the forest area measured in MODIS pixels (each of which represents
an area approximately 250m by 250m). Total deforestation between 2000 and 2008 amounts
to 783,040 pixels. Although MODIS pixel change does not detect all forest change, as some
forest change occurs below the level detectable by MODIS (Hansen et al. 2009), to gauge the
magnitude of this, it is worth noting that 783,040 pixels represents 48,940 square kilometers;
this is roughly twice the size of Vermont.

Most of this change occurs in the ‘Production Forest’, where 486,000 pixels (representing
an area of 4.2 million hectares) were coded as likely deforested. Much smaller changes
are reported for the other forest zones: 179,000 pixels were deforested in the ‘Conversion

8We drop the ‘other’ (Lainnya) and ‘mixed wood’ (Rimba Campuran) category, since their composition
varies considerably across provinces and over time.



Forest’ and only 116,000 pixels were deforested in the ‘Conservation” and ‘Protection Forest’
combined. However, this last estimate will only provide a lower bound of the actual changes
on the ground, since logging is prohibited in these parts of the ‘Forest Estate’. To the extent
illegal logging is selective and, thus, occurs on a much smaller scale, moderate resolution
sensors like MODIS will underestimate these changes.

Table [2| shows the summary statistics of our main left-hand side variable, deforesty.;,
which counts the number of cells likely deforested for district d in forest zone z and year t.
On average, 113 pixels (the equivalent of 704 hectares) are deforested annually at the district
level. However, the variance of 464 pixels (4 times the mean) suggests that there is a lot of
variability in deforestation both across years and districts. The pattern of the results mimics
the previous findings, i.e. most of the changes occur in the ‘Production Forest’, where on
average 232 pixels (representing 1,451 hectares) are coded as likely deforested in each district
and year.

2.2.3 Political Economy Data

To capture increasing competition in the wood market, we take advantage of the extensive
partitioning of districts following the collapse of the New Order regime. Figure 3 illustrates
the distribution of district splits in our forest island sample. It displays the total number
of districts that the original 1990 district partitioned into by 2008. High numbers of splits
(3-7) are denoted by orange and red in the figure, whereas low numbers (0-2) of splits are
denoted by blue and green. It is evident from this map that district splits happen all over
the country. Most districts split at least once or twice, so that very few of the 1990 districts
remain intact. In addition, the map suggests that the largest districts in 1990 split into more
new administrative units.

We construct two sets of variables for the districts and provinces using the official pub-
lications on regency and municipality codes of Statistics Indonesia (Badan Pusat Statistik
or BPS)F_T] Note that we use the 1990 boundaries as a reference point, because 17 new dis-
tricts were formed between 1990 and 1999 (BPS 2007 )F_U] For the province-level data, we
simply calculate the total number districts and municipalities within the 1990 boundaries of
province p on island ¢ in year ¢, NumDistrictsl nProvmtEr] In addition, we construct two
more variables at the district level. Firstly, we count into how many districts and municipal-
ities the original 1990 district d on island 7 split in a year t, NumQuwnDistrictsg;. Secondly,
we sum across all the other districts within the same province, NumQOtherDistrictsg;;.

We also obtain other district-level covariates as follows. To examine the impact of polit-

9The most up-to-date lists of regency and municipality codes is available on the bps webpage at http:
//dds.bps.go.id/eng/aboutus.php?mstkab=1|.

WDuring the Soeharto regime, only 3 new kabupaten or kota were created outside of Jakarta prior to 1990:
Kota Ambon (PPRI No. 13 Thn. 1979), Kota Batam (PPRI No. 34. Thn. 1983), and Kab. Aceh Tenggara
(UURI NO. 4 Thn. 1984). Jakarta itself was split into 5 city parts in 1978.

1'Each province is located on only one of the four islands — Sumatra, Kalimantan, Sulawesi, and Papua.
We use the island subscript, ¢, as we will allow for differential time trends by island in the empirical analysis
below.
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ical election cycles, we obtain district-level election schedules obtained from the Centre for
Electoral Reform (CETRO)IT_ZI, and use them to construct a dummy for the year the election
for district head was held, Electiong;. To examine the impact of other sources of rents avail-
able to district governments, we examine oil and gas revenues per capita at the district level,
PC’OilandGasth We obtain the revenue data from the Indonesian Ministry of Finance
(Menteri Keuangan) webpage (http://www.djpk.depkeu.go.id/datadjpk/57/) and the
population data for 2008, which is published by the Indonesian Central Bureau of Statistics.
It is important to note that new districts often do not record their own share of revenue for
the first few years after the split, as the district is not fully functioning yet. We therefore
allocate each new district the revenue share of its originating district until it reports its own
share of revenue for the first time.

Figure 5| displays oil and gas revenue per capita in 2008 at the district-level. These natural
resources are much more spatially concentrated than forest, so that most districts receive
none or very little revenue shown as blue and green respectively. The districts that receive the
largest share of revenue from oil and gas extraction are located in Eastern Kalimantan and in
the province of Riau on Sumatra. Moreover, the map shows that there is some heterogeneity
across districts within each province, where provinces are delineated with thick black borders.
These differences are due to the revised revenue sharing rules, where the producing and non-
producing districts each receive the same percentage of oil and gas revenue, which is then
split evenly between the districts in each category (ROI 1999). Since the non-producing
districts are usually larger in number, their final share of revenue will be smaller.

3 Cournot competition between districts

3.1 Theoretical Framework

Although there is a large literature on optimal forest management, the forestry literature
tends to consider how an optimal central planner should manage forest resources, trading
off the growth rate of trees with discounting (e.g., Samuelson 1976, Dasgupta 1982; see
Brown 2000 for a survey)m In this paper, we consider what happens instead if, instead
of a central planner making optimal forest extraction decisions, forest decisions are made
by individual actors — in our case, district governments. We begin by examining how the
number of jurisdictions affects the rate of extraction.

I2CETRO is an Indonesian NGO (http://www.cetro.or.id/newweb/index.php). We use the most up-
to-date district-level election schedule available, which provides election dates up to 2011.

130il and gas is by far the largest source of natural resource rents for districts. For instance, in 2008 the
average district-level revenue from oil and gas was 114.515 billion rupiah, whereas the corresponding figure
for forestry was 5.302 billion rupiah.

4 The other strand of the literature considers multiple actors with competing property rights over the
same forest (e.g. [Larson and Bromley 1990, Ligon and Narain 1999), but to the best of our knowledge none
consider the type of oligopolistic competition we study here where each actor has full control rights over its
own forest and strategic interactions occur through the product market.
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For simplicity, in this section we abstract away from issues involved in tree regrowth and
instead treat forests as an exhaustible natural resource. This is consistent with substantial
de-facto logging practice in many tropical forests, including those in Indonesia, where virgin
forests are heavily logged, and then either left in a degraded state or converted to a non-
forest use, such as palm plantations. This type of non-sustainable clear-cutting and land
conversion is also the type of forestry we will primarily be able to observe in the satellite
datall’l

We suppose that each period, district governments choose the quantity of forest to extract.
As discussed above, this can occur in a variety of ways: by determining how many illegal log
transport permits to issue, how many conversion permits to issue, etc. Once they determine
quantities, prices are determined through the market. We assume that transport costs across
different parts of Indonesia, the need to process logs locally before export (Indonesia bans
the export of raw, unprocessed logs), and capacity constraints at local sawmills combine to
generate local downward-sloping demand curves for logs in each market; this assumption is
discussed in more detail below.

The problem districts face is thus that of oligopolistic competition in a nonrenewable
natural resource. Lewis and Schmalensee (1980) show that many of the standard, static
Cournot results generalize to this setting. In particular, they show that a greater number of
actors in a market — in our case, more districts — leads to lower prices and greater resource
extraction["] We will test this implication in the empirical section below.

3.2 Empirical Tests

To test for Cournot competition between districts, we will take advantage of the fact that
the number of districts has increased dramatically over the period we study. As discussed
above, across all of Indonesia, the number of districts increased from 292 prior to decentral-
ization to 483 in 2008. The increase is even more dramatic in the forest islands (Sumatra,
Kalimantan, Sulawesi, and Papua) that are the focus of this study — from 146 districts prior
to decentralization to 311 districts in 2008, an increase of 213%. We exploit the staggered
timing of these changes in administrative boundaries to identify the relationship between
the number of administrative units and logging and to test the theoretical model outlined
above.

As analyzed in detail in [Fitrani et al. (2005), the splitting of districts was driven by
three principal factors: geographic area, ethnic clustering, and the size of the government

15One could generalize the model to allow forests to regrow at some slow rate; we speculate that this would
not substantially affect the qualitative predictions we consider here, which concern the strategic interactions
between districts.

16Because the resource is subsequently depleted more quickly with more actors, they also show that the
price then subsequently rises more quickly with higher N than with lower N as the resource moves more
quickly towards exhaustion. In our case, since the rate of extraction is small relative to the reserves (e.g.,
about 0.5% per year, see Section above), the increase in prices may happen too slowly to be observed
in our data.
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sector[l’] From the perspective of this paper, the key question is not whether a district
splits, but rather the timing of the split. Several idiosyncratic factors appear to influence
the timing. First, the process of splitting a district is quite cumbersome, involving a number
of preliminary steps (e.g., formal agreement of the district legislature, the district head,
the provincial governor, and the provincial legislature; documentation of the new districts’
ability to meet fiscal requirements; documenting a reason for the split (ROI 2004) and,
ultimately, the passage of a special law by the national parliament for each split that will
take place. The amount of time each of these steps take varies, which in turn influences
the total amount of time required. Moreover, there was a national moratorium on splits
from 2004 (when the criteria for splits were revised) through 2007. This moratorium also
creates plausibly exogenous delays in timing of splits, as many districts that may have been
close to completing the process in 2004 had their split postponed by three years due to the
moratorium/™| In the empirical analysis below, we test empirically for whether the timing
of these splits are associated with pre-trends in deforestation, though a priori there is little
reason to believe they would be.

To test the predictions of the theory, a key question is what definition we should use for
the “market” for wood products. While wood and wood products are traded on international
markets (and hence, one would expect the market to be global), there are several factors that
make wood markets in Indonesia more local. In particular, since 2001 Indonesia has banned
the export of raw logs. Instead, all timber felled in Indonesia must first be transported (either
by river, when possible, or by road) to local saw mills, plywood mills, and paper mills, where
it is processed before export. These factors imply that prices may differ across regions.
We focus on the province as the key definition of a market, since provincial boundaries are
coincident with the major river watersheds used for transporting logs.

We will examine several empirical predictions of the Cournot theory outlined above.
First, taking a province as a measure of the market, we use panel data to test whether
the number of districts in the province affects the prices and quantity of wood felled in the
province. For this purpose, we will use our two complementary sources of forestry data. For
our primary measure of deforestation, we will use the MODIS satellite based data, which
captures both legal and illegal deforestation. To examine the impact on prices and estimate
elasticites, we will also examine the official forestry statistics.

17Specifically, the Soeharto era districts were often quite large, so naturally they find that districts that
were larger geographically are more likely to split to make administration easier. Second, there are often
ethnic tensions in Indonesia, particularly off Java. Those districts where the different ethnic groups were
clustered geographically were more likely to split. Finally, the block grant fiscal transfer (DAU) had a fixed-
component per district. While this gives all districts an incentive to split, they find that it is particularly
likely in those districts with a large wage bill, who presumably are in greater need of the revenue. The
find little consistent relationship between natural resources and splitting, with positive coefficients in the
1998-2000 period and negative coefficients in the 2001-2003 period, implying zero effect on average. Details
of these regressions can be found [Fitrani et al. (2005).

18Unfortunately, we do not observe when the district began the process of filing for a split, as we only
observe the date the final split law was passed by the Parliament, so we cannot exploit this three-year
moratorium directly as an instrument.
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Specifically, for the satellite-based forestry data, since our key dependent variable is
a count — i.e., how many pixels were deforested in a given year — we will run a fixed-
effects Poisson Quasi-Maximum Likelihood count model (Hausman et al. 1984 Wooldridge
1999; see also Wooldridge 2002), with robust standard errors clustered at the 1990 province
boundaries. Specifically, this estimates, by MLE, equations such that

E (deforestyy) = p,; exp (BNumDistrictsInProvy, + ;) (1)

where de forest,;; is the number of pixels deforested in province p (located on island ) in year
t, NumDistrictsInProuvy; counts the total number of districts in province p in year ¢, p,, is
a province fixed-effect, and 7,, is an island x year fixed effect[g] The coefficient [ in equation
represents the semi-elasticity of deforestation with respect to the number of districts in
the province. The reason we use the Poisson QML count specification for the satellite data,
rather than estimate a log dependent variable with OLS, is that we have many observations
(more than 25%) where the dependent variable is 0, so a count model is more appropriate.
The Poisson QML count model in ({1 is robust to arbitrary distributional assumptions, so
long as the conditional mean is specified by . The robust standard are clustered at the
1990 province boundaries.

For the price (and quantity) data from the official production statistics, we will run an
analogous OLS fixed effects regression, as follows:

10g (Yuwipt) = BNumDistricts InProvyit + fhyy; + Nwir + Ewipts (2)

where Y, is the price or the quantity of wood type w harvested in province p and year
t. The regression also controls for wood-type-by-province and wood-type-by-island-by-year
fixed effects, u,,, and 7,,, respectively. Since there is a substantial variation in quantity of
wood across wood species and provinces — the 5th percentile of the quantity variable is 42
m?3, whereas the 95th percentile of the quantity variable is 204,804 m® — this regression is
weighted by the volume of production of wood type w in province p in the first year that
we have data. Note that if one takes logs of equation , the coefficient [ in equation
is directly comparable to the coefficient 3 in equation ; both represent the semi-elasticity
of deforestation with respect to the number of districts in the province

Second, we will examine the impact of splits at the district level. In particular, we will test
whether splits affect deforestation in the district that splits vs. how it affects deforestation
in the remainder of the province. We estimate via Poisson QML a model such that:

E (deforestgit) = pg; exp(BNumOwnDistrictsg: + yNumOther Districtsq: +n,)  (3)

19 As discussed above, there are four islands in our sample: Sumatra, Kalimantan, Sulawesi, and Papua.
Each province is located on only one island.

20The only difference is that equation is weighted by initial volumes in production (deforestypo),
whereas the Poisson model implicity uses contemporaneous volumes for weights (deforest,,) (see|VerHoef
and Boveng 2007)). We show below that using contemporaneous weights when estimating equation
produces virutally identical results.
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where de foresty; is the number of cells cleared in district d (located on island 7) between year
t — 1 and t, NumQuwnDuistrictsg; counts into how many districts the original 1990 district
d split into by year t, and NumOtherDistrictsqy; counts into how many other districts
there are within the same province in year t. It also includes district * forest zone fixed
effects p14; and island-by-year fixed effects n;,. An observation is based on the 1990 district
boundaries, and the robust standard errors are now clustered at the 1990 district boundaries.
The conditional log-likelihood function is again estimated separately by land use zones.

There are several potential alternative possible explanations for why increasing the num-
ber of jurisdictions could increase the rate of deforestation. First, as discussed above, the
amount of legal logging in production and conversion zones is determined by a negotiation
between the districts and the center. One could imagine that in such a negotiation, increas-
ing the number of districts in a province could increase that province’s bargaining power in
these negotiations. For illegal logging, however, this negotiation force should not be impor-
tant. To rule out this explanation as driving the results, we will therefore test for whether
we find these increases in logging in zones where we know all logging is illegal.

Second, increasing the number of jurisdictions could result temporarily in a decline in
enforcement capacity as new district government sets up its own district forest office. To rule
out this explanation as driving the results, we will test for whether the increase in logging we
observe is temporary or permanent. Specifically, we will examine lags of the NumDistricts
variables to test for whether the increase in logging we observe declines over the subsequent
3 years after the split takes place (which would be consistent with a temporary decline in
enforcement capacity). We will also examine whether the increase in deforestation is greater
in the new part of the district (i.e., the part of the district which after the split will be
governed from a new district capital) as opposed to the old part of the district (i.e. the
part of the district which after the split will be governed by the same forest office as before
the split). If enforcement capacity was driving the results, we would expect the increase in
deforestation to be greater in the new part of the district, but if it was driven by Cournot
forces, we would not expect differential results between the old and new parts of the district.

Finally, with some additional assumptions, the simple static Cournot model can be used
to generate quantitative predictions that can be tested against the data. Specifically, if we
assume constant marginal costs and a constant elasticity of demand, we can derive how large
quantitatively the increase in deforestation in response to increasing jurisdictions should be
if it was driven by Cournot forces, and see whether it matches the empirical estimates. We
explore this calculation in Section below.

3.3 Results using the satellite data at the province level

Table |3| begins by estimating equation . The table reports the findings separately for each
subcategory of the ‘Forest Estate’. Column 1 presents all categories of the Forest Estate
together, column 2 presents results for the zones where legal logging can take place (i.e., the
‘Production’ and ‘Conversion’ zones), and column 3 presents results for the zones where no
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legal logging can take place (i.e., the ‘Conservation’ and ‘Protection’ zones)m Columns 4-7
report the estimates for each zone individually.

The total estimated impact of district splits on deforestation is shown in column 1 of
Panel A. We find that the annual rate of deforestation increases by 3.61% if an additional
district is formed within a province.

Looking across the various zones of the forest estate, the point estimates suggest broadly
similar impacts on extraction in the zones where logging could be legal or illegal (production:
5.33%, statistically significant at 1%; conversion: 2.83%, not statistically significant) and
in one of the zones where deforestation is clearly illegal (conservation: 7.86%, statistically
significant at 10%). This suggests that the impact of the increasing number of political
jurisdictions is not merely being driven by changes in the allocation of legal cutting rights,
but that something is happening with regard to illegal logging as well.

Panel B reports the estimates of the medium-run impact of district splits by including 3
lags of the NumDistrictsInProvy; variableF_Z] In virtually all cases, the medium-run impact
estimated by calculating the sum of the immediate effect and all 3 lags is even larger than
in the main specification. For example, three years after the split, a district split increase
deforestation in the entire ‘Forest Estate’ by 7.89%. The estimates for deforestation in legal
and illegal logging zones, reported in Columns 2 and 3, respectively are now both significant
and of similar magnitude — 7.83% on average for the production and conversion zones (where
logging could be legal or illegal) and 9.00% for the conservation and protection zones (where
all logging is illegal). The fact that the cumulative effect on logging three years after the split
is even larger than the immediate impact, especially in the zones where all logging is illegal,
suggests that the impact is not merely being driven by declines in enforcement associated
with new district creation.

An important potential concern is that the timing of splits is correlated with pre-trends
in logging. To investigate this, Table [] tests for the presence of differential trends in the
data by including three leads of the NumDistrictsInProuvy,; variable. We find that the our
main results are robust to the inclusion of leads. Furthermore, and most importantly, the
p-value of the joint significance test for the leads is large and statistically insignificant for
all zones (ranging from 0.20 to 0.71, depending on specification), suggesting that there are
not substantial pre-trends. (By contrast, the p-value of the joint significance test for the
immediate and lagged effects of the number of districts is statistically significant, ranging
from <0.001 to 0.08, depending on specification). In contrast to the sum of the lags, the sum
of the leads is also statistically insignificant in all specifications. These results are reassuring,
as they suggest that the results are indeed picking up the causal impact of district splits on
both legal and illegal logging in the ‘Forest Estate’ and are not being driven by unobserved
trends.

21 As discussed above, since the Poisson model weights each observation by the quantity, when we combine
observations from multiple zones we obtain the correct weighted average effect.
22The results do not change substantially if we use five lags instead.

16



3.4 Impacts on prices

If Cournot theory outlined in Section is important, we would expect increasing numbers
of political jurisdictions to not only increase quantities of deforestation, but also to decrease
prices. To examine this, we turn to the official production data. This data captures the
value and quantity of all logs from the official forest concession reports, separately for each
species, province, and year. By dividing value by quantity, we can obtain the price the
concession obtained for the wood. Although the official production statistics will not capture
illegal logging, the prices concessions receive for their legally felled timber should reflect the
prevailing market prices in the area, which will be determined by the quantities of both legal
and illegal logging.

Table [5| estimates equation (2, using the data on prices and quantities from the official
forest concession reports. Columns 1 and 2 provide the estimates for our main specification,
which includes all wood types and covers the period 2001—200717_3] Columns 3 and 4 show the
results for the same sample period, but restrict attention to a balanced panel of wood types,
where we observe production of the wood type in all years for a given province. Columns 5
and 6 present the results for all wood types for a longer time horizon that also includes the
years of the pre-decentralization period for which the official logging publications were also
available, i.e. for 1994-2007. Panel A displays the estimates for the contemporaneous effect
(i.e., estimating equation 2| with no lags), and Panel B estimates the medium-run impact by
including 3 lags of the number of districts variable. Columns 1, 3, and 5 present equations
where the natural log of prices are the dependent variables, and columns 2, 4, and 6 present
equations where the natural log of quantities are the dependent variables.

Consistent with the theory, the main results in columns 1 and 2 of Panel A show that
adding one additional district in a province decreases prices by 1.7% and increases the quan-
tity of logs felled by 8.9%. Similar results are obtained for the alternative samples shown in
columns 3 through 6. The results therefore clearly show a decline in prices, consistent with
there being at least some element of a local, provincial market for wood products.

Since increasing the number of districts is essentially a supply shock, one can infer the
slope of the demand curve from the ratio of dLnQuantity to dLnPrice. Combining the
estimates from columns 1 and 2 implies a demand elasticity of —5.24. However, since the
official production statistics miss illegal logging, a more reliable estimate of the elasticity
can be found by taking the price effects from the official data and the quantity effects from
the satellite estimates in Table [3] Using the satellite data estimates in Table [3] that adding
an additional district increases quantities by 3.61%, we obtain a demand elasticity of —2.12.
Given that markets are separated only by transportation costs, we would expect that demand
for forest products should be quite elastic, consistent with the high elasticites we find in the
data.

Panel B estimates the medium-run impact of the number of districts on prices and quan-

Z3Data is not yet available for 2008, so this is the most comparable time period to that used in the satellite
data analysis below.
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tities by including 3 lags of the NumDistrictsInProvy; Variable@ The medium-run impact
estimated by calculating the sum of the immediate effect and all 3 lags is even larger than
in the main specification, as at the end of 3 years prices have fallen by 3.29% and quantities
increased by 13.1%. The estimated coefficients also become even more precisely estimated.
Since the estimate from the satellite data of the medium-run impact in Panel B of Table
on total quantities is 7.89%, the estimated medium run elasticity is 2.39 — almost exactly
the same as the short-run elasticity estimate of —2.12.

We have also verified that these results are robust to a variety of alternate specifications.
In particular, we have shown that the results are similar if, instead of weighting by the
quantity in the first year, we instead weight by current quantities. This weighting is most
similar to the one applied by the Poisson Quasi-Maximum Likelihood. We have also shown
that the results are robust to excluding from the district count kotamadya (major cities),
which do not control any forest and hence should not affect logging. A falsification test where
we include only kotamadya shows no impact, as one would expect. Finally, we have repeated
analysis of leads of district splits in Table [4 above for the official data. The medium-run
impact of district splits on prices and quantities is robust to the inclusion of leads and is
similar in magnitude and significance to Table . For our main specification (columns 1 and
2), both the sum of the leads and the p-value from a joint F-test of all three leads together are
statistically insignificant, indicating that there are no pre-trends in our main specification.
While there is scattered evidence of significant effects on the leads in alternate specifications
(equivalent to columns 3-6), in the main time period and specification we examine — 2001
through 2007 — we find no evidence of significant pre-period differential trends. These results
are all shown in the Appendix.

3.5 Results for the satellite data at the district level

Since the satellite data show us deforestation at a very fine pixel level, we can further
disaggregate logging by district as well as forest zone. This allows us to do two things. First,
we separately estimate the direct effect of a district splitting — i.e., the impact in the district
that splits itself — from the indirect of the district splitting — i.e., the impact on logging on
other districts in the same province. Second, we can further test the degree to which changes
in enforcement are driving the results (as opposed to market forces) by examining whether
the increase in deforestation following district splits is higher in the new part of the district
(where a new district office is being set up) as opposed to the old part of the district (which
inherits the district office from before.)

3.5.1 Direct vs. indirect effects of district creation

The results from estimating equation are shown in Table @, and paint a very different
picture for direct and indirect effects of district splits for the production/conversion zones
and the conservation/protection zones. For direct effects — e.g., the impact of a split on

24The results do not change substantially if we use five lags instead.
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the district that splits — the overall impact effect shown in Panel A is negative (though
insignificant). This is driven by substantial decline in deforestation in the production zone
— a decline of 21.1%. On the other hand, there appears to be an increase in illegal logging —
deforestation in the conservation zone (i.e., national parks) increases by 13.6% — when the
district splits.

Panel B shows, however, that the pattern of these direct effects begins to change over
time. By the time the district has been in existence for three years, deforestation in legal
logging zones begins to increase, partially offsetting the initial declines, so that the third
lag on the number of district splits is positive and statistically significant. While the net
effect (the sum of the lags) is not distinguishable from zero, the p-value on a joint test of the
contemporary effect and all 3 lags in the legal logging zones (column 2) is < 0.01, suggesting
that the pattern we observe — a decline in deforestation initially, followed by an increase —
is indeed highly statistically significant. Meanwhile, deforestation in illegal logging zones
continues to intensify, so that the net effect in illegal logging zones is an increase of 25.1%
(Panel A, column 3, sum of lags), driven by a 37% increase in conservation zones (column 6)
and a 13% increase in protection zones (column 7). On net, the total increase in deforestation
after 3 years (shown in column 1) is 3.2%, though this is not statistically signiﬁcant@

For indirect effects, i.e., the effect on other districts in the same province, by contrast, the
impact on deforestation is positive and immediate, and is concentrated in the legal logging
zones. The impact effect of a district splitting is to increase overall logging by 7% in all
other districts in the province (Panel A, column 1); the medium-run impact is 9.5% (Panel
B, column 1, sum of lags). There are no statistically significant impacts in illegal logging
zones outside of the district that splits.

The difference between the direct and indirect effects of a new district forming suggests a
consistent explanation for the results in this section along the following lines. When a district
splits, the initial disorganization initially disrupts legal logging activities. Other districts
within the same province increase logging immediately. This may reflect a combination of
three forces: other districts increasing the quantity of illegal logging in response to the lower
extraction from the district that split; other districts further increasing extraction as they
anticipate that prices will fall once the new districts are fully established and begin to log
more; and the central government reallocating legal production quotas to the other districts
in the province. Of these, the first is an example of static Cournot effects; the second
is an example of dynamic Cournot effects with a non-exhaustible resource as in [Lewis and
Schmalensee (1980); and the third is a direct political economy influence. Some combination
of all three may be taking place.

For the conservation and protection zones, where we know all logging is illegal, the im-

25The Appendix shows that the main results are robust to the inclusion of the leads, and that we do not
find a significant sum of leads for the NumOther Districtsy;; variable. In almost all specifications in the
Appendix table, we do not find statistically significant effects on either the sum of the leads, or on the joint
test of significance of all leads. The only exceptions are the sum of the leads for own splits in the conservation
zone (Column 6) and for other splits in the conversion zone, but given that we find significance in only 3 out
of the 28 lead tests we consider it is likely that these are just noise, rather than true differential trends.
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pacts begin in the own district immediately and intensify over time. As with the provincial
level results, the fact that the impacts on illegal logging intensify over time, rather than
decline, suggests that this is not merely driven by a decline in enforcement capability asso-
ciated with the new district’s formation. In a benchmark static Cournot model, with equal
and constant marginal costs, we would expect that the district that splits should experience
an increase in its own production, which is what we observe; the impact on other districts
in the same province in such a model is theoretically ambiguous.

3.5.2 New vs. old parts of the district

As discussed above, an alternative explanation for the increase in rent extraction following
the creation of a new district is a decline in enforcement capability as the new districts offices
are set up. If this was the case, one would expect that there would be an initial increase in
extraction, which would then decline over time as enforcement capabilities returned. All the
evidence thus far has suggested the opposite: in fact, deforestation increases over time after
the district splits.

A further test of the enforcement hypotheses is to look within the district that splits
at new vs. old parts of the district. When a district splits, one of the new districts (the
original district, or kabupaten induk) retains the original capital city and infrastructure; the
remaining new districts (kabupaten baru) need to set up brand new capital cities, legislatures,
and bureaucracies (including district forest offices). In forestry (as in most things), though
the original district provides support to the new districts while they are establishing their
new offices, one would imagine that monitoring and enforcement capacity would be weaker
in the parts of the district handled by the new office than the parts handled by the old office.
If lack of enforcement was driving the increase deforestation, we would therefore expect it
to be worse in the new part of the district.

To examine this, we re-estimate a version of equation . We define an observation based
on the final 2008 district borders, and create a dummy variable for each 2008 border-district,
HasOriginalCapital, which takes the value of 1 if the original capital of the 1990-era district
is located within the boundaries of the 2008 district, and 0 otherwise. HasOriginalCapital
therefore takes value 1 for the original district and value 0 for the new districts@ We then
estimate

E (deforestgi) = g exp(BNumOwnDistrictsq; + (4)
yNumOuwnDistrictsqy, X HasOriginalCapital; + n;,)

Note that NumQuwnDistrictsg; is still defined based on the 1990 district borders, as above.
Robust standard errors are also clustered at the 1990 district border level.

The results are presented in Table[7] In Panel A, which examines the contemporaneous
effect, the coefficient on the interaction term ~ (the coefficient on NumOQuwnDistrictsg; X

26Tf districts split multiple times over the period we study, for simplicity HasOriginalCapital traces the
location of the original, 1990 district throughout. We have verified that the results are similar if we also
trace the 2003 capital throughout.
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HasOriginalCapital;) is not statistically significant either overall or in any of the forest
zones, suggesting no detectable differences between the old and new parts of districts. In
Panel B, which examines the lag structure, we do find that the interaction term v is neg-
ative in the year of the split in the conservation and protection zones, indicating increased
deforestation in the year of the shock in the new part of the districts relative to the old part.
However, when we examine the sum of the lags, which shows the net impact after 3 years,
we find no negative interactions. In fact, the point estimate on sum of the lags is positive
in all cases (and statistically significant in the conservation zone). Thus, on net after three
years, we find no differences in deforestation between old and new parts of the district, and
if anything, more deforestation in the old part of the district. This fact — combined with the
evidence shown above that deforestation increases in the medium run — suggests that the
increases in deforestation we are observing are unlikely to be primarily driven by declines in
enforcement.

3.6 Interpreting magnitudes in a Cournot framework

The empirical analysis above showed that as the number of independent jurisdictions within
a province increases, the quantity of deforestation produced in that province increases and
the price of wood in that province falls, as one would expect from a model of Cournot
competition. Specifically, focussing on the satellite data (which captures both legal and illegal
extraction), the overall semi-elasticity of quantity produced with respect to the number of
jurisdictions was 0.036 in the short run and 0.079 in the medium run. The estimated price
elasticity of demand was around 2.1 in both the short and medium run.

In this section we examine whether these magnitudes are broadly consistent with what
would expect from a stylized, textbook Cournot model. The point is not that a simple model
will provide an exact description of our setting, but rather just a consistency check that the
magnitudes we estimate are broadly consistent with what theory might predict.

To be concrete, suppose we have n identical districts in the province, each of whom faces
marginal cost ¢ of producing wood. Suppose the inverse demand function is p (Q)) where @
is the total quantity of wood produced in the province. Each district ¢ solves

maxy,q;p (Z q) — Cq; (5)

The first order condition is

gp' +p—c=0 (6)
Rewriting and substituting () = ng; yields the familiar Cournot equation:
D ne

where ¢ is the price elasticity of demand.
To derive a formula for the semi-elasticity of quantity with respect to the number of
districts, we need to posit a functional form for the inverse demand function. Suppose the
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elasticity of demand is pinned down by the availability of substitute sources of wood in

neighboring markets, so we have constant elasticity of demand, i.e. p = q%, where ¢ = 1,

)
Substituting p = q% into equation @, taking derivatives, and simplifying yields:
1dQ 1
30w ®
Qdn n?—n\

Are the empirical estimates broadly with equations (7)) and (8)? In the beginning of our
period (2001), we have 116 districts in 21 provinces who are producing logs, so on average
we have n = 5.5. Substituting the empirical elasticity estimates and the number of districts
into equation suggests that the semi-elasticity of quantity with respect to the number of

districts (%%) should be approximately 0.036. Empirically, we estimate using the satellite
data that %% is 0.035 in the short run and 0.079 in the medium run. The short-run estimate

exactly matches the theoretical prediction, and more generally, these estimates are of the
same order of magnitude as that predicted by the theory.

Checking the other prediction — the prediction about the markup in equation —is
necessarily more speculative, since we do not observe the markup directly. Substituting our
estimates into equation suggests that the markup ((’;%C)) should be around 0.09.

How can we estimate the markup in practice? One way to gauge the markup is to look
at the bribes charged by corrupt officials who determine ¢;. As discussed in Section [2.1.2]
within a district, there are many small firms who are willing to fell wood illegally, but they
must bribe district officials to obtain an illegal transport permit in order to do so. Suppose
that the district sells g; illegal log transport permits to these small firms in return for bribes.
In equilibrium, the firms will be willing to pay up to the full markup, p — ¢, in the form of
bribes b ]

How large are the bribes b in practice? Direct estimates are scant, but |Casson and
Obidzinski (2002) estimate that they are of the same order of magnitude as the a relatively
small share of the total price, consistent with what equation @ would suggest. Based on
fieldwork in Kalimantan, Casson and Obidzinski estimate that in one district the bribe to
receive an illegal wood transport permit is $22 / m3 of wood. They also note that district
officials only require sawmills to purchase these illegal permits for 20% of the wood they
process, so the effective bribe required is about $4 / m3. Since wood prices vary from $120
to $250 / m3, the bribes are equal to between 0.01 and 0.03 of the total price of the wood.
This is only the transport permit: there are also (presumably) additional bribes to fell the
wood. If the additional bribes are similar in magnitude, that would mean that the total
bribe is between 0.02 to 0.06 the total price of the wood. In a second district, the district
government levies official "fees" on illegal timber of about $20 / m3, or between 0.08 and
0.16 of the total price. Although in this second case the fees go to the district treasury,
they mention that district officials get some return from collecting these fees in the form of
higher popularity with their constituents. Although these data are admittedly very rough,

2TFormally, the district governments solve max,, bg;, and free entry among firms ensures that in equilibrium
b = p — ¢, so this problem ends up being identical to .
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the share captured by the district officials appears on the same rough order of magnitude as
the 0.03 and 0.09 range predicted by the theory.

On net, the results in this story suggest that the amount of deforestation districts allow
may be driven by competition in the product market for wood, as would be predicted by a
Cournot-style model. Several points of evidence provide evidence in favor of the competition-
style story compared to alternative explanations. First, the fact that increasing jurisdictions
not only increases quantities, but also reduces prices, confirms that there is to some degree
a downward sloping demand curve for logs in each province. Second, the fact that this
occurs in zones where all logging is illegal suggests that this is not merely an artifact of
changing allocation rules from the central government. Third, the facts that the impact of
new jurisdictions on deforestation rates increases over time, rather than decreases, and the
fact that deforestation is not more likely to occur in the new part of the district suggest
that declines in enforcement in the illegal logging zones are not primarily driving the results.
Finally, a back of the envelope calculation suggests that the quantitative impact of increased
political jurisdictions on deforestation is consistent with what one would expect from a simple
Cournot model given the equilibrium elasticities observed in the data.

4 Political logging cycles

4.1 Empirical tests

The literature on political business cycles suggests that politicians tend to increase expen-
ditures and postpone tax increases in the years leading up to elections, both at the national
level (e.g., Nordhaus 1975, MacRae 1977, |Alesina 1987, Rogoff and Sibert 1988, |Akhmedov
and Zhuravskaya 2004)) and at the local level (e.g., |Poterba 1994, Besley and Case 1995,
Levitt 1997, Finkelstein 2009). This section examines whether political cycles affect not
only the legal actions by the state, but the state’s permissiveness towards illegal activity. In
particular, we examine whether logging in general, and illegal logging in particular, increases
in the years leading up to a district election.

To do so, we take advantage of the fact that the timing of district-level elections in
Indonesia varies from district-to-district. As discussed in Section prior to 2005, the
heads of districts (known as Bupati) were indirectly selected by the district parliament.
Starting in 2005, Bupatis were to be directly elected by the population in special elections
(ROI 2004)). Crucially, the direct elections of Bupatis were phased in as the prior Bupati’s
term expired, so that some districts had their first direct elections as early as 2005 while
others had them as late as 2010@ As documented in detail by |Skoufias et al. (2010), the
timing of these direct elections was determined exclusively by when a Bupati’s term expired,
which was in turn driven by idiosyncratic factors, such as retirements and appointments of
existing Bupatis to other posts, that determined Bupati appointments under the pre-1998

28No direct elections for Bupatsi were held in 2009, as national Presidential elections were held that year.
Those Bupatis whose term was ending in 2009 were extended on an interim basis and direct elections were
held in 2010 instead.
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Soeharto regime (Emmerson 1999). [Skoufias et al. (2010) examine this empirically and
verify that the resulting timing of local elections is uncorrelated with a host of economic,
social, and geographic characteristics*]

To estimate the impact of elections on logging, we use the satellite data and estimate
fixed-effects Poisson QMLE models on the various subcategories of the ‘Forest Estate’ that
estimates the following equation:

42
E (deforestait) = jiy; €xp ( Z B;Electiong;j + 77it> (9)

j=t—2

where j indexes leads and lags of the Election variable, which is a dummy for a Bupati
election taking place. As in equation above, we include district fixed effects and island-
by-year fixed effects, and cluster standard errors at the 1990 district level, but since elections
take place at the district boundaries at any point in time, we use the 2008 district boundaries
(interacted with forest zone and year) as the unit of observation. We include up to 2 leads
and 2 lags of the Election variable to fully capture the 5 year election cycleP’] Note that
since the official forestry statistics are only at the province level, whereas our variation is in
the timing of elections within provinces, we cannot use the official forestry statistics dataset
for this purpose.

4.2 Results

The results from estimating equation (9)) are shown in Table [§] Panel A shows the impact
effect of elections (i.e., no leads and lags); Panel B presents the results with 2 leads and lags
of the Election variable. As before, we present results for the entire ‘Forest Estate,” as well
as broken down by land use zone.

The results show clear evidence of a political logging cycle in the illegal forest zones. Fo-
cusing on column (3) of Panel B, which shows the impact on the conservation and protection
zones where no legal logging is allowed, we find that illegal logging increases dramatically in
the years leading up to an election: by 29% 2 years prior to the election and by 42% in the
year before the election. Illegal logging then falls dramatically (by 36%) in the election year
and does not resume thereafter. Looking zone-by-zone, we see that the pattern is strongest
statistically in the protection zone (column 7), but that the point estimates suggest a very
similar pattern in the conservation zone as well (column 6).

298pecifically, Skoufias et al. (2010)|run a regression of the probability of holding a direct election by 2007
and regress it on the end date of the previous Bupati’s term and the following variables: unemployment rate,
log real per capita district GDP, log real per capita district GDP without oil and gas, share of minerals in
district GDP, share of energy in district GDP, dummy for district having oil and gas, share of population
that is urban, share of asphalt roads in the district, share of rock roads in the district, access to telephones,
distance to provincial capital, dummy for being a split district, share of mountainous areas in the district,
share of coastal areas for the district, share of valley areas in the district, a city dummy, and 5 island
dummies. Other than the end date of the previous Bupati’s term, only 1 of the 21 variables they consider (a
Sulawesi island dummy) is statistically significant at the 10% level. See Table A-1 of |Skoufias et al. (2010)L

30The omitted category is therefore the years prior to 2 years before the first direct election.
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There are several possible explanations for the increase in illegal logging in the years
leading up to the elections. One potential explanation is that logging was permitted or fa-
cilitated by district officials in return for campaign fundsP!] A second explanation is that
district officials simply reduced enforcement of logging in the conservation and protection
zones in order to increase their popularity and win votes. Since these two stories are obser-
vationally equivalent in terms of the predicted impact on deforestation, it is not possible to
tease them apart empirically.

Turning at the zones where logging may be legal or illegal (conversion and production),
we see a different pattern. In the conversion zone, we find a 40% increase in logging in
the year of the election and a 57% increase in the year following the election. We find no
impact on the production zone. According to Barr et al. (2006), many district governments
have redirected their interest towards the development of oil palm plantations and other
agroindustrial estates in recent years. It is possible that the observed increase in clear-cutting
in the ‘Conversion Forest’ after the election is a repayment for favors during the election
campaign. Alternatively, it could be an attempt to grab first rents upon being elected. Once
again, these stories are observationally equivalent, so it is not possible to tease them apart
empirically with the existing data. Since the effects in the conservation/protection zone
and the production/conversion zones have different patterns, column (1) shows little impact
overall.

5 Substitutes or complements? Logging vs. other sources
of rents

5.1 Empirical implementation

An important question in the economics of corruption is how corrupt officials with multiple
opportunities for rent extraction respond if one type of corruption becomes harder or easier.
If corrupt officials behave like profit maximizing firms, and there are no spillovers from one
type of corrupt activity to the other, then they would optimize separately on each dimension,
and there would be no impact of a change in one type of corruption opportunity on the other
type of corruption.

More generally, however, one could imagine effects going in either direction. If corrupt
officials worry about being detected, and if being detected means the official loses both types
of corruption opportunities, then the two types of corruption will appear to be substitutes,
and increasing corruption opportunities on one dimension will lower them on the other di-
mension. On the other hand, if there are fixed costs of being corrupt (for example, those
with a low disutility from being corrupt selecting into the civil service), multiple corruption
opportunities could be complements. The two existing studies that have examined this ques-

31 Although we know of no direct qualitative evidence for this link, Greenpeace Indonesia (2009) has
asserted that political parties ammassed campaign funds for the 2009 general election through facilitating
illegal logging.

25



tion empirically (Olken 2007 and Niehaus and Sukhtankar 2009) have both found evidence
that alternative forms of corruption appear to be substitutes.

In this section, we examine this question by examining how logging responds to changes in
another source of local rents for district governments: oil and gas revenues. Under Indonesia’s
Fiscal Balancing Law (ROI 1999), a fraction of all oil and gas royalties received by the central
government is rebated back to districts, with half of the rebate going to the district that
produces the oil and gas and the other half of the rebate being shared equally among all
other districts in the same province. This can amount to a substantial amount of revenue —
as much as US$729.63 per capita in the highest district — which can in turn be a tempting
source of rents for district officials[”?] Moreover, the precise amount of oil and gas revenue
allocated to each district varies substantially over time as oil and gas production fluctuates,
oil and gas prices change, and district boundaries change. The idea that oil revenues are a
source of illegal rents is consistent with findings from other contexts (e.g., 7, 7).

A key distinction between our context and the existing literature is that while the existing
literature (Olken 2007 and Niehaus and Sukhtankar 2009) studies short-run substitution
from one type of corruption to another, our setting allows us to examine both the short and
medium run. If the fixed costs of corruption are important, adjustment may take time, and
the short and medium-run effects could be quite different.

To examine the short-run impact of oil and gas rents on illegal logging, we estimate a
version of equation (3)). Since district splits influence oil and gas prices through the sharing
formula, we control for district splits directly, and estimate the following equation:

E (deforestyit) = pg exp (BPCOilandGasgy + yNumdistrictsg: + 1;,) (10)

where PCOilandGasg; is the per-capita oil and gas revenue received by the district (in
US$). Note that in computing Numdistrictsy; when estimating , we count a district as
having split only when it reports receiving its own oil and gas revenue] Each observation
is a district (using the 2008 borders) x forest zone x year. As above, p, is a district
fixed-effect, 7, is an island x year fixed effect. We report robust standard errors are reported
adjusted for clustering at the 1990 district boundaries. Since district oil and gas sharing
revenue is, on average, 20 times larger than that generated by the forestry sector, one would

32District government officials have recently been exposed in a wide variety of strategies to capture rents
from the oil and gas revenue sharing fund. In Kabupaten Kutai Kartanegara, for example, the national
Anti-Corruption Commission recently documented that in 2001 the Bupati simply issued a decree giving
himself, top district government officials, and district parliamentarians an official monthly stipend equal to 3
percent of the amount the government received in oil and gas revenue, amounting to over US$9 million over
a 4 year period (KaltimPost 2009b}, |KaltimPost 2009a). In Kabupaten Natuna, Sumatra, a former Bupati
was arrested in 2009 by the Anti-Corruption Commission for allegedly embezzling US$8 million in oil and
gas revenue funds, by appropriating the funds to a fake committee that he never set up (Kompas 2009). In
Kabupaten Karawang, West Java, in 2004 the Bupati allegedly deposited US$600,000 in oil and gas revenue
sharing funds into his personal account rather than the district treasury (KoranTempo 2006).

33 As described above, de facto establishment of a district takes 1-3 after the official de jure implementation.
Since we care about district splits in this case because they affect the oil and gas allocation formula, it is
important to control here for the de facto date the district split took effect, as that is the date the oil and
gas formula would be affected.
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not expect forestry decisions to influence oil and gas choices, so we would expect oil and
gas revenue to be exogenous with respect to deforestation. To examine the medium-run
impacts of oil and gas rents on illegal logging, we estimate as above, but include 3 lags
of PCOilandGasa Y

5.2 Results

The results from estimating equation are shown in Table[d] Panel A, which shows the
immediate impact effect of oil and gas revenue on logging, confirms evidence of short-run
substitution between deforestation and oil and gas rents. Specifically, each US$1 of per-capita
oil and gas rents received by the district reduces logging by 0.3%. These effects are found
in both the legal logging zones (0.3% in production/conversion; column 2) and in the illegal
logging zones (0.6% in the conservation/protection zones). To interpret the magnitudes, note
that the standard deviation of PCOilandGasy; after removing district fixed effects is 23.7;
so a one-standard deviation change in PCOilandGasg; decreases deforestation by 7.1% in
the production/conversion zones and by 14.2 percent in the conservation/protection zones

Panel B shows, however, that the short-run and medium-run effects are quite different.
While the immediate effect of oil and gas revenue on logging is still negative (0.5% per US$1,
Panel B, Column 1), the sum of the lags is now positive and statistically insignificant. That
is, after three years, the total medium-run effect of US$1 of per-capita oil and gas rents is
to increase logging by 0.2%. Once again, this shift occurs equally in the legal logging zones
(0.2%, column 2) and illegal logging zones (0.1%, column 3). While none of these effects are
statistically significant, we can reject the null hypothesis that the sum of the lags and the
immediate effect are the same at the 1% level. This suggests that the short and medium-run
impacts are different, and in the medium run, oil and gas rents and rents from logging are
no longer substitutes.

An important question is why the effects might change over time. One natural hypothesis
is that the higher oil and gas rents attract a different type of politician to office who is
more interested in rent extraction. These politicians would then extract more rents on all

34Note that we do not have district-level data for PCQOilandGas prior to 2001, so there is a question of
how to assign lag values of PCOilandGas in the early years of our sample. Prior to the new revenue sharing
rules taking effect in 2001, there was very little of this type of revenue sharing with districts. For example, in
2000 (prior to decentralization), for all of Indonesia, the total for all royalties (oil and gas plus other revenue
sharing) shared with districts was 538 billion. In 2001, the first year of the new revenue sharig regime, it
was 9,312 billion Rupiah. Given that total revenue sharing prior to 2001 was less than 5% of the value in
2001 and after, we assume that oil and gas revenue was 0 prior to 2001 in computing lags. Using missing
values for these lags instead produces qualitatively similar results in aggregate, though the reversal between
short and long run is now limited only to the production / convserion zone (see Appendix Table 4 in the
online appendix).

35One might be concerned that these effects reflect labor market substitution, as labor moves into the oil
production sector when prices are high. However, we have verified that the same results separately both for
oil producers and non-oil producers, where the results for non-oil producers are driven only by the revenue
sharing they receive from other oil producing districts in the same province, suggesting this is not driven by
labor market factors.
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dimensions, both from the oil and gas sector and from forests. To investigate this hypothesis,
we begin by interacting oil and gas revenues with a dummy that captures whether the new
direct election for district heads has taken place or not, i.e.

E (deforestgy) = pig; €xp < BPCOilandGasq: + d PostElection g >

+mPCOilandGas x PostElectiong; + yNumdistrictSq: + n;,

(11
The key coefficient of interest is 7w, which captures how the coefficient on PCOilandGas
changes after the direct election. We continue to control for NumDistricts as in equation
[T0).

The results are presented in Table [I0] The results show that 7 is positive, i.e. the
negative effect of oil and gas revenues on logging attenuates once the direct election is
held. Specifically, the point estimates suggest that 35% of the substitution effect between
oil and gas revenues and forest extraction disappears once the direct election is held. This
provides suggestive evidence that the medium-term reversal in the negative oil and gas effect
is mitigated through a change in the political equilibrium.

What about the political equilibrium might be changing? In results shown in the online
appendix (see Appendix Table 2), we find that higher oil and gas revenues lead to fewer
candidates running in the direct election, and instead lead to the new Bupati representing
a larger coalition of parties, using data from [Skoufias et al. (2010)] We find no impact
on the probability the incumbent is re-elected. It is possible that these larger coalitions
engage in more rent extraction as they have more people with whom to share the spoils
of office. Consistent with this, we also find evidence that having fewer candidates or a
larger coalition is associated with a greater increase in logging, though the effects are only
statistically significant in some forest zones and only in some specifications (see Appendix
Table 3). Together, these results, as well as the results in Tables |§] and , suggest that the
higher political rents lead to a change in the political equilibrium, which in turn undoes the
short-run substitution between oil rents and forest extraction.

6 Conclusions

This paper has demonstrated how the incentives faced by local politicians and bureaucrats
play an important role in determining the rate of deforestation in Indonesia. Using a novel
MODIS satellite-based dataset that tracks deforestation on an annual level across the whole
of Indonesia, we have shown that the rates of deforestation are influenced by the return local
officials face in the market for logs, by their short electoral needs, and by the availability of
alternative sources of rent extraction.

More broadly, the results in the paper demonstrate that the pattern of forest cutting in
Indonesia is the not result of some optimal forest management model implemented by the
Ministry of Forestry. The decisions that matter for whether trees are cut down or not take
place not just in ministerial meeting rooms but also are a result of the push and shove of
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local politics.

To the extent one wants to slow the rate of tropical deforestation, these results matter.
They suggest that unless the incentives of local politicians and bureaucrats are taken cen-
trally into account then central or donor driven policies to counter deforestation may be
ineffective. In particular, the recently ratified Reducing Emissions from Deforestation and
Forest Degradation (REDD) initiative provides countries with a source of funding to reduce
deforestation that is likely to grow considerably over time. Indeed, Indonesia is to be the first
recipient of REDD funds, having signed a US$1 billion REDD agreement with Norway in
2009. However, unless REDD programs are designed taking into account those local actors
who currently derive considerable benefits from legal and illegal logging, it is unlikely to be
effective.

Though instructive in term of revealing how political economy plays a central role in the
deforestation process our paper very much leaves open this central question of how best to
counter this process. But the results imply taking the financial and electoral pressures upon
local politicians and bureaucrats is a crucial step to sustainable tropical forestry.
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Figure 1: Forest cover change in the province of Riau, 2001-2008
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Figure 2: District-level logging in Indonesia using the 2008 district boundaries, 2001 and 2008
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Figure 3: Total number of district splits using the 1990 district boundaries
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Figure 4: Oil and gas revenue per capita using the 2008 district boundaries, 2008
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Table 1: Summary statistics

| I(1)OI @) (©) 4) ©®) (6) ) ®) 9) (10) ) (1)
Total lan Change
Year pixels 2000 2001 2002 2003 2004 2005 2006 2007 2008 2008-2000
All Forest 18,986,240 17,567,200 17,493,600 17,353,440 17,287,520 17,199,840 17,115,200 16,946,560 16,855,840 16,784,160 -783,040

Production/Conversion 11,894,240 10,865,280 10,803,360 10,697,280 10,640,320 10,567,840 10,492,640 10,348,320 10,264,640 10,199,200 -666,080
Conservation/Protection 7,092,000 6,701,760 6,690,240 6,656,160 6,647,200 6,631,840 6,622,560 6,598,080 6,591,200 6,584,960 -116,960

Conversion 3,098,080 2,652,160 2,633,600 2,607,040 2,591,520 2,570,400 2,545,920 2,512,640 2,490,560 2,472,800 -179,360
Production 8,796,320 8,213,120 8,169,760 8,090,240 8,048,800 7,997,440 7,946,720 7,835,680 7,774,080 7,726,400 -486,720
Conservation 2,731,840 2,515,200 2,510,720 2,490,240 2,485,920 2,478,400 2,475,520 2,460,960 2,457,120 2,454,880 -60,320
Protection 4,360,000 4,186,560 4,179,520 4,165,920 4,161,120 4,153,440 4,147,040 4,137,120 4,134,080 4,129,920 -56,640
Changes in all forest -73,440 -140,320 -65,920 -87,680 -84,640 -168,640 -90,720 -71,680 -783,040

Notes: The forest dataset has been constructed from MODIS satellite images, as described in Section 2.2.1. It counts the total number of forest pixels by year and forest zone. The units are the number of MODIS
pixels in each class, where a MODIS pixel represents an area approximately 250m * 250m in size.

Table 2: Summary statistics of pixels deforested in 1000HA by districtxyear

1) @) @) (4) ©®) (6) @)
Logging All Forest Production/Conversion Conservation/Protection Conversion Production Conservation Protection
Mean 113 203 32 152 232 40 26
Standard deviation 464 641 164 423 735 221 106
Observations 6952 3280 3672 1184 2096 1520 2152

Notes: The forest dataset has been constructed from MODIS satellite images, as described in Section 2.2.1. It counts the total number of forest cells by year and forest zone.

The variable shown here is the key
dependent variable analyzed in Sections 3-5.
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Table 3: Satellite data on impact of splits, province level

D ) ©) 4) ®) (6) (7
VARIABLES All Forest Production/Conversion  Conservation/Protection Conversion Production Conservation Protection
Panel A
Number of districts 0.0361** 0.0424** 0.0391 0.0283 0.0533*** 0.0786* 0.00645
in province (0.0160) (0.0180) (0.0317) (0.0333) (0.0199) (0.0415) (0.0322)
Observations 672 336 336 128 168 144 168
Panel B: Lags
Number of districts 0.0370 0.0435 0.0833*** 0.0447 0.0523 0.0959** 0.0657*
in province (0.0284) (0.0332) (0.0299) (0.0420) (0.0350) (0.0417) (0.0377)
Lag 1 0.0405 0.0434 -0.129** 0.00823 0.0419 -0.170 -0.0732
(0.0446) (0.0461) (0.0651) (0.0641) (0.0434) (0.130) (0.0623)
Lag 2 -0.0717%** -0.0740%** 0.0186 -0.0883** -0.0625** 0.111 -0.0851
(0.0265) (0.0250) (0.0762) (0.0346) (0.0257) (0.153) (0.0679)
Lag 3 0.0731* 0.0654 0.117* 0.107 0.0476 0.0889 0.141**
(0.0397) (0.0399) (0.0610) (0.0880) (0.0357) (0.0614) (0.0610)
Observations 672 336 336 128 168 144 168
Joint p 4.75e-06 6.95e-08 0.0235 0.0428 0.000923 0.0486 0.0665
Sum of lags 0.0789*** 0.0783*** 0.0900** 0.0712 0.0793*** 0.125** 0.0484
(0.0200) (0.0190) (0.0400) (0.0616) (0.0214) (0.0611) (0.0357)

Notes: The forest dataset has been constructed from MODIS satellite images, as described in Section 2.2.1. It counts the total number of forest cells by year and forest zone. Note that 1000HA = 10 square
kilometres. Number of districts in province variable counts the number of districts within each province. The regression also includes province and island-by-year fixed effects. The robust standard errors are
clustered at the 1990 province boundaries and reported in parentheses. *** 0.01, ** 0.05, * 0.1
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Table 4: Satellite data on impact of splits, leads

@ 2 ©)) 4) ®) (6) (7
VARIABLES All Forest Production/Conversion  Conservation/Protection Conversion Production Conservation Protection
Number of districts 0.0406 0.0444 0.0882** -0.0105 0.0637 0.138*** 0.00976
in province (0.0396) (0.0460) (0.0352) (0.0304) (0.0491) (0.0490) (0.0614)
Lag 1 0.0244 0.0202 -0.105 -0.0126 0.0166 -0.124 -0.0517
(0.0480) (0.0511) (0.0692) (0.0834) (0.0473) (0.104) (0.0773)
Lag 2 -0.0603 -0.0547 -0.00237 -0.0712 -0.0395 0.0400 -0.0822
(0.0385) (0.0362) (0.0853) (0.0588) (0.0336) (0.122) (0.0819)
Lag 3 0.0856* 0.0755 0.135 0.148 0.0584 0.156* 0.134
(0.0518) (0.0494) (0.0884) (0.123) (0.0413) (0.0924) (0.0947)
Lead 1 0.0879 0.0925 0.0498 0.324* 0.0370 0.172 0.0444
(0.114) (0.120) (0.136) (0.173) (0.110) (0.138) (0.136)
Lead 2 -0.118 -0.156 -0.0141 -0.257 -0.149 0.132 -0.0897
(0.137) (0.136) (0.163) (0.180) (0.131) (0.180) (0.170)
Lead 3 0.0364 0.0635 -0.0432 0.117 0.0689 -0.157 0.0180
(0.107) (0.104) (0.103) (0.130) (0.103) (0.115) (0.112)
Observations 504 252 252 96 126 108 126
Joint p 0.000251 0 0.0129 0 0 2.72e-09 0.0817
Sum of lags 0.0903*** 0.0854*** 0.116* 0.0536 0.0992*** 0.210** 0.00992
(0.0281) (0.0239) (0.0663) (0.0677) (0.0223) (0.0944) (0.0774)
Sum of leads 0.00586 -5.16e-05 -0.00758 0.184 -0.0432 0.147 -0.0274
(0.0663) (0.0587) (0.0976) (0.132) (0.0566) (0.148) (0.0889)
Joint p leads 0.714 0.660 0.608 0.201 0.296 0.430 0.550

Notes: See Notes to Table 5.

***0.01,**0.05,*0.1
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Table 5: Impact of District Splits on Prices and Quantities: Legal Logging Data

(1) @ 3) (@) (5) (6)
2001-2007 2001-2007 1994-2007
All wood observations Balanced panel of wood observations All wood observations
VARIABLES Log Price Log Quantity Log Price Log Quantity Log Price Log Quantity
Panel A
Number of districts -0.017* 0.089** -0.019* 0.106** -0.023** 0.081***
in province (0.009) (0.041) (0.010) (0.036) (0.009) (0.016)
Observations 1003 1003 532 532 2355 2355
Panel B: Lags
Number of districts -0.025** 0.098 -0.027** 0.126 -0.029*** 0.071***
in province (0.010) (0.074) (0.012) (0.078) (0.008) (0.023)
Lag 1 0.010** -0.041 0.009 -0.035 0.010** -0.001
(0.004) (0.036) (0.005) (0.041) (0.004) (0.035)
Lag 2 -0.001 0.041 -0.001 0.018 0.000 0.017
(0.008) (0.045) (0.009) (0.021) (0.004) (0.027)
Lag 3 -0.017** 0.033 -0.017** 0.043 -0.015* 0.029
(0.006) (0.044) (0.007) (0.040) (0.008) (0.037)
Observations 1003 1003 532 532 1960 1960
Joint p 0.00271 0.000533 0.00756 0.000583 0.000109 0.00645
Sum of lags -0.0329*** 0.131** -0.0361** 0.153** -0.0339** 0.117***
(0.0103) (0.0527) (0.0116) (0.0505) (0.0131) (0.0363)

Notes: The log price and log quantity data has been compiled from the "Statistics of Forest and Concession Estate’. The Number of districts in province variable counts the number of kabupaten and kota within
each province. The regression also includes wood-type-by-province and wood-type-by-island-by-year fixed effects and are weighted by the first volume reported by wood type and province. The robust standard
errors are clustered at the 1990 province boundaries and reported in parentheses. *** 0.01, ** 0.05, * 0.1
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Table 6: District level analysis: direct vs. indirect effects

D ) ©)] 4) (%) (6) (7
VARIABLES All Forest Production/Conversion  Conservation/Protection Conversion Production Conservation Protection
Panel A
Number of districts in -0.102 -0.172* 0.0663 -0.0174 -0.211** 0.136* -0.0284
original district boundaries (0.0778) (0.0913) (0.0519) (0.150) (0.0864) (0.0767) (0.0839)
Number of districts 0.0701** 0.0967*** 0.0336 0.0380 0.122*** 0.0677 0.0138
elsewhere in province (0.0275) (0.0311) (0.0308) (0.0486) (0.0326) (0.0452) (0.0315)
Observations 3152 1488 1664 536 952 688 976
Panel B: Lags
Number of districts in -0.0627 -0.0984 0.107** 0.0139 -0.133 0.151* 0.0421
original district boundaries (0.0830) (0.103) (0.0542) (0.154) (0.0969) (0.0874) (0.0576)
Lag 1 -0.0185 -0.0780 -0.0739 0.207 -0.140 -0.0828 -0.0259
(0.130) (0.159) (0.103) (0.239) (0.141) (0.138) (0.0806)
Lag 2 -0.0767 -0.129 0.0252 -0.438 -0.0625 0.153 -0.143
(0.115) (0.151) (0.0956) (0.287) (0.133) (0.161) (0.103)
Lag 3 0.190*** 0.218*** 0.193** 0.154 0.243*** 0.148 0.261**
(0.0669) (0.0737) (0.0794) (0.138) (0.0789) (0.0940) (0.106)
Number of districts 0.0702* 0.0901** 0.0883*** 0.0356 0.116%** 0.105** 0.0771**
elsewhere in province (0.0371) (0.0434) (0.0316) (0.0599) (0.0384) (0.0436) (0.0357)
Lag 1 0.0582 0.0802 -0.140** -0.0296 0.0946 -0.194* -0.0803
(0.0584) (0.0643) (0.0572) (0.0872) (0.0619) (0.100) (0.0556)
Lag 2 -0.0656 -0.0535 0.0207 -0.00584 -0.0517 0.101 -0.0573
(0.0477) (0.0520) (0.0780) (0.0668) (0.0543) (0.119) (0.0973)
Lag 3 0.0322 0.0111 0.0935 0.0932 -0.0238 0.0732 0.0972
(0.0396) (0.0426) (0.0584) (0.0776) (0.0445) (0.0527) (0.0629)
Observations 3152 1488 1664 536 952 688 976
Joint p original 0.0632 0.00753 0.0555 0.119 0.00465 0.212 0.0120
Sum of lags original 0.0323 -0.0867 0.251*** -0.0623 -0.0929 0.370** 0.133**
(0.114) (0.115) (0.0964) (0.193) (0.115) (0.176) (0.0680)
Joint p elsewhere 0.0100 0.00331 0.0265 0.589 0.00118 0.00983 0.130
Sum of lags elsewhere 0.0951** 0.128*** 0.0622 0.0934 0.135*** 0.0851 0.0367
(0.0390) (0.0432) (0.0385) (0.0586) (0.0480) (0.0654) 0.0311)

Notes: See Notes to Table 5. A unit of observation is a 1990-borders district * forest zone. Robust standard errors clustered at 1990 district borders in parentheses. Number of districts in original district boundaries

variable counts the number of districts the district split into and the Number of districts elsewhere in province variable counts the number of districts all other districts within the same province split into. The
regression also includes district-by-forest zone and island-by-year fixed effects. *** 0.01, ** 0.05, * 0.1



Table 7: District level analysis: new vs.

old part of the district

1) ) @) (4) () (6) @)
VARIABLES All Forest Production/Conversion  Conservation/Protection Conversion Production Conservation Protection
Panel A
Number of districts in -0.0527 -0.0707 0.0594 0.0336 -0.0730 0.124** -0.0209
original district boundaries (0.0774) (0.0993) (0.0520) (0.160) (0.107) (0.0591) (0.100)
Number of districts -0.0383 -0.0508 -0.00116 -0.0190 -0.0740 0.00417 -0.125
in orig. district boundaries (0.0836) (0.0846) (0.0855) (0.118) (0.107) (0.0469) (0.0802)
x has original capital in 2008
Observations 5488 2512 2816 896 1568 1072 1616
Panel B: Lags
Number of districts in -0.00514 -0.0192 0.113 0.0654 -0.0229 0.182** 0.0305
original district boundaries (0.0943) (0.128) (0.0690) (0.178) (0.127) (0.0843) (0.0526)
Lag 1 0.106 0.106 0.0600 0.371 0.0430 0.0526 0.104
(0.150) (0.176) (0.126) (0.252) (0.142) (0.126) (0.0830)
Lag 2 -0.285*** -0.366*** -0.105* -0.777%** -0.268** -0.0312 -0.204**
(0.110) (0.131) (0.0617) (0.244) (0.120) (0.0681) (0.102)
Lag 3 0.207*** 0.260*** 0.101 0.334** 0.211** 0.0405 0.191
(0.0671) (0.0741) (0.0849) (0.144) (0.0850) (0.119) (0.129)
Number of districts -0.167* -0.177 -0.138*** -0.134 -0.201 -0.189** -0.169***
x has original capital in 2008 (0.0879) (0.127) (0.0440) (0.101) (0.160) (0.0932) (0.0546)
Lag 1 -0.0160 -0.00289 -0.168* -0.0485 -0.00209 -0.122 -0.154
(0.126) (0.160) (0.0885) (0.188) (0.169) (0.105) (0.124)
Lag 2 0.357*** 0.416*** 0.313*** 0.446%** 0.412%** 0.340*** 0.0818
(0.0744) (0.0987) (0.0940) (0.0879) (0.141) (0.113) (0.0859)
Lag 3 -0.107 -0.202* 0.178* -0.217** -0.196* 0.180 0.251**
(0.0871) (0.104) (0.0971) (0.102) (0.115) (0.141) (0.127)
Observations 5488 2512 2816 896 1568 1072 1616
Joint p original 0.000419 0.000183 0.0882 <0.001 0.0683 0.137 0.0856
Sum of lags original 0.0219 -0.0188 0.168* -0.00702 -0.0372 0.244 0.122
(0.114) (0.121) (0.0910) (0.229) (0.121) (0.149) (0.0910)
Joint p interaction 0 <0.001 <0.001 <0.001 <0.001 0.0139 0.00623
Sum of lags interaction 0.0668 0.0339 0.186 0.0463 0.0127 0.210** 0.0103
(0.121) (0.0898) (0.158) (0.171) (0.0886) (0.105) (0.147)

Notes: See Notes to Table 5. A unit of observation is a 2008-borders district * forest zone. Robust standard errors clustered at 1990 district borders in parentheses. Number of districts in original district boundaries
variable counts the number of districts the original 1990 district split into as of year t and the Has original capital in 2008 is a dummy for whether the capital city of the original 1990 district is located within the
borders of the district in 2008. The regression also includes 2008 district-by-forest zone and island-by-year fixed effects. *** 0.01, ** 0.05, * 0.1



Table 8: Elections

@ 2 ©)] 4) ®) (6) (7
VARIABLES All Forest Production/Conversion  Conservation/Protection Conversion Production Conservation Protection
Panel A
ElectionYear -0.133 -0.0732 -0.593*** 0.124 -0.128 -0.398*** -0.658***
(0.0959) (0.112) (0.155) (0.156) (0.107) (0.117) (0.214)
Observations 6464 3064 3400 1112 1952 1360 2040
Panel B: Leads & Lags
ElectionYear 0.0277 0.0804 -0.364** 0.405* -0.00920 -0.125 -0.493***
(0.142) (0.155) (0.152) (0.241) (0.151) (0.187) (0.183)
Lead 1 0.200 0.173 0.427** 0.242 0.134 0.244 0.501**
(0.130) (0.140) (0.216) (0.226) (0.146) (0.171) (0.220)
Lead 2 0.131 0.120 0.294** 0.295 0.0869 0.223 0.300**
(0.166) (0.185) (0.130) (0.223) (0.184) (0.149) (0.134)
Lag 1 0.282* 0.305* 0.140 0.579** 0.235 0.352 -0.111
(0.155) (0.170) (0.217) (0.236) (0.186) (0.282) (0.201)
Lag 2 -0.0427 -0.0463 0.0180 0.0896 -0.0671 0.0892 -0.103
(0.173) (0.193) (0.266) (0.302) (0.205) (0.339) (0.236)
Observations 6464 3064 3400 1112 1952 1360 2040
Lags Joint p 0.00305 0.00447 0.000358 1.61e-06 0.0383 0.0695 0.0257
Sum of lags 0.267 0.339 -0.206 1.074 0.158 0.315 -0.708
(0.429) (0.470) (0.547) (0.733) (0.489) (0.664) (0.500)
Leads Joint p 0.291 0.458 0.0598 0.413 0.641 0.252 0.0418
Sum of leads 0.331 0.293 0.721** 0.536 0.221 0.468* 0.801**
(0.270) (0.295) (0.314) (0.418) (0.302) (0.283) (0.320)

Notes: See Notes to Table 5. A unit of observation is a 2008-borders district * forest zone. Robust standard errors clustered at 1990 district borders in parentheses. ElectionYear variable is a dummy equal to 1 if the

district holds district head election that year. The regression also includes district-by-forest zone and island-by-year fixed effects. *** 0.01, ** 0.05, * 0.1

41



Table 9: Substitutes or Complements?

1) ) 3 4) ®) (6) (7
VARIABLES All Forest Production/Conversion  Conservation/Protection Conversion Production Conservation Protection
Panel A
Oil and Gas Revenue -0.00316** -0.00284* -0.00597** -0.00912*** -0.00220 -0.00474** -0.00986***
per capita (0.00160) (0.00165) (0.00252) (0.00165) (0.00146) (0.00218) (0.00147)
Observations 6464 3064 3400 1112 1952 1360 2040
Panel B: Lags
Oil and Gas Revenue -0.00492*** -0.00432** -0.0113*** -0.0115%** -0.00362** -0.0109*** -0.0118***
per capita (0.00186) (0.00190) (0.00257) (0.00181) (0.00174) (0.00368) (0.00181)
Lag 1 0.000652 8.87e-05 0.00561*** 0.00423** 0.000245 0.00797*** -0.00149
(0.00103) (0.00126) (0.00113) (0.00201) (0.00106) (0.00147) (0.00177)
Lag 2 0.00112 0.00132 0.000731 -0.00112 0.00166 0.00206 0.00103
(0.00130) (0.00151) (0.00138) (0.00177) (0.00155) (0.00144) (0.00174)
Lag 3 0.00519*** 0.00530*** 0.00574 0.0119*** 0.00401*** -8.39e-05 0.0140%***
(0.00163) (0.00160) (0.00372) (0.00307) (0.00150) (0.00288) (0.00527)
6464 3064 3400 1112 1952 1360 2040
Joint p 1.08e-07 4.56e-08 0 0 3.39%¢-06 5.91e-10 0
Sum of lags 0.00205 0.00240 0.000768 0.00344 0.00230 -0.000962 0.00172
(0.00134) (0.00154) (0.00195) (0.00347) (0.00155) (0.00210) (0.00448)
Sum of lags = immed. <0.001 <0.001 <0.001 <0.001 <0.0010 0.003 0.0171

effect p-value

Notes: See Notes to Table 5. Oil and Gas Revenue per capita variable reports the value of per capita revenue from oil and gas extraction at the district-level in US dollars. A unit of observation is a 2008-borders
district * forest zone. Robust standard errors clustered at 1990 district borders in parentheses. The regression also includes district-by-forest zone and island-by-year fixed effects and the number of districts the
1990 district has split into by year t (and 3 lags of this variable in Panel B). *** 0.01, ** 0.05, * 0.1
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Table 10: Oil before and after direct elections

1) ) ©)) 4) ®) (6) (1)
VARIABLES All Forest Production/Conversion  Conservation/Protection Conversion Production Conservation Protection
Panel A
Oil and Gas Revenue -0.00523*** -0.00457*** -0.0122%** -0.0115*** -0.00369** -0.0124*** -0.0123***
per capita (0.00143) (0.00159) (0.00174) (0.00300) (0.00155) (0.00275) (0.00178)
Post-election 0.0218 0.0240 0.0299 -0.0352 0.0552 0.277 -0.208
(0.110) (0.118) (0.217) (0.187) (0.125) (0.263) (0.168)
Oil and Gas x 0.00175* 0.00147 0.00517*** 0.00253 0.00121 0.00527** 0.00325*
Post-election (0.000989) (0.000976) (0.00180) (0.00171) (0.000923) (0.00246) (0.00179)
6403 3037 3366 1099 1938 1346 2020
0.00128 0.0161 <0.001 <0.001 0.0579 <0.001 <0.001
Oil + Qil * Post-election -0.00348*** -0.00310** -0.00698*** -0.00892*** -0.00248* -0.00713*** -0.00904***
(0.00129) (0.00140) (0.00134) (0.00174) (0.00127) (0.00144) (0.00137)

Notes: See Notes to Table 10. Robust standard errors clustered at 1990 district borders in parentheses. The regression also includes district-by-forest zone and island-by-year fixed effects and the number of districts

the 1990 district has split into by year t (and 3 lags of this variable in Panel B). *** 0.01, ** 0.05, * 0.1
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