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Abstract

Every year housing markets in the United Kingdom and the United States experience sys-
tematic above-trend increases in both prices and transactions during the second and third
quarters (the “hot season”) and below-trend during the fourth and first quarters (the “cold
season”). Seasonality in house prices poses a challenge to standard models for durable goods.
To account for seasonality, this paper develops a matching model that emphasizes the role
of match-specific quality between the buyer and the house and the presence of thick-market
effects in housing markets. It shows that a small, deterministic driver of seasonality can be
amplified and revealed as deterministic seasonality in transactions and prices, quantitatively
mimicking the seasonal fluctuations in transactions and prices observed in the United Kingdom
and the United States. The model can be applied to the study of lower-frequency fluctuations
in housing markets.
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1 Introduction

A rich empirical and theoretical literature has been motivated by dramatic boom-to-bust episodes
in regional and national housing markets.! Booms are typically defined as times when prices rise
and there is intense trading activity, whereas busts are periods when prices and trading activity fall
below trend.

While the boom-to-bust episodes motivating the extant work are relatively infrequent and their
timing is hard to predict, this paper shows that in several housing markets, booms and busts are just
as frequent and predictable as the seasons. Specifically, in most regions of the United Kingdom and
the United States, each year a housing boom of considerable magnitude takes place in the second and
third quarters of the calendar year (spring and summer, which we call the “hot season”), followed by
a bust in the fourth and first quarters (fall and winter, the “cold season”).? The predictable nature of
house price fluctuations (and transactions) is confirmed by real estate agents, who in conversations
with the authors observed that during the winter months there is less activity and prices are lower.
Perhaps more compelling, publishers of house price indexes go to great lengths to produce seasonally
adjusted versions of their indexes, usually the versions that are published in the media. As stated

by some publishers:

“House prices are higher at certain times of the year irrespective of the overall trend.
This tends to be in spring and summer... We seasonally adjust our prices because the
time of year has some influence. Winter months tend to see weaker price rises and
spring/summer see higher increases all other things being equal.” (From Nationwide
House Price Index Methodology.)

“House prices are seasonal with prices varying during the course of the year irrespec-
tive of the underlying trend in price movements. For example, prices tend to be higher

in the spring and summer months.” (From Halifax Price Index Methodology.)

The first contribution of this paper is to systematically document the existence and quantitative

importance of these seasonal booms and busts.®> For the United Kingdom as a whole, we find

IFor example, see Stein (1995), Muellbauer and Murphy (1997), Genesove and Mayer (2001), Krainer (2001),

Brunnermeier and Julliard (2008), and the contributions cited therein.
2Since we use “constant quality” house price indexes, changes in prices are not driven by changes in the charac-

teristics of the houses transacted.
3Studies on housing markets have typically glossed over the issue of seasonality. There are a few exceptions,

albeit they have been confined to only one aspect of seasonality (e.g., either quantities or prices) or to a relatively



that the difference in annualized growth rates between hot and cold seasons is above 8 percent for
nominal house prices (6 percent for real prices) and 108 percent for the volume of transactions. For
the United States, the corresponding differences are above 3 percent for nominal (and real) prices
and 148 percent for transactions, though there is considerable regional variation within this country
(particularly for prices).t

The predictability and size of seasonal fluctuations in house prices pose a challenge to standard
models of durable good markets, which posit that anticipated changes in prices cannot be large:
if prices are expected to be much higher in June than in December, then buyers will shift their
purchases to the end of the year, narrowing down the seasonal price differential. More concretely,
in these standard models house prices reflect the present discounted value of a presumably long
stream of flow values. Thus, seasonality in rental flows or service costs has to be implausibly large
to generate seasonality in house prices.” Of course a possible explanation for why standard no-
arbitrage conditions fail is that transaction costs are very high and hence investors do not benefit
from arbitrage. Still, the question remains as to why presumably informed buyers do not try to buy
in the lower-priced season. Furthermore, it is not clear why we observe a systematic seasonal pattern.
(The lack of scope for seasonal arbitrage does not necessarily imply that most transactions should be
carried out in one season, nor does it imply that prices and transactions should be correlated.) To
offer answers to these questions, we develop a search-and-matching model for the housing market.
The model more realistically captures the process of buying and selling houses, and, more generally,
it can shed new light on the mechanisms governing housing market transactions and prices.

The model builds on two elements of the housing market that we think are important for un-

small geographical area. In particular, Goodman (1993) documents pronounced seasonality in moving patterns in the
US, Case and Shiller (1989) find seasonality in Chicago house prices and—to a lesser extent—in Dallas. Hosios and
Pesando (1991) find seasonality in prices in the City of Toronto; the latter conclude “that individuals who are willing

to purchase against the seasonal will, on average, do considerably better.”
4Our focus on these two countries is largely driven by the reliability and quality of the data.
5Using the standard no-arbitrage condition, we show that seasonality in housing markets does not seem to be

driven by seasonal differences in rentals or service costs (see discussion in Appendix B.) Similarly, it does not appear
to be driven by liquidity related to overall income. Income is typically highest in the last quarter, a period in which
house prices and the volume of transactions tend to fall below trend. Beaulieu and Miron (1992) and Beaulieu, Miron,
and MacKie-Mason (1992) show that in most countries, including the United Kingdom and the United States, income
peaks in the fourth quarter of the calendar year. There is also a seasonal peak in output in the second quarter, and
seasonal recessions in the first and third quarters. House price seasonality thus is not in line with income seasonality:

Prices are above trend in the second and third quarters.



derstanding seasonality in house prices. The first element is a search friction. Buyers and sellers
potentially face two search frictions: one is locating a vacant house (or a potential buyer), and
the other is determining whether the house (once found) is suitable for the buyer (meaning it is
a sufficiently good match). The first friction is, in our view, less relevant in the housing market
context because advertising by newspapers, real estate agencies, property web sites, and so on, can
give sufficient information to buyers in order to locate houses that ex ante are in the acceptance
set. But houses have many idiosyncratic features that can be valued differently by different buyers:
two individuals visiting the same house may attach different values to the property. We model this
match-specific quality as a stochastic variable which is fully revealed after the buyer inspects the
house. The second model’s element is the notion that in a market with more houses for sale, a
buyer is more likely to find a better match—what we refer to as “thick-market effect.”® Specifically,
we assume that in a market with more houses, the distribution of match-specific quality first-order
stochastically dominates the distribution in a market with fewer houses.

Hence, our model starts from the premise that the utility potential buyers may derive from a
house is fully captured by the match-specific quality between the buyer and the house. This match-
specific quality is more likely to be higher in a market with more buyers and houses due to the
thick-market effect. In a thick market (during the hot season), better matches are more likely to
be formed and this increases the probability that a transaction takes place, resulting in a higher
volume of transactions. Because better matches are formed on average, prices will also be higher,
provided that the sellers have some bargaining power. This mechanism leads to a higher number of
transactions and prices in the hot season when there are more buyers and sellers.”

In the housing market this pattern is repetitive and systematic. The same half-year is a hot
season and the same half-year is a cold season. The higher match-specific quality in the hot season
can account for why potential buyers are willing to buy in the hot (high-price) season. But if our
amplification mechanism is to explain seasonality, it has to answer two additional questions: one,
why are some sellers willing to sell in the cold (low-price) season? In other words, why is there
no complete “time agglomeration,” whereby markets shut down completely in a cold season? Two,

why is the pattern systematic—that is, why do hot and cold markets predictably alternate with the

6The labor literature distinguishes the thick-market effects due to a faster arrival of offers and those due to the
quality of the match. Our focus is entirely on the quality effect. See, for example, Diamond (1981), Petrongolo and

Pissarides (2006) and Gautier and Teulings (2008).
"Thus, the overall “liquidity” of the housing market increases in the hot season due to the higher matching

probability.



seasons?

To answer these two questions, we embedded the above mechanism into a seasonal model of the
housing market and study how a deterministic driver of seasonality can be amplified and revealed
as deterministic seasonality in transactions and prices due to the thick-market effects on the match-
specific quality. By focusing on a periodic steady-state, we are studying a deterministic cycle in
which agents are fully aware that they are in a market in which both transactions and prices fluctuate
between high and low levels across the two seasons.

Our answer to the first question is related to the presence of search frictions in the presence of
match-specific quality. In the cold season any seller can decide whether to sell immediately or wait
until the hot season, when presumably prospects might be more favorable on average. If a buyer
then arrives and a match can be made, the seller has to decide whether to keep searching for a
better offer or to sell at the potentially lower price. If he waits until the hot season, he can get,
on average, a higher price, provided that he finds a buyer with a good match. There is, however, a
probability that he will not find such buyer to make a transaction; the uncertainty created by this
search friction is not present in a standard asset-pricing model, in which agents can always transact
at market prices.

Our answer to the second question—why the hot and cold seasons are systematic—is related
to our assumption about the desire to move house and the seasonal variations embedded within
this decision. We claim that the arrival of the exogenous process by which households want to
move (the “propensity to move”) has a seasonal component. In the spring and summer months this
propensity is higher because, for example, of the school calendar: families may prefer to move in the
summer, before needing to start their children in new schools, or from other factors, such as weather.
These differences alone, however, cannot explain the full extent of seasonality we document (in the
data, seasonality in houses for sale is much lower than seasonality in the volume of transactions).®
Most of the explanatory power of the model is due to the thick-market effects on match-quality.
We show that a slightly higher ex ante probability of moving in a given season (which increases
the number of buyers and sellers) can trigger thick-market effects that make it appealing to all

other existing buyers and sellers to transact in that season. This amplification mechanism can thus

8For example, parents of school-age children account for only a small fraction of total movers (see Goodman 1993).
While seasonal weather patterns may make house search more convenient in the summer, it is unlikely that this
convenience is worth so much money to the typical house buyer. Furthermore, we find that cities with moderate
weather throughout the year, such as Los Angeles and San Diego, also display strong seasonality in prices and

transactions.



create substantial seasonality in the volume of transactions; the extent of seasonality in prices, in
turn, increases with the bargaining power of sellers. Intuitively better matches in the hot season
imply higher surpluses to be shared between buyers and sellers; to the extent that sellers have some
bargaining power, this leads to higher house prices in the hot season. The calibrated model can
quantitatively account for most of the seasonal fluctuations in transactions and prices in the United
Kingdom and the United States.

The contribution of the paper can be summarized as follows. First, it systematically documents
seasonal booms and busts in housing markets. Second, it develops a search-and-matching model
that can quantitatively account for the seasonal patterns of prices and transactions observed in the
United Kingdom and the United States. Understanding seasonality in house prices can serve as a
first step to understanding how housing markets work and what are the main mechanisms governing
housing market fluctuations. As such, it can help to put restrictions on the class of models needed
to characterize housing markets. In other words, seasonality in house prices, what economists and
publishers of house price indexes typically ignore or correct for, can contain important information
to guide the development and selection of appropriate models for housing markets.

The search-and-matching framework has been applied before to the study of housing markets (for
example, see Wheaton (1990), Williams (1995), Krainer (2001), and Albrecht et al. (2007)). Recent
work on housing market fluctuations, such as Novy-Marx (2009), Diaz and Jerez (2009) and Piazzesi
and Schneider (2009), adopt an aggregate matching function (as in Pissarides (2000) chapter 1) and
focus on the role of market tightness (the ratio of the number of buyers to the number of sellers) in
determining the probability of transactions taking place.” We distinguish the probability of making
a contact and the probability that the house turns out to be a good match. The contact probability
is always 1 in our model, but the match quality drawn is a random variable. In this sense, our setup
is closest to Jovanovic (1979), which also emphasizes the stochastic nature of the match-specific
quality for the labour market, and Krainer (2001) for the housing market. In contrast to previous
models that focus on market tightness, transactions and prices in our set-up are governed by the
distribution of match-specific quality.

Krainer (2001) and Novy-Marx (2009) also refer to “hot and cold” markets; however, for both

studies the nature as well as the meaning of hot and cold markets is different than in our paper.

9These papers study the amplified response of housing markets to an unexpected shock—and are hence related to
the large macro literature spawned by Shimer (2005). We instead focus on predictable cycles, with both sellers and

buyers being fully aware of being in such periodic cycle.



The key idea in Novy-Marx (2009) is that, if for any reason the ratio of buyers to sellers (or market
tightness) unexpectedly increases, houses can sell more quickly, decreasing the stock of sellers in the
market. This in turn increases the relative number of buyers to sellers even more, amplifying the
initial shock. As a result, the bargaining position of sellers improves, leading to higher prices. Thus,
the entire amplification effect operates through market tightness. In our model, instead, market
tightness plays no role; indeed, it is constant across all seasons. If an agent receives a shock that
forces her to move, she becomes a potential buyer and a potential seller simultaneously and overall
tightness does not change. The amplification mechanism in our model comes instead from the quality
of the matches. In the summer there are both more buyers and more sellers; the availability of a
bigger stock of vacant houses improves the overall efficiency of the market, as buyers are more likely
to find a better match. Put differently, our explanation relies on market thickness (the numbers
of buyers and sellers) and its effect on the quality of matches, whereas Novy-Marx’s hinges on
tightness. This difference leads to crucially different predictions for the correlation between prices
and transactions. In Novy-Marx (2009), the number of transactions in the housing market is not
necessarily higher when prices are high. His model generates a positive correlation between prices and
tightness, but not necessarily a positive correlation between prices and the volume of transactions,
which is one of the salient features of housing markets (Stein 1995). Specifically, in Novy-Marx
(2009), a large increase in the number of sellers and buyers that did not alter tightness would not
alter prices at all, even if it substantially increases the number of transactions. Instead, our model
naturally generates a positive correlation between prices and transactions. As Wheaton (1990) has
pointed out, moving house most of the time means both selling a house and buying another one and
hence, in this context, a model in which tightness plays a subdued role is appealing. In our model,
a hot market is one with high prices, more buyers and sellers, and an unambiguously larger number
of transactions.

In our paper, “hot-and-cold markets” also are different from those in Krainer (2001), who studies
the response of housing markets to an aggregate shock that affects the fundamental value of houses—
his model cannot generate quantitatively meaningful fluctuations in prices unless the aggregate shock
is very persistent. A deterministic cycle in Krainer’s model is equivalent to setting the persistence
parameter to zero, in which case his model predicts virtually no fluctuation in prices. Our set-
up is different from Krainer (2001) in that it brings in thick-market effects which, due to their

amplification, are able to generate quantitatively large fluctuations in transactions and prices.!”

10 Also, and unlike Krainer (2001), we model the endogenous evolution of the number of vacancies and buyers over



The paper is organized as follows. Section 2 presents the motivating empirical evidence and
section 3 introduces the model. Section 4 presents the qualitative results and a quantitative analysis
of the model, confronting it with the empirical evidence. Section 5 discusses the efficiency properties
of the model and studies the robustness of the results to alternative modelling assumptions. Section

6 presents concluding remarks. Analytical derivations and proofs are collected in the Appendix.

2 Hot and Cold Seasons in the Data

In this section we study seasonality in housing markets in the United Kingdom and the United
States at different levels of geographic disaggregation. We focus on the United Kingdom and the
United States because of the availability of constant-quality house price series in both countries.!!
As already noted, publishers of house price indexes produce both seasonally adjusted (SA) and
non-seasonally adjusted (NSA) series. For transactions, the U.S. National Association of Realtors
(NAR) also produces NSA and SA series. In Appendix A we report the seasonal component implied
by their adjustment. In our analysis, we use exclusively the (raw) NSA series to compute the extent

of seasonality.

2.1 Data

United Kingdom
In the United Kingdom two main sources provide quality-adjusted NSA house price indexes:
One is the Department of Communities and Local Government (DCLG) and the other is Halifax,

one of the country’s largest mortgage lenders.!? Both sources report regional price indexes on a

time.
UThe quality adjustment mitigates concerns with compositional changes in the types of houses transacted across

seasons. Results for other countries are available from the authors. (Though we find qualitatively similar seasonal
patterns in other countries, we are less confident about the comparability of the data, as typically they are not quality

adjusted.)
120ther house price publishers, like the Nationwide Building Society, report quality adjusted data but they are

already SA (the NSA data are not publicly available). The Nationwide Building Society, however, reports in its
methodology description that June is generally the strongest month for house prices and January is the weakest;
this justifies the seasonal adjustment they perform in the published series. In a somewhat puzzling paper, Rosenthal
(2006) argues that seasonality in the Nationwide Building Society data is elusive; we could not, however, gain access
to the NSA data to assess which of the two conflicting assessments (the Nationwide Building Society’s or Rosenthal’s)

was correct. We should perhaps also mention that Rosenthal (2006) also reaches very different conclusions from



quarterly basis for the 12 standard planning regions of the United Kingdom, as well as for the
country as a whole. The indexes calculated are “standardized” and represent the price of a typically
transacted house. The standardization is based on hedonic regressions that control for a number
of characteristics, including location, type of property (house, sub-classified according to whether
it is detached, semi-detached or terraced, bungalow, or flat), age of the property, tenure (freehold,
leasehold, feudal), number of rooms (habitable rooms, bedrooms, livingrooms, bathrooms), number
of separate baths, central heating (none, full, partial), number of garages and garage spaces, garden,
land area, road charge liability, and so on. These controls adjust for the possibility of seasonal
changes in the composition of the set of properties (for example, shifts in the location or sizes of
properties transacted).

The two sources differ in three respects. First, DCLG collects information from a sample of all
U.K. mortgage lenders, while the Halifax index uses all the data from Halifax mortgages only, which
account for an average of 25 percent of the market (re-mortgages and further advances are excluded
in both cases). Second, DCLG reports the price at the time of completion of the transaction, while
Halifax reports the price at the time of approval of the mortgage. Completion takes on average three
to four weeks following the initial agreement, but some agreed transactions do not reach completion.
Finally, the DCLG index goes back to 1968 for certain regions, while Halifax’s index starts in 1983.

To compute real price indexes, we later deflate the house price indexes using the NSA retail price
index (RPI) provided by the U.K. Office for National Statistics.

As an indicator of the number of transactions, we use the number of mortgages advanced for
home purchases; the data are collected by the Council of Mortgage Lenders (CML) and are also
disaggregated by region.

United States
The main source of NSA house price indexes for the United States is the Office of Federal Housing
Enterprise Oversight (OFHEQ); we focus on the purchase-only index, which starts in 1991:Q1. This
is a repeat-sale index calculated for the whole of the United States and also disaggregated by census
regions and states. The repeat-sale index, introduced by Case and Shiller (1987), measures average

price changes in repeat sales of the same properties; as such, the index is designed to control for the

Muellbauer and Murphy (1997) with regards to lower-frequency movements. Finally, the Land Registry reports data

on average prices, without adjusting for quality.



characteristics of the homes sold.'”® We also use the Standard and Poor’s (S&P) Case-Shiller house
price series for cities.

To compute real price indexes, we use the NSA consumer price index (CPI) provided by the
U.S. Bureau of Labor Statistics.!* Data on the number of transactions come from the National
Association of Realtors (NAR), and correspond to the number of sales of existing single-family

homes. The data are disaggregated into the four major Census regions.

2.2 Extent of Seasonality

We focus our study on deterministic seasonality, which is easier to understand (and to predict) for
buyers and sellers (unlikely to be all econometricians), and hence most puzzling from a theoretical
point of view. In the United Kingdom and the United States, prices and transactions in both the
second and third quarters are above trend, while in both first and fourth quarters they are below
trend. For ease of exposition, we group data into two broadly defined seasons—second and third
quarter, or “hot season,” and fourth and first quarter, or “cold season.” (We use interchangeably
the terms “hot season” and “summer” to refer to the second and third quarters and “cold season”
and “winter” to refer to the first and fourth quarters.)

In the next set of figures, we depict in dark (red) bars the average (annualized) price increase
from winter to summer, In (5—;)2, where Pgs is the price index at the end of the hot season and Py,
is the price at the end of the cold season. Correspondingly, we depict in light (blue) bars the average
(annualized) price increase from summer to winter In (PP—VZ')Q, where Py is the price index at the
end of the cold season in the following year. We plot similar figures for transactions.

The extent of seasonality for each geographical unit can then be measured as the difference

between the two bars. This measure nets out lower-frequency fluctuations affecting both seasons.

(In the model we later present, we use a similar metric to gauge the extent of seasonality.)

13The Case-Shiller approach significantly limits the extent to which changes in the composition of the sample of
houses transacted can influence the price index. Specifically, using information on the values of the same physical

units at two points in time controls for differences in housing attributes across properties in the sample.
4 As it turns out, there is little seasonality in the U.S. CPI, a finding first documented by Barsky and Miron

(1989), and hence the seasonal patterns in nominal and real housing prices coincide. The CPI is reported at monthly

frequency. We use the last month of the quarter to deflate nominal prices.
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2.2.1 Housing Market Seasonality in the United Kingdom

Nominal and Real House Prices

Figure 1 reports the average annualized percent price increases in the summer and the winter
from 1983 through to 2007 using the regional price indexes provided by DCLG. During the period
analyzed, the average nominal price increases in the winter were below 5 percent in all regions except
for Northern Ireland. In the summer, the average growth rates were above 12 percent in all regions,
except for Northern Ireland, East Anglia, and the North East. As shown in the graph, the differences
in growth rates across the two broad seasons are generally very large and economically significant,
with an average of 9 percent for all regions. (For some regions, the DCLG index goes back to 1968,
and though the average growth rates are lower in the longer period, the average difference across

seasons is still very high at above 8 percent.'?)

Figure 1: Average Annualized House Price Increases in Summer and Winter, 1983-2007

Note: Annualized price growth rates in summers (second and third quarters) and winters (fourth and first quarters) in
the U K. and its regions. DCLG, 1983-2007.

The patterns are qualitatively similar when we use the Halifax index, not reported here in the
interest of space (the results are available from the authors). The annualized average house price
growth during the summer is above 11 percent in all regions, with the exception of the North East and
West Midlands, whereas the increase during the winter is systematically below 5 percent, except for

the North East region and London, where the increase is just above 5 percent. The average difference

15 These results are available from the authors. We start in 1983 for comparability across regions.
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in growth rates across seasons is 7.4 percent. There are some non-negligible quantitative differences
between the two sources, which might be partly explained by differences in coverage and by the
lag between mortgage approval and completion, which, as mentioned, is one important difference
between the two indexes. The two sources, however, point to a similar pattern of prices surging in
the summer and stagnating in the winter.

The previous discussion was based on the seasonal pattern of nominal house prices. The seasonal
pattern of real house prices (that is, house prices relative to the overall NSA price index) depends
also on the seasonality of overall inflation. In the United Kingdom, overall price inflation displays
some seasonality. The difference in overall inflation rates across the two seasons, however, can
hardly “undo” the differences in nominal house price inflation, implying a significant seasonal also
in real house prices (see Figure 2). Netting out the effect of overall inflation reduces the differences
in growth rates between winters and summers to a country-wide average of 7.3 percent using the
DCLG series and 5.6 percent using the Halifax series. We also looked at more disaggregated data,
distinguishing between first-time buyers and former-owner occupiers, as well as purchases of newly
built houses versus existing houses. Seasonal patterns are similar across the various groups; in the

interest of space, we do not report the results here, but they are available upon request.

Figure 2: Average Annualized Real House Price Increases in Summer and Winter, 1983-2007

O winter B summer
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Note: Annualized real price growth ratesin summers (second and third quarters) and winters (fourth and first quarters)
inthe U.K. and its regions. DCLG, 1983-2007.

12



Number of Transactions
Seasonal fluctuations in house prices are accompanied by qualitatively similar fluctuations in the
number of transactions, proxied here by the number of mortgages. For comparability with the price
sample, Figure 3 shows the growth rates in the number of mortgages in the two seasons from 1983 to
2007. (The data, which are compiled by the CML, go back to 1974 for some regions; the patterns are
qualitatively similar in the earlier period.) As the figure shows, the number of transactions increases

sharply in the summer term and accordingly declines in the winter term.

Figure 3: Average Annualized Increases in the Number of Transactions in Summer and Winter, 1983-2007

O winter B summer

summer
winter

Note: Annualized growth rates in the number of transactions in summers (second and third quarters) and winters (fourth
and first quarters) in the U.K. and its regions. CML, 1983-2007.

Statistical Significance of the Differences between Summer and Winter Housing
Markets
We test the statistical significance of the differences in growth rates across seasons,

2 2
{ln (5—;) —1In (PP—V?> } , using a t-test on the equality of means.'® Tables 1 through 3 report

16The test on the equality of means is equivalent to the t-test on the slope coefficient from a regression of annualized
growth rates on a dummy variable that takes value 1 if the observation falls on the second and third quarter and
0 otherwise. The dummy coefficient captures the annualized difference across the two seasons, regardless of the
frequency of the data (provided growth rates are annualized). To see this note that the annualized growth rate in,

2
say, the hot season, In ( £ ) | is equal to the average of annualized quarterly growth rates in the summer term:
Pw

13



the average difference in growth rates across seasons and standard errors, together with the statis-
tical significance. In particular, Table 1 reports the results for prices, both nominal and real, for all
regions, using the data from the DCLG and Table 2 shows the corresponding information using the

Halifax data. Table 3 shows the differences in transactions’ growth rates.

Table 1: Difference in Annualized Nominal and Real Percentage Changes

in U.K. House Prices between Summer and Winter, by Region

Nominal house price Real house price
Region Difference Std. Error Difference  Std. Error
East Anglia 6.536* (3.577) 4.870 (3.461)
East Midlands 8.231** (3.148) 6.408** (3.131)
Gr. London 8.788*** (3.273) 6.966** (3.372)
North East 8.511** (3.955) 6.845* (3.915)
North West 13.703*** (3.323) 12.583*** (3.245)
Northern Ireland 4.237 (3431 2.415 (3.467)
Scotland 10.393*** (2.793) 8.571*** (2.712)
South East 10.375*** (3.496) 8.709** (3.302)
South West 11.244*** (3.419) 9.422*** (3.459)
Wales 7.180** (3.504) 5.358 (3.442)
West Midlands 9.623*** (3.089) 7.801** (3.070)
Y orkshire & the Humber 10.148*** (3.114) 8.325*** (3.056)
United Kingdom 9.008*** (2.304) 7.185*** (2.314)

Note: The Table shows the average differences (and standard errors), by region for
1983-2007. *Significant at 10%; **significant at 5%; ***significant at 1%. Source:
Department of Communities and Local Government.

2
In (II;TSV) =2In (%) = % [4 In (%) +41n (%)} , where the subindices indicate the quarter, and, correspondingly,

21In (P};IS’) = % [4 In (1;14’) +41n (%)} Hence a regression with quarterly (or semester) data on a summer dummy

will produce an unbiased estimate of the average difference in growth rates across seasons. We use quarterly data to

exploit all the information and gain on degrees of freedom.
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Table 2: Difference in Annualized Nominal and Real Percentage Changes

in U.K. House Prices between Summer and Winter, by Region

Nominal house price

Real house price

Region Difference Std. Error Difference  Std. Error
East Anglia 9.885*** (3.604) 8.081** (3.706)
East Midlands 10.247*** (3.393) 8.444** (3.413)
Gr. London 5.696* (3.048) 3.892 (3.221)
North East 2.197 (2.945) 0.394 (2.864)
North West 8.019%** (2.653) 6.216** (2.548)
Northern Ireland 6.053* (3.409) 4.25 (3.494)
Scotland 9.334*** (2.320) 7.530*** (2.272)
South East 7.104** (3.019) 5.301* (3.149)
South West 9.258** (3.474) 7.454** (3.549)
Wales 7.786** (3.329) 5.983* (3.288)
West Midlands 5.987* (3.540) 4.183 (3.505)
Y orkshire & the Humber 7.253** (2.892) 5.450* (2.825)
United Kingdom 7.559%** (2.365) 5.756** (2.400)

Note: The Table shows the average differences (and standard errors), by region for
1983-2007. *Significant at 10%; **significant at 5%; ***significant at 1%. Source:

Halifax.

Table 3: U.K. Difference in Annualized Percentage Changes in the Volume of

Transactions between Summer and Winter, by Region

Region Difference Std. Error
East Anglia 119.420*** (11.787)
East Midlands 104.306*** (11.151)
Gr. London 99.758*** (11.577)
North East 84.069*** (9.822)
North West 103.525*** (8.963)
Northern Ireland 71.466*** (12.228)
Scotland 116.168*** (9.843)
South East 117.929*** (9.710)
South West 110.996*** (8.764)
Wales 115.900*** (13.850)
West Midlands 112.945*** (9.496)
Y orkshire & the Humber 98.904*** (8.192)
United Kingdom 107.745*** (8.432)

Note: The Table shows the average differences (and standard errors) by region for
1983-2007. * Significant at 10%; **significant at 5%; ***significant at 1%.

Source: Council of Mortgage Lenders.

The differences in price increases across seasons are quite sizable for most regions, on the order
of 7 to 9 percent on average in nominal terms (depending on whether DCLG or Halifax data are
used) and 5.7 to 7 percent, on average, in real terms; from a statistical point of view, the results
from DCLG appear more significant than those from Halifax. For transactions, the differences reach
108 percent for the country as a whole. Taken together, the data point to a strong seasonal cycle in

virtually all regions of the United Kingdom, with a large increase in transactions and prices during
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the summer relative to the winter.

Rents and Mortgage Rates

Data on U.K. rental prices are not well-documented. Only in recent years have data collection
efforts started, but there is no time-series long enough to detect seasonality.!” One at least indicative
source is the average registered private rents collected by U.K. Housing and Construction Statistics;
the data run on a quarterly basis from 1979:Q1 to 2001:Q4. We run regressions using as dependent
variables both the rent levels and the log of rents on a dummy variable taking a value of 1 in the
second and third quarters and 0 otherwise, detrending the data in different ways. The data showed
no deterministic seasonality (the regression outcomes available from the authors). This is in line
with anecdotal evidence suggesting that rents are fairly sticky. Given the paucity of data on rental
prices, there is little we can say with high confidence. Still, note that for rentals to be the driver of
house price seasonality, one would need to have an enormous degree of seasonality in rents (as well as
a high discount rate), since in principle house prices should, according to the standard asset-pricing
approach, reflect the present values of all future rents (in other words, house prices should be less
seasonal than rents). The lack of even small discernible levels of seasonality in the data suggests
that we need alternative explanations for the observed seasonality in house prices.

Interest rates in the United Kingdom do not exhibit a seasonal pattern, at least in the last four
decades of data. We investigated seasonality in different interest rate series provided by the Bank of
England: the repo (base) rate, an average interest rate charged by the four major U.K. banks before
the crisis (Barclays Bank, Lloyds Bank, HSBC, and National Westminster Bank), and a weighted
average standard variable mortgage rate from banks and Building Societies. None of the interest

rate series displays seasonality (results available from the authors).

Housing Market Seasonality in the United States

Nominal and Real House Prices
Figure 4 illustrates the annualized nominal house price increases for different regions from OFHEQO.
Figure 5 shows the corresponding plot for different states, also from OFHEQ, and Figure 6 shows
the plot using the S&P’s Case-Shiller indexes for major cities.

17See new data produced by the Chartered Institute of Housing since 1999 and the Office of National Statistics
(ONS) since 1996.
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Figure 4: Average Annualized U.S. House Price Increases in Summer and Winter, by Region, 1991-2007

B winter B summer

we®

Note: Annualized price growth rates in summers (second and third quarters) and winters (fourth and first quarters) in
the U.S. and its regions. OFHEO, 1991-2007.

Our first observation is that for most US regions, the seasonal pattern is qualitatively similar to
that in the United Kingdom, albeit the extent of seasonality is generally smaller. For some of the

major U.S. cities, however, the degree of seasonality is comparable to that in the United Kingdom.

Figure 5: Average Annualized U.S. House Price Increases in Summer and Winters, by State, 1991-2007

O winter B summer

> X
s
Note: Annualized price growth rates in summers (second and third quarters) and winters (fourth and first quarters) by
U.S. state. OFHEO, 1991-2007.
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Figure 6: Average Annualized U.S. House Price Increases in Summer and Winter, by City, 1987-2007

Note: Annualized price growth rates in summers (second and third quarters) and winters (fourth and first quarters) by
U.S. city. S&P Case and Shiller, 1987-2007.

The results using real house prices (in terms of differences between seasons) are virtually identical
to the ones for nominal house prices. As the CPI inflation rates hardly differ across seasons over
the period analyzed, the differences in real growth rates across seasons are almost identical to the
differences in nominal growth rates. These differences are later summarized in Table 4. (Figures are

omitted in the interest of space, but are available from the authors).

Transactions
Figure 7 shows the annualized growth rates in the number of transactions from 1991 through
to 2007 for main census regions; the data come from National Association of Realtors (NAR).!®
Seasonality in transactions is overwhelming: The volume of transactions rises sharply in the summer

and falls in the winter, by even larger magnitudes than in the United Kingdom.

18The series actually starts in 1989, but we use 1991 for comparability with the OFHEO-census-level division price

series; adding these two years does not change the results.
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Figure 7: U.S. Average Annualized Increases in House Transactions in Summer and Winter, 1991-2007

O winter B summer

Note: Annualized price growth rates in summers (second and third quarters) and winters (fourth and first quarters) in
the U.S. and itsregions. NAR 1991-2007.

Statistical Significance of the Differences between Summer and Winter
We summarize the differences in growth rates across seasons and report the results from a test
on mean differences in Tables 4 through 7. Table 4 shows the results for prices using OFHEQO’s
Census-division level; Table 5 shows the results using OFHEQ'’s state-level data; Table 6 shows the
results using S&P’s Case-Shiller city-level data; and Table 7 shows the results for transactions from
NAR.

Regarding house prices, for the United States as a whole, the differences in annualized growth
rates (nominal and real) are in the order of 3 percent. There is considerable variation across re-
gions, with some displaying virtually no seasonality (South Atlantic) and others (East and West
North Central, New England and Middle Atlantic) displaying significant levels of seasonality. This
variability becomes more evident at the state level. Interestingly, the Case-Shiller index for U.S.
cities displays even higher levels of seasonality, comparable to the levels observed in regions of the
United Kingdom. (This will be consistent with our model, which, ceteris paribus, generates more
seasonality when the bargaining power of sellers is higher, as it is likely to be the case in cities,

where land is relatively scarce.)
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The volume of transactions is extremely seasonal in the United States, even more than in the
United Kingdom, with an average difference in growth rates across seasons of 148 percent and the

pattern is common to all regions.

Table 4: Difference in Annualized Percentage Changes in U.S. House Prices between

Summer and Winter, by Region, 1991-2007

Nominal house price Real house price
Region Difference Std. Error Difference Std. Error
East North Central 4.262*** (0.772) 4.106*** (0.924)
East South Central 1.811*** (0.535) 1.654** (0.701)
Middle Atlantic 4.273** (1.619) 4.116** (1.660)
Mountain 3.166** (1.205) 3.009** (1.281)
New England 4.980** (2.081) 4.823** (2.181)
Pacific 3.010 (2.117) 2.853 (2.195)
South Atlantic 1.281 (1.277) 1.125 (1.370)
West North Central 4.333*** (0.743) 4.176*** (0.872)
West South Central 2.836*** (0.537) 2.679*** (0.650)
USA 3.169*** (0.967) 3.012%** (1.081)

Note: The Table shows the average differences (and standard errors), by region for 1991-2007.
*Significant at 10%; **significant at 5%; ***significant at 1%. Source: OFHEO Purchase-only
Index.
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Table 5: Difference in Annualized Percentage Changes in U.S. House Prices between

Summer and Winter, by State, 1991-2007

Nominal house price Real house price
State Difference  Std. Error Difference Std. Error
Alabama 3.812** (1.400) 3.655%* (1.378)
Alaska 2.189%** (0.692) 2.032%* (0.848)
Arizona 2.263** (0.848) 2.106** (0.950)
Arkansas 1.109 (2.586) 0.953 (2.583)
Cdlifornia 3.656 (3.398) 3.499 (3.479)
Colorado 4.285*** (2.323) 4,129*** (1.447)
Connecticut 5.819*** (2.055) 5.662%* (2.133)
District of Columbia 11.040** (4.229) 10.883** (4.150)
Delaware 2.687 (1.862) 2.530 (1.925)
Florida 1.185 (2.525) 1.028 (2.571)
Georgia 1.921** (0.743) 1.764* (0.887)
Hawaii 0.850 (3.668) 0.693 (3.677)
Idaho 4.440*** (0.615) 4.283*** (0.711)
Illinois 5.035%** (1.659) 4.878*** (1.688)
Indiana 3.864*** (0.755) 3.707*** (0.859)
lowa 3.621*** (0.768) 3.464*** (0.884)
Kansas 3.134*** (0.709) 2.977*** (0.925)
Kentucky 1.623*** (0.570) 1.466** (0.707)
Louisiana 2.300%** (0.827) 2.143** (0.921)
Maine 4.823** (2.219) 4.666* (2.339)
Maryland 3.384 (2.341) 3.227 (2.396)
M assachusetts 4.407** (2.146) 4.250* (2.231)
Michigan 4.573%** (1.568) 4.416** (1.698)
Minnesota 5.290*** (1.376) 5.133*** (1.484)
Missouri 4.085*** (0.646) 3.929%** (0.758)
Mississippi 1.379 (1.028) 1.222 (1.208)
Montana 3.957** (1.469) 3.800** (1.510)
North Carolina 1.417** (0.641) 1.260 (0.764)
North Dakota 4,908*** (1.353) 4.751%%* (1.423)
Nebraska 3.842*** (1.082) 3.685*** (1.162)
New Hampshire 4.918** (2.391) 4.761* (2.463)
New Jersey 4.197* (2.076) 4.041* (2.126)
New Mexico 2.857* (1.560) 2.700 (1.623)
Nevada 3.540 (2.946) 3.383 (3.026)
New York 4.662** (1.815) 4,505** (1.872)
Ohio 3.729*** (0.731) 3.572%** (0.911)
Oklahoma 3.095*** (0.477) 2.938*** (0.511)
Oregon 3.903*** (1.380) 3.746*** (1.310)
Pennsylvania 4.226*** (1.317) 4.069*** (1.329)
Rhode Island 3.544 (2.842) 3.388 (2.969)
South Carolina 1.360* (0.698) 1.203 (0.771)
South Dakota 4.201*** (1.171) 4.044*** (1.248)
Tennessee 1.759** (0.685) 1.602* (0.834)
Texas 3.045%** (0.674) 2.888*** (0.763)
Utah 2.204 (1.820) 2.047 (1.803)
Virginia 1.873 (1.758) 1.716 (1.835)
Vermont 5.945%* (2.430) 5.788** (2.373)
Washington 3.563** (1.377) 3.406** (1.377)
Wisconsin 5.007*** (0.738) 4.850*** (0.848)
West Virginia 3.753** (1.702) 3.596** (1.765)
Wyoming 5.091*** (1.365) 4,935%** (1.391)

Note: The Table shows the average differences (and standard errors), by state for 1991
2007. *Significant at 10%; **significant at 5%; ***significant at 1%. Source: OFHEO
Purchase-only Index.
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Table 6: Difference in Annualized Percentage Changes in U.S. House Prices between

Summer and Winter, by City, 1991-2007

Nominal house price Real house price
City Difference Std. Error Difference Std. Error
AZ-Phoenix 3.571 (3.307) 3.405 (3.357)
CA-Los Angeles 7.273** (3.478) 6.884* (3.535)
CA-San Diego 7.107** (3.204) 6.717** (3.275)
CA-San Francisco 8.051** (3.009) 7.662** (3.045)
CO-Denver 5.576*** (1.599) 5.186*** (1.805)
DC-Washington 6.439** (2.604) 6.050** (2.645)
FL-Miami 0.636 (2.744) 0.246 (2.838)
FL-Tampa 2171 (2.384) 1.781 (2.484)
GA-Atlanta 3.920%** (0.903) 3.763*** (1.042)
IL-Chicago 5.530*** (1.342) 5.141*** (1.459)
MA-Boston 8.560*** (2.091) 8.170*** (2.325)
MI-Detroit 3.864* (1.909) 3.707* (2.060)
MN-Minneapolis 4.431%** (1.528) 4.265** (1.741)
NC-Charlotte 3.968*** (0.721) 3.578*** (0.836)
NV-Las Vegas 4.149 (3.216) 3.76 (3.262)
NY-New York 4.477** (2.161) 4.087* (2.342)
OH-Cleveland 6.942%** (0.973) 6.553*** (1.041)
OR-Portland 5.551*** (1.485) 5.161*** (1.388)
TX-Ddlas 6.776%** (1.380) 6.138*** (1.823)
WA-Sezttle 8.437%** (1.953) 8.175*** (1.942)
Composite-20 cities 6.051*** (2.227) 5.662** (2.344)

Note: The Table shows the average differences (and standard errors), by region for 1991-2007.
*Significant at 10%; **significant at 5%; ***significant at 1%. Source: SP's Case-Shiller index.

Table 7: Difference in Annualized Percentage Changes in U.S. House Transactions between

Summer and Winter, by Region, 1991-2007

Region Coef. Std. Error
Midwest 159.473*** (6.488)
Northeast 152 551*** (4.918)
South 153.009*** (4.702)
West 124.982*** (6.312)
United States 148.086*** (5.082)

Note: The Table shows the average differences (and standard errors) by
region for 1991-2007. * Significant at 10%; **significant at 5%;
***ggnificant at 1%. Source: National Association of Realtors.

Rents and Mortgage Rates
As was the case for the United Kingdom, the paucity of rental data for the U.S. housing market is
regrettable. The Bureau of Labor Statistics (BLS) provides two series that can serve as proxies: one

is the NSA series of owner’s equivalent rent and the second is the NSA rent of primary residence;
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both series are produced for the construction of the CPI and correspond to averages over all U.S.
cities. For each series, we run regressions using as dependent variables both the rent levels and the
log of rents, de-trended in various ways, on a summer-term dummy. The results (available from the
authors) as for the United Kingdom, yielded no discernible pattern of seasonality. We take this as
only suggestive as, of course, the data are not as clean and detailed as we would wish. To reiterate,
however, if seasonality in rents were the driver of seasonality in prices, we should observe enormous
seasonality in rental flows in order to justify the observed seasonality in house prices. In the model
we present later, we will work under the constraint that rents are aseasonal.

As first documented by Barsky and Miron (1989), interest rates in recent decades do not exhibit
seasonality. In particular, we investigated data on mortgage rates produced by the Board of Gov-
ernors of the Federal Reserve System, corresponding to contract interest rates on commitments for
fixed-rate first mortgages; the data are quarterly averages beginning in 1972 and the original data
are collected by Freddie Mac. Consistent with the findings of Barsky and Miron (1989) and the
evidence from the United Kingdom, we did not find any significant deterministic seasonality (the

results available from the authors).

2.3 Cross-market comparisons and market thickness

The data description makes it evident that seasonal cycles are present across most of the United
Kingdom and the United States, although with some heterogeneity with regards to intensity. In
particular, though most U.S. cities display strong seasonality, Miami and Tampa show little (and
statistically insignificant) variation over the season. Given the data limitations (20 observations on
price seasonality corresponding to the cities in the Case-Shiller data or 50 observations, when using
OFHEO state-level data), it would be virtually impossible to draw causal links from the potential
triggers of seasonality, as i) winters are mild in these cities and ii) there is a larger population of
elderly people, factors which are intimately related. We note, though, that the mildness of a winter
per se does not straightforwardly predict aseasonality, since cities such as Los Angeles, San Diego,
or San Francisco display strong seasonality in prices, despite their benign weather. More generally,
it is unlikely that most people would be willing to pay a significant part of their wealth for the
convenience of searching under good weather. Similarly, and as noted earlier, only a small portion
of the population of potential home buyers have school-age children. The model’s key conceptual
point is that even slight differences in the “fundamentals” of the seasons have the potential to trigger

thick-market effects with large swings in the volume of transactions and prices.
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We also note that U.S. cities tend to display more seasonality than the United States as a whole,
a pattern that, as we shall explain, can be rationalized by our model. (We further discuss this issue
in Section 4.3.2.) Some may argue that cities by their sheer size, are likely to be “thicker” throughout
the year and hence seasonal differences in thickness are relatively unimportant. Anecdotal evidence,
however, suggests that even within cities, housing markets are highly segmented, as people tend to
search in relatively narrow neighborhoods and geographical areas (e.g., to be close to school, jobs,
families). Thus, for example, London or Washington DC as a whole are not the relevant sizes of the
local housing market, and it would be improper to use these cities as boundaries to define market
thickness (e.g., for those familiar with London’s geography and social structure, people searching in
South Kensington will never search in the East End). In other words, seemingly large cities may
mask a collection of relatively smaller and segmented housing markets that can see significant changes
in thickness throughout the year. A limitation of the data is hence that we cannot meaningfully

compare thickness across cities or states.

3 A Search-and-Matching Model for the Housing Market

We have argued that the predictability and size of the seasonal variation in house prices pose
a challenge to models of the housing market relying on a standard asset-market approach. In
particular, the equilibrium condition embedded in most dynamic general equilibrium models states
that the marginal benefit of housing services should equal the marginal service cost. In Appendix
B we assess the extent to which seasonality in service flows might be driving seasonality in prices.
The exercise makes clear that a standard asset-pricing approach that relies on standard (perfect)
arbitrage leads to implausibly large levels of required seasonality in service flows.

Our findings suggest that there are important frictions in the market that impair the ability
of investors to gain from seasonal arbitrage and therefore call for a deviation from the standard
asset-pricing approach.!? But perhaps a more fundamental reason to deviate is the overwhelming
evidence that the process of buying and selling houses involves a non-trivial search process that is
not well-captured in the standard asset-pricing approach. Furthermore, as is also the case in labor
markets (and largely the motivation for the labor-search literature) the coexistence at any point

in time of a stock of vacant houses and a pool of buyers searching for houses suggests a lack of

9The need to deviate from the standard asset-market approach has been acknowledged previously, see e.g. Stein

(1995) and Ortalo-Magné and Rady (2005).
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immediate market clearing—explicitly modelling the frictions that impair clearing can help in the
understanding of housing market fluctuations. In this section we develop a search-and-matching
model for the housing market that contains two elements that can account for seasonality (and,

likely, lower frequency fluctuations): "match-specific quality" and "thick-market effects".

3.1 The Model Economy

The economy is populated by a unit measure of infinitely lived agents, who have linear preferences
over housing services and a non-durable consumption good. Each period agents receive a fixed
endowment of the consumption good which they can either consume or use to buy housing services.
An agent can only enjoy housing services by living in one house at a time, that is, he can only
be “matched” to one house at a time. Agents who are not matched to a house seek to buy one
(“buyers”).

There is a unit measure of housing stock. Correspondingly, each period a house can be either
matched or unmatched. A matched house delivers a flow of housing services of quality € to its owner.
The quality of housing services ¢ is match-specific, and it reflects the suitability of a match between a
house and its owner. In other words, for any house, the quality of housing services is idiosyncratic to
the match between the house and the potential owner. For example, a particular house may match a
buyer’s taste perfectly well, while at the same time being an unsatisfactory match to another buyer.
Hence, ¢ is not the type of house (or of the seller who owns a particular house). This is consistent
with our data, which are adjusted for houses’ characteristics, such as size and location, but not for
the quality of a match.?°

We assume that in a market with many houses for sale, a buyer is more likely to find a better
match, what we refer to as the “thick-market effect.” As in Diamond (1981), we model this idea by
assuming that the match-specific quality ¢ follows a distribution F (e, v), with positive support and

finite mean, and

F(, )< F(,v) &0 >0, (1)

where v denotes the stock of vacant houses. In words, when the stock of houses v is larger, a random

match-quality draw from F (e, v) is likely to be higher.?!

20Neither repeat-sale indexes nor hedonic price indexes can control for the quality of a match, which is not observed

by data collectors.
210One way to interpret our assumption is to think of order statistics. Suppose the buyer samples n units of vacant

houses when the stock of vacancies is v. As long as the number of units sampled n increases in v, the maximum match
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Unmatched houses are “for sale” and are owned by “sellers;” sellers receive a flow u from any

unmatched house they own, where the flow u is common to all sellers.

3.2 Seasons and Timing

There are two seasons, j = s, w (for summer and winter); each model period is a season, and the two
seasons alternate. At the beginning of a period j, an existing match between a homeowner and his
house breaks with probability 1 — ¢’, and the house is put up for sale, adding to the stock of vacant
houses, denoted by v/. The homeowner whose existing match has broken becomes simultaneously a
seller and a buyer, adding to the pool of buyers, denoted by #’. In our baseline model, the parameter
¢’ is the only (ex ante) difference between the seasons.?> We focus on periodic steady states with
constant v® and v*. Since a match is between one house and one agent, and there is a unit measure
of agents and a unit measure of houses, it is always the case that the mass of vacant houses equals
the mass of buyers: v/ = b/.

Our objective is to investigate how such deterministic driver of seasonality can be amplified and
revealed as seasonality in transactions and prices in the housing market due to the thick-market
effects on the match-specific quality. By focusing on the periodic steady-state, we are studying a
deterministic cycle and agents are aware that they are in such a cycle with ¢’, transactions, and
prices fluctuating between high and low across the two seasons.

During each period, every buyer meets with a seller and every seller meets with a buyer. Upon
meeting, the match-specific quality between the potential buyer and the house is drawn from a
distribution F' (g, v) . If the buyer and seller agree on a transaction, the buyer pays a price (discussed
later) to the seller, and starts enjoying the housing services e. If not, the buyer looks for a house
again next period, the seller receives the flow u, and puts the house up for sale again next period.?
An agent can hence be either a matched homeowner or a buyer, and, at the same time, he could

also be a seller. Sellers also may have multiple houses to sell.

quality € in the sample will be “stochastically larger.” In other words, for any underlying distribution of match quality,
the distribution of the maximum in a sample of size n will first-order stochastically dominate the distribution of the

maximum in a smaller sample n’ < n. As such, F' can be interpreted as the distribution of the sample maximum.
22This difference could be determined, for example, by the school calendar or summer marriages, among other

factors, exogenous to our model. In Section 5.2, we discuss seasonal transaction costs as an alternative driver of

seasonality.
23In Section 5.2 we relax the assumption that if the transaction does not go through, buyer and seller need to wait

for next period to transact with other agents.

26



3.3 The Homeowner

To study pricing and transaction decisions, we first derive the value of living in a house with match

quality € starting in season s is given by:
H?(e) =e+po"H"Y () + (1 —¢") V¥ + BY],

where € (0,1) is the discount factor. With probability (1 — ¢") he receives a moving shock and
becomes both a buyer and a seller (putting his house up for sale), with continuation value (V*+ B"),
where V7 is the value of a vacant house to its seller and B’ is the value of being a buyer in season
j = s,w, as defined later. With probability ¢“ he keeps receiving housing services of quality ¢ and
stays in the house. The formula for H" (¢) is perfectly isomorphic to H?® (¢); in the interest of space
we omit here and throughout the paper the corresponding expressions for season w. The value of

being a matched homeowner can be therefore re-written as:

w w w w 2w s s s
Hs<€):1£;§£u¢sg+ﬁ(1—¢ ) (V +ﬁi;ziw¢¢s(1 o) (V +B)7 o)

which is strictly increasing in . The first term that enters the housing value H® (¢) is the effective

(adjusted for moving probabilities) present discounted value of staying in a house with match quality
¢ and the second term contains the values in the event that the match may dissolve in any future

summer or winter.

3.4 Market Equilibrium

We focus on the case in which both seller and buyer observe the quality of the match, e, which is
drawn from FV (¢) = F (e, v’); we derive the results for the case in which the seller cannot observe &
in Appendix D. If the transaction goes through, the buyer pays the seller a mutually agreed price,
and starts enjoying the housing services flow in the same season j. If the transaction does not go
through, the buyer receives zero housing services and looks for a house again next season. This will
be the case, for example, if buyers searching for a house pay a rent equal to the utility they derive
from the rented property—what is key is that the rental property is not owned by the same potential
seller with whom the buyer meets. On the seller’s side, when the transaction does not go through,
he receives the flow u in season j and puts the house up for sale again next season. The flow u can
be interpreted as a net rental income received by the seller. Again, what is key is that the tenant is

not the same potential buyer who visits the house.
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3.4.1 Reservation Quality

The total surplus of a transaction is:
S%(e) =H*(e) = [B(BY + V") +u]. (3)

Intuitively, a new transaction generates a new match of value H* (¢); if the transaction does not goes
through, the buyer and the seller obtain SB* and (V" + u), respectively. Since e is observable
and the surplus is transferrable, a transaction goes through as long as the total surplus S* (¢) is
positive. Given H? (¢) is increasing in ¢, a transaction goes through if £ > €®, where the reservation
e® is defined by:

e =1 H° (%) =B (BY+ V") +u, (4)

and 1 — F* (¢°) is thus the probability that a transaction is carried out. Since the reservation quality
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is related to the total surplus independently of how the surplus is divided between the buyer
and the seller, we defer the discussion of equilibrium prices to Section 4.2. Using the expression of

housing value H* (¢) in (2), equation (4) becomes:

1+5¢w s __ ﬂ2¢w(1_¢8) s s 1_62¢S w w w
e A e
The Bellman equation for the sum of values is:
B+ Vei=p(BY+VY) 4u+[1l—F° ()] E°[S°(e) | e = &7, (6)

where E* [.] indicates the expectation is taken with respect to distribution F* (.). The sum of values
in season s covers the outside option, 8 (B" + V*)+u (the flow u plus the option value of buying and
selling next season) and, with probability [1 — F* (¢°)], on the expected surplus from a transaction

for sellers and buyers. Solving this explicitly and using the expression for S7 (¢), j = s,w in (20):

w_ (L4 58") 1 () + B (1+ B°) h* (<)
1-4 (1-p5%) (1-B%"¢") ’

where h® (e®) = [1 — F* (e®)] E [e — €® | € > €] is the expected surplus of quality above threshold &°.

Bs + VS — (7)

The equilibrium values £°, %, (B* 4+ V*), and (B* + V") in (5) and (7) depend on equilibrium
vacancies v° and v, which we now derive.
3.4.2 Stock of vacant houses
In any season s, the law of motion for the stock of vacant houses (and for the stock of buyers) is
vi=(1-9¢%) " (1—F“(")+1—-0vY]+v"F" (")
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where the first term corresponds to houses that received a moving shock and hence were put for sale
this season and the second term corresponds to vacant houses from last period that did not find a

buyer. The expression simplifies to
vi=1—¢° + 0 F"Y (e¥) ¢°. (8)

The equilibrium quantities (B® + V*® BY + V¥ ¢° ¥ v* v") jointly satisfy equations (5), (7),
and (8) together with the isomorphic equations for the other season. They are independent of how
the total surplus is shared across buyers and sellers, that is independent of the exact price-setting
mechanism. We hence discuss seasonality in vacancies and transactions first, before we specify the

particular price-setting mechanism.

4 Model-Generated Seasonality

In the baseline model seasonality is driven by the higher moving probability in the summer:

1—¢* > 1—¢". As shown earlier, the equilibrium quantities (B* + V*, BY 4+ V" &° &% v® v™) jointly
satisfy six equations. Before jumping directly to the quantitative results we discuss the underlying
mechanisms through which a higher probability of relocating in the summer leads to a larger stock of
vacancies and a higher expected return for buyers and sellers, i.e. v* > v"¥ and B*+V*® > BY + V",
hence, this section aims at providing intuition for the mechanics of the model.

It is important to reiterate that our notion of seasonality is not a cross-steady states comparison,
that is, we are not comparing a steady-state with a high probability of moving to another steady-
state with a low probability of moving. Instead, the seasonal values we derive are equilibrium
values along a periodic steady state where agents take into account that the economy is fluctuating
deterministically between the summer and the winter seasons.

Using (8), the stock of vacant houses in season s is given by:

1@ FFE) (1-¢Y)
1— Fs(e®) Fv (ev) ¢°p"

9)

(The expression for v" is correspondingly isomorphic). The ex ante higher probability of moving in
the summer (1 — ¢° > 1 — ¢") clearly has a direct positive effect on v*, and, as it turns out, this
effect also dominates quantitatively when we calibrate the model to match the average duration of

living in a house.?* Thus, we have v* > v%. The model predicts an almost one-to-one relationship

24More specifically, the numerator is a weighted average of 1 and F* (¢¥) (1 — ¢"), with 1 — ¢° being the weight

29



between the seasonality in the probability of moving (1 — ¢®) /(1 — ¢“) and the seasonality in the
stock of vacant houses v®/v*. The probability of moving is exogenous in our model and we calibrate
it so as to match the seasonality in vacancies. Our main interest is to predict the seasonality in
transactions and prices.

To that aim, we first take a somewhat tedious but useful detour to comment on the seasonality
of the sum of values (B7 + V7) and the reservation quality ¢/, j = s, w. Intuitively, a higher stock
of vacancies in the summer implies higher expected returns to a buyer and a seller in the summer
because of better matches through the thick-market effect. These higher expected returns in the
summer, however, also raise the outside options of a buyer and a seller in the winter. Higher outside
options make both the buyer and the seller more demanding and tend to increase the reservation
quality in the winter. In equilibrium, however, the overall effect on reservation quality is ambiguous
as we show more explicitly below.

The higher stock of vacancies in the summer, v* > v", implies a higher expected surplus qual-
ity for any given cutoff through the thick-market effects as in (1). To see this, rewrite h® () =
[, [1 — F*(¢)] de using integration by parts. Given ¢* > ¢°, it follows from equation (7) that
B?+V*® > BY+ V" if the two equilibrium cutoffs €* and " are close. In other words, the expected
return (B’ + V) is higher in the summer as long as the thick-market effect dominates a potentially
offsetting equilibrium effect from the reservation quality. Using the definition of reservation quality
in (4), lower outside options (B + V%) in the summer imply a lower housing value for the marginal

transaction in the summer,?

H? () < H" (V). (10)
However, this does not necessarily imply a lower reservation quality in the summer, ¢* < £*. This
is because the ranking of the housing values in the two seasons, H® (¢) and H" (¢), depends on
the level of . To see this explicitly, from (2), note that H’ (¢) is linear in € for j = s,w. Given
¢ > ¢°, H*(.) is steeper than H" (.). The difference in the intercepts between H* (.) and H" (.) is

proportional to:

AL =0%) (1= B¢°) (BY + V") = (1 = ¢°) (1 = 56") (B" +V?) |,

assigned to 1 in the equation for v®. Since 1 — ¢° > 1 — ¢", the equation for v° assigns a higher weight on 1. Since

Fv (%) (1 —¢") < 1, higher weight on 1 leads to v® > v™; this is because F' (e*) (1 — ¢") is virtually aseasonal as

there are two opposite effects: F* (e*) > F* (¢®) and (1 — ¢") < (1 — ¢°) that tend to largely cancel each other.
25Note, though, that because of the thick-market effect, the average housing value will still be higher in the summer

(even if the marginal value is lower).
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which is negative when B* + V* > BY + V.26 Therefore, H*(.) and H" (.) must cross once at
€. Thus if the equilibrium reservation quality in the summer is sufficiently high, €* > &, then
H? (e®) > H" (¢*). Therefore, in order for inequality (10) to hold, we must have ¥ > &°. In this
case, the intuition that a lower outside option in the summer leads to a lower cutoffs prevails. On
the other hand, if the equilibrium reservation quality in the summer is sufficiently low, £° < &, then
H? (e°) < H" (¢°); in this case, the inequality € > £° is no longer required for inequality (10) to
hold. In sum, the two equilibrium cutoffs cannot be ranked. Quantitatively, the two cutoffs turn

out to be close for reasonable parametrizations of the model.

4.1 Seasonality in Transactions

The number of transactions in equilibrium in season s is given by:
Q = v [L- F* ()], (11)

(An isomorphic expression holds for Q). From (11), it is evident that a larger stock of vacancies
in the summer, v* > v"*, has a direct positive effect on the number of transactions in the summer
relative to winter. Furthermore, if the probability of a transaction is also higher in the summer,
then transactions will be more seasonal than vacancies. This amplification effect, which follows
from the first-order stochastic dominance of F* (.) over F' (.), is indeed present in our quantitative
exercise.?” Intuitively, a higher stock of vacancies leads to better matches through the thick-market

effect, resulting in a higher transaction probability.

4.2 Seasonality in Prices

As discussed earlier, results on seasonality in vacancies and transactions are independent of the exact
price-setting mechanism, i.e. how the surplus is shared across buyers and sellers.

Let S? (¢) and S} (¢) be the surpluses of a transaction to the seller and to the buyer, respectively,

20This is because (1 — ¢") (1 — B¢°) — (1 — ¢°) (1 — Bo™) = (1 — B) (¢° — ¢") < 0

27 As said, there could be an additional effect if the cutoffs are highly seasonal. For example, if € > &°, there will

be even lower volume of transactions in the winter. This is because the outside option for both buyers and sellers is to
wait and transact in the next season. Therefore, a higher outside option in the winter makes both buyers and sellers

more demanding in the winter and hence less likely to transact, yielding an even smaller number of transactions.
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in season s, when the match quality is € and the price is p® (¢):

S;(e) = p’(e) = (u+pVY), (12)
Sp(e) = H(e) —p°(e) - BBY. (13)

The value functions for the buyer and the seller in season s are, respectively:

Vo= BV tut 1 — P ()] B85 (e) | e > €], (14)

B* = [BBY4[1—F° ()] E°[S; (e) | e = €. (15)

A seller can count on his outside option, SV* + u (the flow u plus the option value of selling next
season) and, with probability [1 — F* (¢*)], on the expected surplus from a transaction for sellers.
A buyer counts on her outside option, 5B™ (the option value of buying next season), and, with the
same probability, on the expected surplus for buyers. The two Bellman equations (14) and (15)
describe the incentives of buyers and sellers in any season s. They will only agree to a transaction
if they obtain a positive surplus from the transaction. In particular, it shows why a seller would
agree to sell in the winter season, even though the average price is higher in the summer. A positive
surplus in the winter p* () — (u + SV?®) > 0, already takes into account the potential higher price
in the summer and therefore the higher value of being a seller in the summer (V).

We now consider the case in which prices are determined by Nash bargaining. The price maxi-
mizes the Nash product:

max [} <))’ S5 ()™ st 5}(),5 () > 0

where 6 denotes the bargaining power of the seller. The solution implies

Si(e) 0
Si() 1-0 (16)

which simplifies to (see Appendix C):

u
1-p’

a weighted average of the housing value for the matched homeowner and the present discounted value

p*(e) = 0H () + (1 - 0) (17)

of the flow u. In other words, the price guarantees the seller the proceeds from the alternative usage

of the house (75) and a fraction § of the social surplus generated by the transaction |H* (¢) — ﬁ] :
The average price of a transaction is:
PP=E[p(e)|e>e=(1—0)—— +0E° [H* () | e > ], (18)

1-p
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which is increasing in the conditional expected surplus of housing services for transactions exceeding
the reservation £°. Since u is aseasonal, house prices are seasonal if § > 0 and the surplus to the
seller is seasonal (as we show). Moreover, the extent of seasonality is increasing in 6.

Intuitively, the source of seasonality is coming from higher average match quality in a thicker
market. The higher match quality generates higher utility to the buyer. This will show up as a
higher price only if the seller has some bargaining power to extract a fraction of the surplus generated

from the match. To see this in equations, rewrite the average housing as the sum of two terms:
E°[H®(e) |e=ze’|=H*(e®)+ E°[S°(¢) | e = £7]. (19)

The first term, H’ (¢7), the housing value of the marginal transaction, tends to reduce the average
price in the summer since H*® (¢*) < H" (). The second term, E* [S® (¢) | € > ¢°], is the expected
surplus of a transaction, tends to increase the average price in the summer due to higher match-

quality. To see this second term more clearly, observe from (3) and (4) that

14 B¢”

58(5):H8(€)—HS(58):m(5—55), (20)
thus
B[S (o) | & > e] = %58[5—531g258],

It tends to increase the average housing value in the summer for two reasons. First, the probability
of staying is higher in the winter, ¢“ > ¢°. Second, and more important, given the assumption
of first-order stochastic dominance, a higher stock of vacancies v® > v" increases the likelihood of
drawing a higher match-quality [1 — F* ()] > [1 — F"" (¢)] Ve . This generally leads to a higher
conditional surplus in the hot season: E*[c —&® | e > €] > E¥ e — &% | € > €¥].%® To sum up, due
to both ¢ > ¢* and the first-order stochastic dominance, the second term in (19) tends to increase

the average price in the summer.

28 To see this, rewrite the conditional surplus using integration by parts:

o (=P () de
S e gy Y

Efle—¢c|e> (21)

Putting aside the issue of the equilibrium cutoffs e° and ¥ (which are are quantitatively close), it follows from
equation (21) that the conditional surplus is higher in the hot season, E®[c —e® |e > &®] > EY[c —e" | e > ¥],
unless the increase in the likelihood of drawing a particular level of match quality ¢ dominates the sum of the increase

in likelihood of drawing all match qualities higher than ¢, i.e. unless 11:5((‘?) > {5((11:570((?)))(22

. We cannot rule out
this possibility in general, but this case does not arise in our calibration exercise. More formally, we could impose a
“uniform” stochastic ordering (see Keilson and Sumita, 1982) as a sufficient condition to rule out this case. But as

said, such assumption is not necessary for obtaining higher prices in the hot season.
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Given that 6 affects P*° only through the equilibrium mass of vacancies (recall the reservation
quality €° is independent of 6), it follows that the extent of seasonality in prices is increasing in 6.
Since (18) holds independently of the steady state equation for v* and v*, this result is independent
of what drives v* > v*. Note also, that the extent of seasonality in prices is decreasing in the size of

the (aseasonal) flow w.

4.2.1 Comparison to Standard Asset-Pricing Approach

It is useful to compare the price mechanism in our setup with that in a standard asset pricing
approach. Equation (14) can be compared to the no-arbitrage condition in asset pricing. Substituting

the expression for the surplus into (14), we obtain
Ve=[1—F°(%)] P+ F°(e°) (BV" + u)

The equation expresses the value of a seller as a weighted average of the market price P® and the
continuation value (BV" + u), with the weights given, correspondingly, by the probabilities that
the transaction goes through or not. Without the search friction, a buyer will always purchase the
house at the market price P?, thus the probability of a transaction is one. In that case, the value for
being a seller is VV* = P?*. Moreover, the surplus of a transaction is zero in a competitive equilibrium

(with perfect arbitrage), so the Bellman equation (14) is equivalent to

PS:ﬁPW+u:ﬁ(ﬁPS+u)+u:>Pszﬁ,

and P° = P". In other words, without the search friction, seasonality in moving probabilities ¢’
will not be transmitted into seasonality in prices.?’

Our price index P/, j = s,w is the average price of transactions in season j. The seasonality
in price indexes, P* > PY, is due to the thick market effect, whereby matches are more likely

to be better in the hot season (with a higher stock of vacant houses). In what follows we focus on

discussing the mechanism from the seller’s perspective (a similar argument can be put forward from a

29Notice that with the search friction, P* # ﬁ From
VE=pBVY +u+[1-F° ()] E°[S;(e) | € = €°]

substitute the expression for V* and obtain:

u [1—F* ()] B[Sy () e = e’ ]+ B[1 - F* (V)] B[S} (¢) | € > €]

Ve = -
1-p 1-p°

where the expected surpluses are strictly positive.
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buyer’s perspective). The price index P7 is not the price that every seller receives. More specifically,
consider a seller in the winter who is meeting with a buyer that has a match-specific quality equal
to €. He has to decide whether to sell now at an agreed price or to wait until the summer, where
the average price, P?, is higher. Notice that the seller is not comparing P"“ to P?° in his decision
because what is relevant for him is not the average price P but rather p* (¢), which is determined
between him and the buyer with quality match e. In fact, the equilibrium value functions (14) and
(15) ensure that a transaction will take place as long as the surplus is positive. More important, the
option of being able to sell at a higher price in the summer has already been incorporated into the
equilibrium surpluses (12) and (13), which in turn pin down the equilibrium price p* (¢) as in (17).
So even though the price of a transaction for a specific € might be higher in the hot season, it does
not follow that a seller will only transact in the summer because of the stochastic nature of €. By
not transacting at p* (¢), a seller may end up with an even lower p® (¢) in the summer if he meets
a buyer with a lower match quality &, or no transaction at all if the match quality € is too low. So
the corresponding arbitrage condition for the seller to decide whether to wait until the hot season
has to consider both the probability of transacting in the summer and the distribution of the match
quality conditional on transacting. In contrast, in a standard asset-pricing model with deterministic
seasons, a seller can always transact (with certainty) at market prices. The choice of whether to sell
in the current season or in the next depends exclusively on the flow of benefits (or costs) of owning

the house for one season relative to the expected seasonal appreciation.

4.3 Quantitative Results
4.3.1 Parameter values

We now calibrate the model to study its quantitative implications. We assume the distribution of
match-quality F (e, v) follows a uniform distribution on [0, v] . When v* > v* (which will follow from
¢ > ¢°), this implies first-order stochastic ordering, F* (.) < F (.).

We set the discount factor S so that the implied annual real interest rate is 6 percent.

We calibrate the average probability of staying in the house, ¢ = (¢° + ¢*) /2, to match sur-
vey data on the average duration of stay in a given house, which in the model is given by ﬁ
The median duration in the United States from 1993 through 2005, according to the American

Housing Survey, was 18 semesters; the median duration in the United Kingdom during this pe-

riod, according to the Survey of English Housing was 26 semesters. The implied (average) moving
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probabilities (1 — ¢) per semester are hence 0.056 and 0.038 for the United States and the United
Kingdom, respectively. Because there is no direct data on the ex-ante ratio of moving probabilities
between seasons, (1 — ¢°) /(1 — ¢"), we use a range of (1 —¢°) /(1 — ¢") from 1.1 to 1.5.3° This
implies a difference in staying probabilities between seasons, ¢ — ¢°, ranging from 0.004 to 0.015
in the United Kingdom and 0.005 to 0.022 in the United States. One way to pin down the level
of (1 —¢%) /(1 —¢") is to use data on vacancy seasonality, which is available for the United States
from the U.S. Census Bureau (for the United Kingdom, data on vacancies only exist at yearly fre-
quency). Seasonality in vacancies in the United States was 31 percent during 1991 — 2007.3! As
will become clear from the results displayed below, the ratio that exactly matches seasonality in US
vacancies is (1 — ¢%) / (1 — ¢") = 1.28. The reader may want to view this as a deep parameter and
potentially use it also for the UK, under the assumption that the extent of seasonality in ex-ante
moving probabilities does not vary across countries.

We calibrate the flow value u to match the implied average rent-to-price ratio received by the
seller. In the UK, the average gross rent-to-price ratio is roughly around 5 percent per year, according
to Global Property Guide.*> For the US, Davis et al. (2008) argue that the ratio was around 5
percent prior to 1995 when it started falling, reaching 3.5 percent by 2005. In our model, the u/P
ratio (where P stands for the average price, absent seasonality) corresponds to the net rental flow
received by the seller after paying taxes and other relevant costs; it is accordingly lower than the
gross rent-to-price ratio. As a benchmark, we choose u so that the net rent-to-price ratio is equal
to 3 percent per year (or 1.5 percent per semester), equivalent to assuming a 40 percent income tax

on rent).* To obtain a calibrated model of u, which, as we said, is aseasonal in the data, we use the

30The two surveys mentioned also report the main reasons for moving. Around 30 percent of the respondents report
that living closer to work or to their children’s school and getting married are the main reasons for moving. These
factors are of course not entirely exogenous, but they can carry a considerably exogenous component; in particular,
the school calendar is certainly exogenous to housing market movements (see Goodman 1993 and Tucker, Long,
and Marx 1995 on seasonal mobility). In all, the survey evidence supports our working hypothesis that the ex ante

probability to move is higher in the summer (or, equivalently the probability to stay is higher in the winter).
31 As a measure of seasonality we use, as before, the difference in annualized growth rates in vacancies between

broadly defined summers and winters. The difference is statistically significant at standard levels. Vacancy is com-

puted as the sum of houses for sale at the beginning of the season relative to the stock of houses.
32Data for the United Kingdom and other European countries can be found in

http://www.globalpropertyguide.com/Europe/United-Kingdom /price-rent-ratio
33In principle, other costs can trim down the 3-percent u/P ratio, including maintenance costs, and inefficiencies

in the rental market that lead to a higher wedge between what the tenant pays and what the landlord receives; also,

it might not be possible to rent the house immediately, leading to lower average flows u. Note that lower values of
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equilibrium equations in the model without seasonality, that is, the model in which ¢° = ¢ = ¢.
From (18) and (5), the average price and the reservation quality ¢ in the absence of seasonality are

(see Appendix C.2):

o [1-BF (eY)] Ele—¢e?|e>e]
L T R S () Y (Y ’ 22
and 56
cd LUt 55 ) edF (¢) (23)

=86 1-BoF (&%)

We hence substitute u = 0.015- P in the aseasonal model (equivalent to an annual rent-to-price ratio

of 3 percent) for # = 1/2 (when sellers and buyers have the same bargaining power) and find the

equilibrium value of P given the calibrated values for 5 and F'(.). We then use the implied value of
u=0.015- P as a parameter.’*

Finally, in reporting the results for prices, we vary 6, the seller’s bargaining power parameter

from 0 to 1.

4.3.2 The Extent of Seasonality

Given the calibrated values of u, 3, and ¢ discussed above, Table 8 displays the extent of seasonality
in vacancies and transactions generated by the model for different values of the ratio of moving
probabilities (recall that seasonality in vacancies and transactions is independent of the bargaining
power of the seller, ). As throughout the paper, our metric for seasonality is the annualized differ-

ence in growth rates between the two seasons. Column (1) shows the ratio of moving probabilities,

1—¢*
1—¢” "

seasons for the United States and the United Kingdom, [(1 — ¢®) — (1 — ¢")]. (Recall that, because

Columns (2) and (5) show the implied difference in moving probabilities between the two

the average stay in a house differs across the two countries, a given ratio can imply different values
for ¢ — ¢°, as the average probability of stay ¢ differs.) Columns (3) and (4) show the extent of
seasonality in vacancies and transactions for an average stay of 9 years (as in the United States)
and Columns (6) and (7) show the corresponding figures for an average stay of 13 years (as in the

United Kingdom)

u/p lead to even higher seasonality in prices and transactions for any given level of seasonality in moving shocks.
34We also calibrated the model using different values of u for different 6 (instead of setting § = 1/2), keeping the

ratio u/P constant. Results are not significantly different under this procedure, but the comparability of results for

different values of 6 becomes less clear, since u is not kept fixed.
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Table 8. Seasonality in vacancies and transactions for different + - ¢w.

Ratio of Average moving probability: 0.0556 Average moving probability: 0.0385
moving Stay of 9 years (U.S.)) Stay of 13 years (U.K.)
probabiliti Implied seasonal Implied seasonal
between . : : :
difference in . . difference in . :
seasons moving Vacancies Transactions moving Vacancies Transactions
&) orobabilities ) ) orobabilities () (7)
(2) ()]
1.10 0.005 12% 49% 0.004 11% 48%
1.20 0.010 23% 94% 0.007 21% 93%
1.30 0.014 33% 136% 0.010 30% 133%
1.40 0.019 42% 174% 0.013 38% 171%
1.50 0.022 51% 211% 0.015 45% 207%

The first point to note is the large amplification mechanism present in the model: For any given
level of seasonality in vacancies, seasonality in transactions is at least four times bigger. Second, the
Table shows that a small absolute difference in the probability to stay between the two seasons can

induce large seasonality in transactions. Third, if we constrain ourselves to ~=2; = 1.28 to match

- ¢w
the data on vacancies for the United States, this implies a level of seasonality in transactions of

about 135 percent in the United States, very close to the actual 148 percent observed in the data.

For the United Kingdom, ideally we would like to recalibrate the ratlo to match its seasonality

¢u7
in vacancies; however, as said, the data are only available at yearly frequency. Using the same
ratio llji’w = 1.28 as a parameter for the United Kingdom would yield a seasonality in vacancies

of 29 percent (the difference with the United States is due to the longer duration of stay in the
United Kingdom). This in turn would imply a degree of seasonality in transactions of 131 percent,

somewhat above the 108 percent in the data. Note that, for a given ratlo the model generates

¢w ’
more seasonality in transactions in the United States than in the United Klngdom (as in the data)

because a given ratio implies a higher difference in moving probabilities [(1 — ¢°) — (1 — ¢")] in the

United States than in the United Kingdom, as the average stay is shorter in the former.
Seasonality in prices, as expressed earlier, depends crucially on the bargaining power of the seller,

0. Figure 8 plots the model-generated seasonality in prices for different 6 and assuming an

d)w 9
average stay of 13 years (as in the United Kingdom), and Figure 9 shows the corresponding plot for
an average stay of 9 years (as in the United States). As illustrated, seasonality increases with both

1—¢° 1-¢°
¢ and 1= T If, as before, we take {— o7
seasonality in the United Kingdom (of about 6 percent, averaging between DCLG and Halifax), the

= 1.28 as given, the exercise implies that to match real-price

bargaining power coefficient f needs to be around 75 percent. The corresponding value for the United
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States as a whole, with real-price seasonality just above 3 percent, is 25 percent. For U.S. cities, as
noted in Table 6, seasonality is comparable to that in the United Kingdom (with an average of 5.7
percent for real prices, using the Case-Shiller composite of cities); the model accordingly suggests
that in U.S. cities the bargaining power of sellers is considerably higher than in the economy as a
whole.

The question is of course whether large differences in the bargaining power of sellers across the
two countries as a whole (and between U.S. cities and the rest of the country) are tenable. There
are at least two reasons why we think this is a reasonable characterization. First, population density
in the United Kingdom (246 inhabitants per km?) is 700 percent higher than in the United States
(31 inhabitants per km?), making land significantly scarcer relative to population in the United
Kingdom, and potentially conferring home owners more power in price negotiations (this should
also be true in denser U.S. cities). Second, anecdotal evidence suggests that land use regulations are
particularly stringent in the United Kingdom.?® Indeed in its international comparison of housing
markets, the OECD Economic Outlook 2005 highlights the “complex and inefficient local zoning
regulations and slow authorization process” in the U.K. economy, which the report cites as one of
the reasons for the remarkable rigidity of housing supply.?® Restrictions reinforce the market power

of owners by reducing the supply of houses.

9" United Kingdom

Figure 8: Seasonality in Prices for Different 6 and 11__ 7

Average Stay of 13 years (Average moving probability: 0.0385)--U K.
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35 Again, this is likely to be true also in major cities in the US.
36QECD Economic Outlook 2005, Number 78, chapter III, available at

http://www.oecd.org/dataoecd/41/56/35756053.pdf
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Figure 9. Seasonality in Prices for Different # and 11:;53 . United States
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5 Remarks on the Model

5.1 Efficiency Properties of the model

This section discusses the efficiency of equilibrium in the decentralized economy. For a complete
derivation, see Appendix C.3. The planner observes the match quality ¢ and is subject to the
same exogenous moving shocks that hit the decentralized economy. The key difference between the
planner’s solution and the decentralized solution is that the former internalizes the thick-market
effect. It is evident that the equilibrium level of transactions in the decentralized economy is not
socially efficient because the optimal decision rules of buyers and sellers takes the stock of vacancies
in each period as given, thereby ignoring the effects of their decisions on the stock of vacant houses
in the following periods. The thick-market effect generates a negative externality that makes the
number of transactions in the decentralized economy inefficiently high for any given stock of vacant
houses (transacting agents do not take into account that, by waiting, they can thicken the market
in the following period and hence increase the overall quality of matches).

The efficient level of seasonality in housing markets, however, will depend on the exact distri-

bution of match quality F'(e,v). Under likely scenarios, the solution of the planner will involve

3TThis result is similar to that in the stochastic job matching model of Pissarides (2000, chapter 8), where the

reservation productivity is too low compared to the efficient outcome in the presence of search externalities.
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a positive level of seasonality; that is, seasonality can be an efficient outcome. Indeed, in some
circumstances, a planner may be willing to completely shut down the market in the cold season,
to fully seize the benefits of a thick market.?® This outcome is not as unlikely as one may a priori
think. For example, the academic market for junior economists is extremely seasonal.?® Extreme
seasonality of course relies on the specification of utility—here we simply assume linear preferences;
if agents have sufficiently concave utility functions (and intertemporal substitution across seasons is
extremely low), then the planner may want to smooth seasonal fluctuations. For housing services,
however, the concern of smoothing consumption across two seasons in principle should not be too
strong relative to the benefit of having a better match that is on average long lasting (9 to 13 years

in the two countries we analyze).

5.2 Model Assumptions

It is of interest to discuss four assumptions implicit in the model. First, we assume that each buyer
only visits one house and each seller meets only one buyer in a given season. We do this for simplicity
so that we can focus on the comparison across seasons. One concern is whether allowing the buyer
to visit other houses may alter the results.?® This is, however, not the case here. Note first that the
seller’s outside option is also to sell to another buyer. More formally, the surplus to the buyer if the

transaction for her first house goes through is:
S () = H*(e) = 7° () = {E°[S; ()] + BB"}, (24)

where E* [S§ (n)] is the equilibrium expected surplus (as defined in (13)) for the buyer if she goes for
another house with random quality 7. By definition S (1) > 0 (it equals zero when the draw for the
second house 7 is too low). Compared to (13), the outside option for the buyer is higher because of
the possibility of buying another house. Similarly, the surplus to the seller if the transaction goes
through is:

S5 () =7 (e) = {BV" +u+ E°[S; ()]} - (25)

38The same will happen in the decentralized economy when the ratio (1 — ¢*) / (1 — ¢") is extremely high, e.g. the

required ratio is larger than 10 for the calibrated parametrs we use.
39 And it is perhaps highly efficient, given that it has been designed by our well-trained senior economists.
40Concretely, one might argue that the seller of the first house can now only capture part of the surplus of the buyer

in excess of the buyer’s second house. In this case, for the surplus (and hence prices) to be higher in the summer one
would need higher dispersion of match quality in the summer. This intuition is, however, incomplete. Indeed, one

can show that higher prices are obtained independently of the level of dispersion.
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The key is that both buyer and seller take their outside options as given when bargaining.
The price p* (¢) maximizes the Nash product with the surplus terms S§ (¢) and 5% (¢). The solu-
tion implies (1 — 6) S? () = 6S; (¢), but the Nash bargaining for the second house implies that
(1—=0) E*[S; (n)] = 0E” [Sg (n)], so:

(1=0)[p°(e) = (BV" +u)] = 0[H" (¢) = p° (¢) — BBY],

which has the same form as (16); thus it follows that the equilibrium price equation for p® (¢) is
identical to (17)—though the actual level of prices is different, as the cutoff match-quality is different.
Our qualitative results on seasonality in prices continue to hold as before, and quantitatively they
can be even stronger. Recall that in the baseline model we find that seasonality in the sum of buyer’s
and seller’s values tends to reduce the quality of marginal transactions in the summer relative to
winter because the outside option in the hot season is linked to the sum of values in the winter
season: B" 4 V. Intuitively, allowing the possibility of meeting another party in the same season
as an outside option could mitigate this effect and hence strengthen seasonality in prices. To see this,
the cutoff quality &° is now defined by: H® (°) = 5 (B + V%) + u+ E*[S* (n)]. Compared to (4),
the option of meeting another party as outside option shows up as an additional term, E* [S*® (n)],
which is higher in the hot season.

A second simplification in the model is that buying and selling houses involve no transaction costs.
This assumption is easy to dispense with. Let ?g and 7/ be the transaction costs associated with
the purchase (?i) and sale (77) of a house in season j. Costs can be seasonal because moving costs
and repairing costs may vary across seasons.*! The previous definitions of surpluses are modified by
replacing price p/ with p/ — 77 in (12) and with p’ + 7} in (13). The value functions (15) and (14),
and the Nash solution (16) continue to hold as before. So, the price equation becomes:

P& =T =0[H (€)= 7 =] (1= ) g (26)
which states that the net price received by a seller is a weighted average of housing value net of total
transaction costs and the present discounted value of the flow value u. And the reservation equation

becomes:

e = H* () — (7} + 7)) = B(B"+ V") +u. (27)

41 Repair costs (both for the seller who's trying to make the house more attractive and for the buyer who wants to
adapt it before moving in) may be smaller in the summer because good weather and the opportunity cost of time
(assuming vacation is taken in the summer) are important inputs in construction). Moving costs, similarly, might be

lower during vacation (because of both job and school holidays).
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The extent of seasonality in transactions depends only on total costs (7’%+ 7J) while the extent of
seasonality in prices depends on the distribution of costs between buyers and sellers. One interesting
result is that higher transactional costs in the winter do not always result in lower winter house
prices. Indeed, if most of the transaction costs fall on the seller (77 is high relative to T'i), prices
could actually be higher in the winter for # sufficiently high. On the other hand, if most of the
transaction costs are borne by the buyer, then seasonal transaction costs could potentially be the
driver of seasonality in vacancies (and hence transactions and prices). As said, our theoretical results
on seasonality in prices and transactions follow from v* > v*, independently of the particular trigger
(that is, independently of whether it is seasonal transaction costs for the buyer or seasonal moving
shocks; empirically, they are observationally equivalent, as they both lead to seasonality in vacancies,
which we match in the quantitative exercise?).

Third, the model presented so far assumed observable match-quality. In Appendix D we derive
the case in which the seller cannot observe the match quality e. We model the seller’s power 6 in this
case as the probability that the seller makes a take-it-or-leave-it offer; 1 — 6 is then the probability
that the buyer makes a take-it-or-leave-it offer upon meeting.** In that setting, § = 1 corresponds
to the case in which sellers always post prices. When ¢ is observable, a transaction goes through
whenever the total surplus is positive. However, when the seller does not observe ¢, a transaction
goes through only when the surplus to the buyer is positive. Since the seller does not observe ¢, the
seller offers a price that is independent of the level of £, which will be too high for some buyers whose
¢’s are not sufficiently high (but whose € would have resulted in a transaction if £ were observable
to the seller). Therefore, because of the asymmetric information, the match is privately efficient
only when the buyer is making a price offer. We show that our results continue to hold; the only
qualitative difference is that the extent of seasonality in transactions is now decreasing in #. This
is because when ¢ is unobservable there is a second channel affecting a seller’s surplus and hence
the seasonality of reservation quality, which is opposite to the effects from the seasonality of outside
option described above: When the seller is making a price offer, the surplus of the seller is higher
in the hot season and hence sellers are more demanding and less willing to transact, which reduces

the seasonality of transactions; the higher the seller’s power, 6, the more demanding they are and

42Furthermore, empirically, we are unaware of data on direct measures of moving costs or propensities to move,

much less so at higher frequency.
43Samuelson (1984) shows that in bargaining between informed and uninformed agents, the optimal mechanism is

for the uninformed agent to make a “take-it-or-leave” offer. The same holds for the informed agent if it is optimal for

him to make an offer at all.
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the lower is the seasonality in transaction.

Finally, we follow the literature (for example, see Wheaton 1990 and Krainer 2001) by assuming
exogenous moving shocks. This essentially abstracts from the decision to dissolve a match. The
main potential contribution of allowing endogenous moving decision is to account for the seasonality
in vacancy. Since we do not have data that is more fundamental (e.g. the seasonality in moving
costs, or the seasonality in shocks that change the match quality) than the observed seasonality
in vacancies, we do not attempt to predict the seasonality in vacancies. Instead, we choose to
match the seasonality in vacancies observed in the data, thus the potential amplification mechanism
through the endogenous moving decision is already embedded in the seasonality in vacancy. We
do not dismiss the important role of endogenous moving decisions for other aspects of the housing

market. We leave this for future work.

6 Concluding Remarks

By using data from the United Kingdom and the United States, this paper documents seasonal booms
and busts in housing markets. It argues that the predictability and high extent of seasonality in
house prices cannot be quantitatively reconciled with models taking a simple asset-pricing approach.

To explain the empirical patterns, the paper presents a search-and-matching model emphasizing
two important elements of the housing market. First, there are frictions in the matching process
between buyers and houses, which are modelled using a stochastic match-specific quality. Second,
the model embeds the notion that in a market with more houses for sale, a buyer is more likely to
find a better match, which we refer to as the thick-market effect. With these two elements, the model
generates an amplification mechanism such that a small (deterministic) difference in the propensity
to relocate across seasons can result in large seasonal fluctuations in the volume of transactions and
house prices. When calibrated using data from the United States and the United Kingdom, the
model can quantitatively account for the seasonal fluctuations in prices and transactions observed
in both countries.

The model sheds new light on interesting mechanisms governing fluctuations in housing markets
that are likely to operate at lower frequencies. In particular, the thick-market effect that is at
the core of the model’s propagation mechanism does not depend on the frequency of the shocks.
Lower frequency shocks associated with either business-cycle shocks of with less frequent booms

and busts in housing markets could also be propagated through the same mechanism to amplify the
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fluctuations in transactions and prices.
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Appendix

A Aggregate Seasonality (as Reported by Publishers of House
Price Indexes)

A first indication that house prices display seasonality comes from the observation that most pub-
lishers of house price indexes directly report SA data. Some publishers, however, report both SA
and NSA data, and from these sources one can obtain a first measure of seasonality, as gauged by
the publishers. For example, in the United Kingdom, Halifax publishes both NSA and SA house
price series. Using these two series we computed the (logged) seasonal component of house prices as
the ratio of the NSA house price series, P, relative to the SA series, P}, from 1983:01 to 2007:04,
{ln P%}. This seasonal component is plotted in Figure A.1. (Both the NSA and the SA series
correspond to the United Kingdom as a whole.)

In the United States, both the Office of Federal Housing Enterprise Oversight (OFHEO)’s house
price index and the Case-Shiller index carried out by Standard & Poor’s (S&P) are published in
NSA and SA form. Figure A.2 depicts the seasonal component of the OFHEO series for the US as

a whole, measured as before as {ln 55‘ } , from 1991:01 through to 2007:04. And Figure A.3 shows

the corresponding plot for the Case-Shiller index corresponding to a composite of 10 cities, with the
data running from 1987:01 through to 2007:04. (The start of the sample in all cases is dictated by
data availability.)**

All figures seem to show a consistent pattern: House prices in the second and third quarters
tend to rise above trend (captured by the SA series), and prices in the fourth, and particularly in
the first quarter, tend to be in general at or below trend. The figures also make it evident that the
extent of price seasonality is more pronounced in the United Kingdom than in the United States as
a whole, though as shown in the text, certain cities in the United States seem to display seasonal
patterns of the same magnitude as those observed in the United Kingdom. (Some readers might
be puzzled by the lack of symmetry in Figure A.2, as most expect the seasons to cancel out; this

t;45

is exclusively due to the way OFHEQ performs the seasonal adjustmen for the sake of clarity

and comparability across different datasets, we base our analysis only on the “raw”, NSA series and

44The original data in the S&P are monthly; we hence take the last month of the quarter—results are virtually

identical when taking the average over the quarter.
4SOFHEO uses the Census Bureau’s X-12 ARIMA procedure for SA; it is not clear, however, what the exact

seasonality structure chosen is.



hence the particular choice of seasonal adjustment by the publishers is inconsequential.)

Figure A.1: Seasonal Component of House Prices in the United Kingdom, 1983-2007
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Figure A.2: Seasonal Component of House Prices in the United States, 1991-2007
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Figure A.3: Seasonal Component of House Prices in U.S. cities, 1987-2007
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Note: The plot shows {ln P%i}. P, is the NSA and P} the SA index. Source: Case-Shiller 10-city composite.

Last, but not least, the U.S. National Association of Realtors (NAR) publishes data on trans-
actions both with and without seasonal adjustment. Figure A.4 plots the seasonal component of

house transactions, measured (as before) as the (logged) ratio of the NSA number of transactions

Q¢, divided by the SA number of transactions @} :{ln 8—:} .

Figure A.4: Seasonal Component of Housing Transactions in the United States, 1989-2007
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The seasonal pattern for transactions is similar to that for prices: Transactions surge in the
second and third quarters and stagnate or fall in the fourth and first quarters. (In the United

Kingdom only NSA data for transactions are available from the publishers.)

B A Back-of-the-Envelope Calculation

We argued previously that the predictability and size of the seasonal variation in housing prices
pose a challenge to models of the housing market relying on standard asset-market equilibrium
conditions. In particular, the equilibrium condition embedded in most dynamic general equilibrium
models states that the marginal benefit of housing services should equal the marginal cost. Following
Poterba (1984) the asset-market equilibrium conditions for any seasons j = s (summer), w (winter)
at time ¢ is:10

div1,50 + (Pev1j7 — Drj) = Crj - Prjs (28)

where j’ is the corresponding season at time ¢ + 1, p;; and d;; are the real asset price and rental
price of housing services, respectively; ¢; ; - p; ; is the real gross (gross of capital gains) t—period cost
of housing services of a house with real price p; ;; and ¢, ; is the sum of after-tax depreciation, repair
costs, property taxes, mortgage interest payments, and the opportunity cost of housing equity.
Note that the formula assumes away risk (and hence no expectation terms are included); this is
appropriate in this context because we are focusing on a “predictable” variation of prices.’” As in
Poterba (1984), we make the following simplifying assumptions so that service cost rates are a fixed
proportion of the property price, though still potentially different across seasons (¢;; = ¢i12,; = ¢;,
Jj = s,w): 1) Depreciation takes place at rate d;, j = s,w, constant for a given season, and the
house requires maintenance and repair expenditures equal to a fraction x;, j = s,w, which is also
constant for a given season. 2) The income tax-adjusted real interest rate and the marginal property
tax rates (for given real property prices) are constant over time, though also potentially different
across seasons; these rates are denoted, respectively as r; and 7;, j = s,w (in the data, as seen,

these are actually constant across seasons; we shall come back to this point below).® This yields

468ee also Mankiw and Weil (1989) and Muellbauer and Murphy (1997), among others.
4TNote that Poterba’s formula also implicitly assumes linear preferences and hence perfect intertemporal substitu-

tion. This is a good assumption in the context of seasonality, given that substitution across semesters (or relatively

short periods of time) should in principle be quite high.
48We implicitly assume the property-price brackets for given marginal rates are adjusted by inflation rate, though

strictly this is not the case (Poterba, 1984): inflation can effectively reduce the cost of homeownership. This, however,



Cj :(5j+lij+7’j+7'j, fOI‘j: S, W.
Subtracting (28) from the corresponding expression in the following season and using the condi-

tion that there is no seasonality in rents (d,, = ds), we obtain:

pt+1,s - pt,w pt,u) - pt—l,s pt—l,s pt—l,s
- = Cp — Cy L (29)
pt,w ptfl,s pt,w pt,w

Using DCLG-based results, real differences in house price growth rates for the entire United Kingdom

are PP o 8.25%, Pube o 1.06%,"" the left-hand side of (29) equals 7.2% = 8.25% — 1.06% - 15755-

Therefore, & = %:2 + 1555 The value of ¢, can be pinned-down from equation (28) with j = s,
depending on the actual rent-to-price ratios in the economy. In Table A.1, we summarize the extent
of seasonality in service costs %= implied by the asset-market equilibrium conditions, for different

values of d/p (and hence different values of ¢; = % + bebe = i—f +0.0106).

Table A.1: Ratio of Winter-To-Summer Cost Rates

(annualized) d/p Ratio | Relative winter cost rates <
1.0% 448%
2.0% 334%
3.0% 276%
4.0% 241%
5.0% 218%
6.0% 201%

As the table illustrates, a remarkable amount of seasonality in service costs is needed to explain
the differences in housing price inflation across seasons. Specifically, assuming annualized rent-to-
price ratios in the range of 2 through 5 percent, total costs in the winter should be between 334 and
218 percent of those in the summer. Depreciation and repair costs (6, + ;) might be seasonal, being
potentially lower during the summer.’® But income-tax-adjusted interest rates and property taxes
(r;+7;), two major components of service costs are not seasonal. Since depreciation and repair costs
are only part of the total costs, given the seasonality in other components, the implied seasonality in
depreciation and repair costs across seasons in the UK is even larger. Assuming, quite conservatively,

that the a-seasonal component (r; 4+ 7, = r + 7) accounts for only 50 percent of the service costs in

should not alter the conclusions concerning seasonal patterns emphasized here. As in Poterba (1984) we also assume

that the opportunity cost of funds equals the cost of borrowing.
4In the empirical Section we computed growth rates using difference in logs; the numbers are very close using

P it —DPt,j . . . .
%ﬂ instead. We use annualized rates as in the text; using semester rates of course leads to the same results.

U
%0Good weather can help with external repairs and owners’ vacation might reduce the opportunity cost of time—

though for this to be true it would be key that leisure were not too valuable for the owners.



the summer (r + 7 = 0.5¢5), then, the formula for relative costs W = ‘M—j&f’fj implies that the

ratio of depreciation and repair costs between summers and winters is %"% =22 — 1.°! For rent-
S S S

to-price ratios in the range of 2 through 5 percent, depreciation and maintenance costs in the winter
should be between 568 and 336 percent of those in the summer. (If the a-seasonal component (r+7)
accounts for 80 percent of the service costs (r + 7 = 0.8¢,), the corresponding values are 1571 and
989 percent). By any metric, these figures seem extremely large and suggest that a deviation from
the simple asset-pricing equation is called for. Similar calculations can be performed for different
regions in the US; as expressed before, though the extent of price seasonality for the US as a whole
is lower than in the UK, seasonality in several US cities is comparable to that in the UK and would

therefore also imply large seasonality in service costs, according to condition (28).

C Derivation for the model with observable value

C.1 Solving for prices
To derive p® (¢) in (17), use the Nash solution (16),
p*(e) = BV —u] (1 = 0) = [H" (¢) — p (¢) — BB"]0,

SO

p’(e)=0H°(e)+p[(1—-0)VY—0B"]+ (1 —0)u. (30)

Using the value functions (14) and (15),
(1-0)V*—0B*=p[(1-0)VY—-0B"]+(1—-0)u

solving out explicitly,

substitute into (30) to obtain (17).

C.2 The model without seasons

The value functions for the model without seasons are identical to those in the model with seasonality

without the superscripts s and w. It can be shown that the equilibrium equations are also identical

51Call A the aseasonal component as a fraction of the summer service cost rate: r + 7 = Acg, A € (0,1) (and hence

_ . Cw — OwtKwt+Acs _ dwtkwt+Ac _ L Cw—AVs _ OwtKaw .
ds + ks = (1 — A)cs). Then: o = Guotetlts = Sulfutite, Or ¢y = 0y + Ky + Acs. Hence: A0 = F5nes that

Suwthw Cy

_ A
0s+rs  (I1=X)ecs -\

is which is increasing in A for <= > 1.
.
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by simply setting ¢* = ¢“. Using (20), (7) and (18) to express the average price as:

s U B+ o) () + (1= F2F* (7)) (1+ B¢"”) Ele —° | e > €]
P _1_54‘9 (1—52) (1_62¢w¢s) , (31)
Using (5),
£ _ B
it s (1A (V4 B)
and B + V from (7),
B+V:11654_1_152{11__BZ)E[‘§_5|§>5]+ﬁ11__61;3[5—8|€‘>5]}

which reduces to:

u 1—F(e) . .
B+4+V = + E(E—c|g>e).
=5 a—ma-ge CelEze
It follows that
B N s
e=u-+ 1-F(e)|E(E—€e|E>¢),
1—6(/5[ ()] E( | )
and the law of motion for vacancy implies:
1—¢
V= ————.
1 —¢F (¢)

C.3 Analytical derivations of the planner’s solution

The planner observes the match quality € and is subject to the same exogenous moving shocks that
hit the decentralized economy. The interesting comparison is the level of reservation quality achieved
by the planner with the corresponding level in the decentralized economy. To spell out the planner’s
problem, we follow Pissarides (2000) and assume that in any period ¢ the planner takes as given
the expected value of the housing utility service per person in period ¢ (before he optimizes), which
we denote by ¢;_1, as well as the beginning of period’s stock of vacant houses, v;. Thus, taking as
given the initial levels ¢_; and vy, and the sequence {¢,},_, , which alternates between ¢’ and ¢

for seasons j, j' = s, w, the planner’s problem is to choose a sequence of {e;},_, to maximize

U ({et: @ty vi}i—p.) = Zﬁt g0 + wvi F (64 v1)] (32)
t=0
subject to the law of motion for ¢, :
&(vt)
@ = OGi—1 + Ut/ zdF (z50;) (33)



the law of motion for v; (which is similar to the one in the decentralized economy):

Vip1 = Vi@ I (er;0e) +1— Drr1) (34)

and the inequality constraint:

0 < Et S 5 (Ut) N (35)

where the upper bound & can potentially be infinite.

The planner faces two types of trade-offs when deciding the optimal reservation quality c;: A
static one and a dynamic one. The static trade-off stems from the comparison of utility values
generated by occupied houses and vacant houses in period ¢ in the objective function (32). The utility
per person generated from vacant houses is the rental income per person, captured by uv, F (g;) .
The utility generated by occupied houses in period ¢ is captured by ¢;, the expected housing utility
service per person conditional on the reservation value ¢; set by the planner in period ¢. The utility ¢,
which follows the law of motion (33), is the sum of the pre-existing expected housing utility ¢; ; that
survives the moving shock and the expected housing utility from the new matches. By increasing
¢, the expected housing value ¢; decreases, while the utility generated by vacant houses increases
(since F'(g;) increases). The dynamic trade-off operates through the law of motion for the stock
of vacant houses in (34). By increasing ¢; (which in turn decreases ¢;), the number of transactions
in the current period decreases; this leads to more vacant houses in the following period, v;,1, and
consequently to a thicker market in the next period. We first derive the case where the inequality

constraints are not binding, i.e. markets are open in both the cold and hot seasons.

The Planner’s solution when the housing market is open in all seasons

Because the sequence {¢,},_, alternates between ¢ and ¢j/ for seasons j, j’ = s,w, the planner’s
problem can be written recursively. Taking (¢;—1,v;), and {¢,},_, as given, and provided that the

solution is interior, that is, ¢, < v;, the Bellman equation for the planner is given by:
w (Qt—la Vg, ¢t) = m;th [qt + uv I (Et; Ut) + W (Qu Vit1, ¢t+1)] (36)

E(vt)
s.t. G = ¢;qi-1 + vt/ zdF (z;v),

€t

Ut41 = Ut¢t+1F (5t§ Ut) +1— ¢t+1-

The first-order condition implies

(1 + BaW (qtag;;‘rla ¢t+1)) v (_gtf (515; Ut)) + <6¢t+1 aw (qu)}z:ll’ ¢t+1) + U) Utf (575; Ut) = 0,
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which simplifies to

aW aW J Y
g, 1 + /6 <Qt7Ut+lv ¢t+1) — w4+ 6¢t+1 (Qt Vi1 ¢t+1) ] (37)
dq; OV
Using the envelope-theorem conditions, we obtain:
ow (Qt—la Ut, ¢t) ow (Qt, Vt+1, ¢t+1)
= 1+ 38
aqt_l (bt 6 aQt ( )
and

ow
oW (qtfh Vt, ¢t) _ u—+ ﬁ¢t+1 (Qta V41, ¢t+1) (F (5t3 Ut) _ UtTlt) (39)
311,5 a'Ut+1

oW )
+ (1 + 3 (Qt’;;Jrl’ ¢t+1)> (/ xdF (x;v) + UtT2t>
t £t

where Ty, = % (1= F(e;v)] >0 and Ty = 5 - f ) ydr (x;v:) > 0. In the periodic steady state,

the first order condition (37) becomes
. oW (g7, 07") LOWT (2, 0")
j — i’
5 (1 + 3 9 =u+ B¢ 507 (40)
The envelope condition (38) implies

oW (q] )

0q7’ ¢j

1+3 <¢J +5¢J’M>]

which yields:
oW (¢ ) & (1 + ﬁgbf')

. = — 41
g’ 1 - (% ¢f e
Substituting this last expression into (39), we obtain:
oW (7' v) LW (@)
where } ,
. L . . 1 J & . .
Al =F1 () =T, DJE——i—fgb. ., / zdF? (x) + 0’13 |, (42)
1=p°¢'¢" \Jei
Hence, we have
OWI (g7 I , Wi (g3 07 _ ,
W (") {u+ﬁ¢f’ (u+6¢J—(q - )> A 4 D7 }Aﬂ + D,
ovJ ovJ
which implies
oW (¢ vi)  ud (1 + ﬁd)j'Aj’) + B¢/ DI AV 4 DI
) . (43)

i 1— B¢ ¢ AT AT



Substituting (41) and (43) into the first-order condition (40),

S (B AT (14 BN + B DIAT + DY
£TG+BTiE%@T)_“+6W L= §P¢/¢7 ALAT

simplify to:

§(1+B& ):Oﬁﬂwﬁﬂu+ﬁwwﬂﬁﬁ+ﬂﬂDf )

e L= ¢/ AT AT ’
and the stock of vacant houses, v/, j = s, w, satisfies (8) as in the decentralized economy.

* rdF (x) >

el

The thick-market effect enters through two terms: TV = 2 [1— F7 (¢)] > 0 and T] = 2
0. The first term, le , indicates that the thick-market effect shifts up the acceptance schedule
[1 — F7 (¢)]. The second term, 73, indicates that the thick-market effect increases the conditional
quality of transactions. The interior solution (44) is an implicit function of &/ that depends on el
v’, and v7". It is not straightforward to derive an explicit condition for &/ < v7, j = s, w. Abstracting

from seasonality for the moment, i.e. when ¢* = ¢" it follows immediately from (8) that the solution

is interior, ¢ < v. Moreover (44) implies the planner’s optimal reservation quality P satisfies:

e u+ 153_(;6545 <f:p xdF (x) —|—ng>
1—86 11— (BoF (e?) + fouTy

Comparing (45) with (23), the thick-market effect, captured by 77 and T3, generates two opposite

(45)

forces. The term T} decreases P, while the term T increases P in the planner’s solution. Thus, the
positive thick-market effect on the acceptance rate T7 implies that the number of transactions is too
low in the decentralized economy, while the positive effect on quality 75 implies that the number of
transactions is too high. Since 1 — 3¢ is close to zero, however, the term 7, dominates. Therefore,
the overall effect of the thick-market externality is to increase the number of transactions in the
decentralized economy relative to the efficient outcome. As discussed in the text, comparing the
extent in seasonality in the decentralized equilibrium to the planner’s solution depends on the exact
distribution F'(¢,v). We next derive the case in which the Planner finds it optimal to close down

the market in the cold season.

10



The Planner’s solution when the housing market is closed in the cold season

Setting €}” = €}, the Bellman equation (36) can be rewritten as:
d°q +vf f:tj rdFy (z) + wiFy (g7)
W (gia,0f) = max | 45 (g% +ufopo" F (<) +1 - ¢"])

+52Ws (Qﬁp Uts+2>
s.t.

=5

G = ¢° [¢Sq1§’il+vf / vdFy (x)

)
S
€t

Uiy = O[OV FY () +1 - 9"+ 19"

(46)

Intuitively, “a period” for the decision of €] is equal to 2¢. The state variables for the current period

are given by the vector (q}/‘i 1> vf) , the state variables for next period are (qﬁH, vy +2) , and the control

variable is €;. The first order condition is:

0 = of (=&if7 (7)) + uvi f7 (e7)
+0(0% 07 (=€l 7 (€7)) + uvi " f7 (7))

aWS w, S S rs S aWS S, .S W LS S

#5| G (07 (227 GO+ (670107 60)].
Qi1 Vi42

which simplifies to:
0 = —ef +u+3(—¢" +ud”)

oW qw 7,Us " s OW's qw 7,Us . w

+62 ( t:}l t+2) (_¢ Et) + ( t:—l t+2)¢ ¢

8Qt-&-l avt+2

and can be written as:
S w S
w (th, Ut+2)

S
o

w w W (@0, v w w50
L+ 89" + 5% Eﬁl e | (14 o) 590 0
dt+1 Uty2
Using the envelope-theorem conditions, we obtain:
OW? (q}* 1, v} OW? (¢}, v}
8(9; 1 t) :¢s+ﬂ¢w¢s+52¢w¢s gjtzl t+2)7
di—q G111

and
aws (Cﬁ"—u Uf)
ovy

=5

= (1+69") ( [ @)+ T) + (1+ Bo") ulF} (&) - Ty

s

OW's w ,,US o
+5 (aqitl e g ( / vdFy <x>+va5t>
Qt-i-l e?

t
S w S
, OV (qt+17 Ut+2)
S
iy

+6

¢*O" [F (e7) — v T3],
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(48)



where T% = -2 [1 — F# (¢9)] > 0 and T3, = -2 [ zdF? (x) > 0. Rewrite the last expression as:

vy 2t = 9uf Jeg
aws (q;v_l’ Uf)
vy
OWs (g ,US g{
= <1 + Bo™ + Bp" (4t t+2)> (/ zdF} (r) + va§t>

9q' 4 s

t

(49)

S w S
" (qt+1a Ut+2)
S
Vi,

0
+ ((1 +B9")u+ ¢ ¢" ) [ (e7) — vi'T]

In steady state, (48) and (49) become

OW=(¢",v") _ ¢" (14 B¢")
aqw - 1— 62¢w¢s ) (50)

and

8W58(z:f, US) (1 B 52¢8¢w [Fs (€s> . UsTls]) (51)

51 w g*s
= (1 + Bo" + 52¢w—¢1 E ;ffqﬁs)) (/ES xdF® () + USTQS)
+ (14 B86") u[F* (e°) — v*T7].

Substituting into the FOC (47),

s 1+ [0
ST mus
1 -39
L (4 pgyus grgngr PO ) T e (JE 2P (@) +0°5)

1 — 2¢°0" [F* (e°) — vTj]
which simplifies to

I o i
1— "¢ L= B2¢°¢" [F= (&) —v°T}]

which is similar to the Planner’s solution with no seasons in (45), with 5%¢"¢® replacing (.

s u -+ _B%p“¢° (fg xdF* (x) + vSTQS)

(52)

D Model with unobservable match quality

Assume that the seller does not observe €. As shown by Samuelson (1984), in bargaining between
informed and uninformed agents, the optimal mechanism is for the uninformed agent to make a
“take-it-or-leave” offer. The same holds for the informed agent if it is optimal for him to make an
offer at all. Hence, we adopt a simple price-setting mechanism: The seller makes a take-it-or-leave-it

offer p* with probability 6 € [0, 1] and the buyer makes a take-it-or-leave-it offer p/* with probability

12



1—0. (6 = 1 corresponds to the case in which sellers post prices.) Broadly speaking, we can interpret
0 as the “bargaining power” of the seller. The setup of the model implies that the buyer accepts
any offer p*¥ if H®(¢) — p** > BBY; and the seller accepts any price p** > V¥ + u. Let S% and
S5 (¢) be the surplus of a transaction to the seller and the buyer when the match quality is & and

the price is p*, for i = b, v:
Sy o= pt = (ut V), (53)
Sy'(e) = H*(e)—p" —pB". (54)
Note that the definition of S** implies that
P =S4 (55)

i.e. the price is higher when the seller is making an offer. Since only the buyer observes ¢, a
transaction goes through only if Si*(¢) > 0, i = b,v, i.e. a transaction goes through only if the
surplus to the buyer is non-negative regardless of who is making an offer. Given H* (¢) is increasing

in e, for any price p*, i = b, v, a transaction goes through if ¢ > £, where
H? (gsi) - psi — ﬁBw (56)

1 — F* (%) is thus the probability that a transaction is carried out. From (2), the response of the

reservation quality €% to a change in price is given by:

8557; _ 1 _62¢w¢s

- = 57
o~ 1r8o" (57)
Moreover, by the definition of S;* (¢) and £, in equilibrium, the surplus to the buyer is:
st s S (S 1 + B¢w St
Sb (6):H(8)—H(6):T(8—8) (58)
1—5%9%

D.1 The Seller’s offer

Taking the reservation policy €*” of the buyer as given, the seller chooses a price to maximize the

expected surplus value of a sale:
max {[1 = F* ()] [p — 5V* — ul}

The optimal price p*¥ solves

8681)

1= P ) = o= BV =] () G =

13



Rearranging terms we obtain:

s —1
p* = pVY —u P (e™) g;s
psv - 1— F's (Esv) ’
mark-up

inverse-elasticity

which makes clear that the price-setting problem of the seller is similar to that of a monopolist who
sets a markup equal to the inverse of the elasticity of demand (where demand in this case is given
by the probability of a sale, 1 — F** (¢°)). The optimal decisions of the buyer (57) and the seller (59)

together imply:
1—F5(e%) 1+ Bo"

Sy = —. (60)
frlew) 1-p%"¢
Equation (60) says that the surplus to a seller generated by the transaction is higher when 1}?;@;)

is higher, i.e. when the conditional probability that a successful transaction is of match quality £ is
lower. Intuitively, the surplus of a transaction to a seller is higher when the house is transacted with
a stochastically higher match quality, or loosely speaking, when the distribution of match quality
has a “thicker” tail.

Given the price-setting mechanism, in equilibrium, the value of a vacant house to its seller is:
Vi=u+ VY +0[1—F°(™)]S. (61)

Solving out V* explicitly,

o w o [I= PR S 4 1 — ()] S
=5t e ,

which is the sum of the present discounted value of the flow value v and the surplus terms when its

Ve (62)

seller is making the take-it-or-leave-it offer, which happens with probability €. Using the definition

of the surplus terms, the equilibrium p*’ is:

oo ol PSP e .
D.2 The Buyer’s Offer
The buyer offers a price that extracts all the surplus from the seller, i.e.
St =0 pP =u+t BVY
Using the value function V* from (62), the price offered by the buyer is:
oot o S O P e (61)
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The buyer’s value function is:

B* = [BBY40[1—F° ()| E°[S;" (¢) | e = ] (65)

+(1=0)[L=F* ()] E*[S"(e) | e = 7],
where E*° [.] indicates the expectation taken with respect to the distribution £ (.). Since the seller
does not observe ¢, the expected surplus to the buyer is positive even when the seller is making the

offer (which happens with probability ). As said, buyers receive zero housing service flow until they

find a successful match. Solving out B?® explicitly,

B = 01 —F () E[Si'(e) [e =™+ (1=0) [L = F* ()] E° [S}" () | € = ] (66)
+B8{0(1—F* () E¥ Sy (e) |e 2™+ (1—0) [1— F* ()] E* [Sy* (e) | e = e**] } .

D.3 Reservation quality

In any season s, the reservation quality €%, for ¢ = v, b, satisfies
H* (%) = S +u+ V" + 8B, (67)

which equates the housing value of a marginal owner in season s, H* (¢°), to the sum of the surplus
generated to the seller (S%), plus the sum of outside options for the buyer (3B“) and the seller
(BV* + u). Using (2), % solves:
1+ B¢" Bo” (1 - 56 B (1- )
L— 32" ¢" 1—B¢"" L— 2"

The reservation quality €* depends on the sum of the outside options for buyers and sellers in both

e =SV +u+ (B + V")

(VS +B%).  (68)

seasons, which can be derived from (62) and (66):

B*+V® (69)
= _ ﬂ —+
O[L— F* ()] B[S (e) | e = e™] + (1 —0) [L — F* ()] E* [S* (e) | e = ] +

B{O(L—FY (™) EY[S™ () | e =]+ (1 —0) [1 - F* (eP)] E* [S*" (¢) | e = e**] },

where S* (g) = 5§ (¢) + S5 is the total surplus from a transaction with match quality . Note from

(68) that the reservation quality is lower when the buyer is making a price offer: 1_1;2;3 (ﬁ P (e — &) =
S2v. Also, because of the asymmetric information, the match is privately efficient when the buyer is

making a price offer.

15



The thick-and-thin market equilibrium through the distribution F7 affects the equilibrium prices
and reservation qualities (pj”, it edv, sjb) in season j = s, w through two channels, as shown in (63),

(64), and(68)): the conditional density of the distribution at reservation 7", i.e. %, and the
expected surplus quality above reservation ¢/V; i.e. (1 — FV (e7)) Ei[e — &/l | e > &7, i = b,v. As
shown in (60), a lower conditional probability that a transaction is of marginal quality €/ implies
higher expected surplus to the seller S7¥, which increases the equilibrium prices p’ and p?® in (63)
and (64). Similarly as shown in (58) and the assumption of first order stochastic dominance, using
integration by parts, expected surplus to the buyer (1 — F7 (¢7%)) E* [S§'(¢) | e > €*], i = b,v is
higher in the hot season with higher vacancies. These two channels affect V7 and B’ in (62) and

(66), and as a result affect the reservation qualities £/ and ’° in (5).

D.4 Stock of vacant houses

In any season s, the average probability that a transaction goes through is
{6[1—F ()] + (1 —0) [1— F* (¢**)] } , and the average probability that a transaction does not
through is {#F™ (e*¥) + (1 — 6) F* (¢**) } . Hence, the law of motion for the stock of vacant houses

(and for the stock of buyers) is

o= (1= {01 -FY () + (1 —-0)(1—F" ()] +1 -0}
+o {OF" () 4+ (1 — 0) F* (")},

where the first term includes houses that received a moving shock this season and the second term

comprises vacant houses from last period that did not find a buyer. The expression simplifies to
v =0 et {OFY (") + (L= 0) F* (") } +1 - ¢, (70)

that is, in equilibrium v* depends on the equilibrium reservation quality (5“’”,5“’”) and on the
distribution F™ (.).

An equilibrium is a vector (pS”,pr,pw”,p“’b, B+ VS BY 4 VW g% g gwv gwb g5 ’Uw) that jointly
satisfies equations (63),(66),(68), (69) and (70), with the surpluses SJ and S (¢) for j = s, w, derived
as in (60), and (58). Using (70), the stock of vacant houses in season s is given by:

_ (1—¢")¢* {OF" (%) + (1 — 0) F (c**) } +1 — ¢°
1— @Y  {0F5 (e0) + (1 — 0) F* (e30)} {OF™ (ew) + (1 — 0) Fv (ewb)}

US

(71)

Given 1 — ¢° > 1 — ¢, as in the observable case, it follows that, in equilibrium v* > v*.
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D.5 Seasonality in Prices

Let
01— F* ()] p* + (1= 0)p®
Ol —Fs (=) + 10

ver I rved in n s. Given = we can rewrite i
be the average price observed in seaso Given p* = S5 + p**, we can rewrite it as

S

p

O[1 — F* ()] i

=" Ol —F°(e)]+1—0
using (64)
C L PP S B P eS| 00 P Sy
ST 15 1= 0F (=)
_ u [1_9FS(€SU)]B2+1_52 s [ _.Sv sv 95[1_Fw(€wv)]511}w
- 1—6+9< 1= 07 o) (1= 7 )[1—F(s )] S," + 7
we obtain,
Y (L ) e o T e S e
p_1—5+9{ 10 e (-7 17 - @

Since the flow u is a-seasonal, house prices are seasonal if # > 0 and the surplus to the seller is
seasonal. As in the case with observable match quality, when sellers have some “market power”
(0 > 0), prices are seasonal. The extent of seasonality is increasing in the seller’s market power 6.
To see this, note that the equilibrium price is the discounted sum of the flow value (u) plus a positive

surplus from the sale. The surplus S;¥, as shown in (60), is seasonal. Given v* > v*, Assumption

2 implies hazard rate ordering, i.e. ; S ;Ef()x) > 5 g F(x ()x) for any cutoff z, i.e. the thick-market effect
lowers the conditional probability that a successful transaction is of the marginal quality €*” in the
hot season, that is, it implies a “thicker” tail in quality in the hot season. In words, the quality
of matches goes up in the summer and hence buyers’ willingness to pay increases; sellers can then
extract a higher surplus in the summer; thus, S;¥ > SY. As in the case with observable ¢, there
is an equilibrium effect through the seasonality of cutoffs. As shown in (68), the equilibrium cutoff
£°¥ depends on the surplus to the seller (S5¥) and on the sum of the seller’s and the buyer’s outside
options, while the equilibrium cutoff ¢** depends only on the sum of the outside options. The
seasonality in outside options tends to reduce £* /¥ for i = b, v. This is because the outside option
in the hot season s is determined by the sum of values in the winter season: B + V", which is lower

than in the summer. However, the seasonality in the surplus term, S5V > S¥* (shown before), tends

to increase % /e"? (the marginal house has to be of higher quality in order to generate a bigger
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surplus to the seller). Because of these two opposing forces, the equilibrium effect is likely to be
small (even smaller than in the observable case.)
Given that 0 affects S;” only through the equilibrium vacancies and reservation qualities, it

follows that the extent of seasonality in price is increasing in 6.

D.6 Seasonality in Transactions

The number of transactions in equilibrium in season s is given by:
Q =v[0(L—F" () +(1—-0)(1—F"(e*))]. (73)

(An isomorphic expression holds for @*). As in the observables case, seasonality in transactions
stems from three sources. First, the direct effect from a larger stock of vacancies in the summer,
v® > v". Second the amplification through the thick-market effects that shifts up the probability of
a transaction. Third, there is an equilibrium effect through cutoffs. As pointed out before, this last
effect is small. As in the case with observable €, most of the amplification stems from the thick-
market effect. What is new when ¢ is unobservable is that the extent of seasonality in transactions
is decreasing in the seller’s market market power . This is because higher 6 leads to higher surplus
in the summer relative to winter, S5’/S»”, which in turn increases £°V/¢"" and hence decreases

Q°/Q"); the higher is 6, the stronger is this effect (it disappear when 6 = 0).
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