
Review of Economic Dynamics 14 (2011) 475–495
Contents lists available at ScienceDirect

Review of Economic Dynamics

www.elsevier.com/locate/red

Accounting for research and productivity growth across industries ✩

L. Rachel Ngai a,1, Roberto M. Samaniego b,∗
a Department of Economics, London School of Economics, Houghton Street, London WC2A 2AE, United Kingdom
b Department of Economics, The George Washington University, 2115 G St NW Suite 340, Washington, DC 20052, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 May 2009
Revised 13 December 2009
Available online 21 December 2009

JEL classification:
O30
O41
D24

Keywords:
Multi-sector growth
Total factor productivity
R&D intensity
Technological opportunity

What factors underlie industry differences in research intensity and productivity growth?
We develop a multi-sector endogenous growth model allowing for industry-specific
parameters in the production functions for output and knowledge, and in consumer
preferences. We find that long run industry differences in both productivity growth and
R&D intensity mainly reflect differences in “technological opportunities”, interpreted as the
parameters of knowledge production. These include the capital intensity of R&D, knowledge
spillovers, and diminishing returns to R&D. To investigate the quantitative importance of
these factors, we calibrate the model using US industry data. We find that diminishing
returns to research activity is the dominant factor.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Total factor productivity (TFP) growth rates differ widely across industries, and these differences appear linked to per-
sistent cross-industry differences in R&D intensity – see Fig. 1. This link is sometimes interpreted as causation. However,
a priori it is not clear why the level of industry R&D should affect industry productivity growth, a point that has been made
by Jones (1995) for the aggregate economy. Rather, both R&D and productivity growth depend on the response of firms to
deeper industry parameters.

We develop a general equilibrium model in which both research activity and productivity growth vary endogenously
across industries, to identify the factors that account for differences in each. We show that the factors that influence TFP
growth also have an impact on R&D intensity. However, the converse is not true: there exist industry characteristics that
affect the level of industry R&D, but not necessarily industry productivity growth rates.

The empirical literature has identified three sets of factors as potential determinants of industry variation in research
intensity and productivity growth: technological opportunity (factors that affect the efficiency of research), appropriability
(the extent to which R&D benefits the innovator) and demand (which influences the returns to research). These factors are
implemented in the model using standard preference and technology parameters drawn from growth theory. The industry-
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Fig. 1. Productivity growth and R&D intensity. Productivity growth rates for US industries over the post-war era are reported by Jorgenson et al. (2007).
R&D intensity is the median ratio of R&D expenditures to sales among firms in Compustat over the period 1950–2000. Data are for manufacturing. The
dotted line represents fitted values for each graph. The right panel excludes two potential outliers, computer equipment and electronic components. See
also Terleckyj (1980) for an early survey. Two and three asterisks indicate statistical significance at the 5 and 10 percent levels, respectively.

specific factors we study are: diminishing returns to research, knowledge spillovers over time, knowledge spillovers across
firms, capital intensity in the production of goods, capital intensity in the production of ideas, the elasticity of substitution
across different varieties of goods within each industry, and the industry’s market size.

As our interest is in industry comparisons, we focus on equilibria where the distribution of productivity within sectors
is stable and rank-preserving. We find that differences in industry TFP growth rates depend only on factors of technological
opportunity. These include the extent to which research is subject to diminishing returns, the capital share of research
spending, and total knowledge spillovers. By contrast, differences in R&D intensity also depend on the extent to which
knowledge spillovers accrue from the firm’s own stock of knowledge, which we interpret as a measure of appropriability.2

Product demand is fundamental in providing incentives to perform research: nevertheless, we find that industry differences
in equilibrium TFP growth rates and R&D intensity do not depend on demand parameters that are constant over time.3

To narrow down which factors of technological opportunity best account for cross-industry comparisons in a production-
function based framework, we calibrate the model using US industry data. We find that the capital intensity of research
cannot account for observed industry differences in productivity growth rates. Furthermore, we find that variation in appro-
priability has little impact on industry variation in R&D intensity. Thus, the model indicates that variation in diminishing
returns to research and in the magnitude of spillovers must jointly account for patterns of productivity growth and research
activity. Finally, for each industry we select these two parameters so that the equilibrium productivity growth rate and R&D
intensity level in the model match the values in the data exactly. We find that the degree of diminishing returns to R&D is
the main factor behind industry variation in productivity growth rates and in R&D intensity.

In related work, Klenow (1996) studies the determinants of cross-industry differences in TFP growth and R&D intensity in
a 2-sector version of the Romer (1990) model. Krusell (1998) develops a 2-sector framework to endogenize the decline in the
price of capital relative to consumption goods documented by Greenwood, Hercowitz and Krusell (1997), and Vourvachaki
(2007) develops a two-sector endogenous growth model to endogenize technical progress in IT: however, in these papers,
there is only research in one sector, and the focus is not on the factors that determine industry TFP growth rates. In the
partial equilibrium model of Nelson (1988), the extent to which knowledge spills from a firm to its competitors affects R&D
intensity but not TFP growth rates, and our general equilibrium environment also yields this result. Klevorick et al. (1995)
and Nelson and Wolff (1997) provide evidence supporting this claim.

Section 2 provides an overview of the related literature. We do this to line up the factors we wish to embody later in
our model. Section 3 describes the structure of the model and outlines the main results, and Section 4 studies its long run
behavior. Section 5 uses a calibration of the model to determine the relative importance of different potential determinants
of research and productivity differences. Section 6 discusses possible extensions.

2 We discuss how our notion of appropriability compares to other notions of appropriability later in the paper.
3 For example we show that, while the price elasticity of demand affects the potential returns to innovation in partial equilibrium, it may not affect

returns in general equilibrium when all firms are conducting research and trying to keep pace with each other. We also show that, if R&D intensity
is measured using the R&D-to-sales ratio, as is common, then the price elasticity of demand may enter R&D intensity not because it affects resource
allocation but by construction, since the denominator (sales) contains a markup reflecting this elasticity.
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2. Related literature

Many studies have attempted to identify the determinants of industry variation in R&D intensity and productivity growth.
While some studies assume that research causes productivity growth, others take our view that both are determined by
deeper “fundamentals” of each industry.

The literature has focused on three sets of factors: product demand, technological opportunity, and appropriability.
Technological opportunity encompasses factors that lead research to be more productive in some industries than others.

Opportunity has been modeled in different ways – for example, in Klenow (1996) it is a constant Zi in the knowledge
production function for industry i. Nelson (1988) interprets opportunity in terms of knowledge spillovers from different
sources. Measuring opportunity is difficult: however, using surveys of R&D managers, Levin et al. (1985), Cohen et al. (1987)
and Klevorick et al. (1995) try to identify different kinds of spillovers, relating them to R&D activity and to technical change.4

Appropriability relates to the extent that an innovating firm (as opposed to its competitors) benefits from its own newly
generated knowledge. Cohen et al. (1987), Klevorick et al. (1995) and Nelson and Wolff (1997) find evidence that appro-
priability is related to R&D intensity and, interestingly, Klevorick et al. (1995) and Nelson and Wolff (1997) argue that the
survey data are consistent with an influence of opportunity factors on both R&D intensity and technical change, whereas
appropriability is only related to R&D intensity.5

Demand factors affect the returns to R&D. In Schmookler (1966), larger product markets encourage innovation by offering
higher returns to innovators, whereas in Kamien and Schwartz (1970) the gains from reducing production costs may be
larger when demand is more elastic. The survey of Cohen and Levin (1989) suggests that the industry evidence concerning
demand factors is weak. For example, Levin et al. (1985) find that they lose significance in cross-industry R&D regressions
when indicators of opportunity and appropriability are included. Some empirical studies of specific products or industries
do find some evidence of a demand-innovation link – for example, Newell et al. (1999), Popp (2002) and Acemoglu and
Linn (2004). These findings underline the importance of demand in providing incentives for R&D, although it is not clear
that they provide evidence relating to industry differences in productivity growth nor R&D intensity. Independently, several
case-based and historical studies suggest that technical change is driven by scientific or engineering considerations rather
than by demand conditions.6

The following stylized facts emerge from the empirical literature: (1) there is evidence that opportunity affects both
statistics of interest; (2) appropriability is easier to relate to R&D intensity than to TFP growth rates; (3) the link between
demand factors and research intensity (as well as rates of TFP growth) is not robust in cross industry studies, although within
industry studies do provide some supporting evidence.

We wish to articulate opportunity, appropriability and demand factors within a general equilibrium growth model, based
on primitives of preferences and technology drawn from the growth literature. Given the measurement difficulties inherent
in studying the role of knowledge in technical progress, we use the structure of the model to guide us regarding the
relationships that hold between R&D, TFP growth, and each of these factors. As a benchmark, we use a model of knowledge
generation that is intentionally close to the production function approach common in both the theoretical and the empirical
literature. Our model is closely related to the frameworks of Jones (1995) and Krusell (1998). The functional forms we use
are necessary for balanced growth.

3. Economic environment

3.1. Knowledge production

There are z � 2 industries. Consider a firm h ∈ [0,1] in industry i, with a level of productivity that depends upon the
stock Tiht of technical knowledge at its disposal at date t . Knowledge accumulates over time according to:

Tiht+1 = Fiht + Tiht, (1)

4 Aside from technological opportunity, other cost-related factors could vary across industries, such as subsidy levels. We abstract from research subsidies
because in the United States they are arguably very low. In the US, mostly R&D is subsidized through R&D tax credits. In practice the credit rate is about
13% of expenditures: see Wilson (2009). Only expenditures above a certain limit count towards the credit, which is 3% of sales for new firms or a 3-year
moving average of past R&D spending otherwise. Wilson (2009) notes that federal R&D tax credits are in fact “recaptured” (i.e. taxed back).

5 Cohen et al. (1987) do find a positive link between appropriability and an indicator of innovation, also using survey data. What clouds these results
is that the appropriability measure in all these papers may not distinguish sharply between appropriability and opportunity. The measure is based on the
response to the question “in this line of business, how much time would a capable firm typically require to effectively duplicate and introduce a new or
improved product developed by a competitor?” This may not distinguish between (a) the ease with which a competitor might access a firm’s knowledge,
and (b) the ease in general with which preexisting knowledge can be used to generate new knowledge. In particular, if appropriability itself is generally
low, then the measure may reflect mostly differences in opportunity.

6 Nelson and Winter (1977) coin the term “natural trajectories” to describe the phenomenon that “innovation has a certain inner logic of its own [...] –
particularly in industries where technological advance is very rapid, advances seem to follow advances in a way that appears somewhat ‘inevitable’ and
certainly not fine tuned to the changing demand and cost conditions.” See also Rosenberg (1969). As for the case studies, Newell et al. (1999) also note
many energy-savings innovations that bear no apparent link to demand factors.
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where Fiht is new knowledge.7 New knowledge Fiht is generated by a knowledge production function, using the firm’s
research input and spillovers from other firms. The knowledge production function is:

Fiht = Zi T
κi
iht T σi

it

(
Q ηi

iht L1−ηi
iht

)ψi
, (2)

where ηi,ψi ∈ (0,1], and Q iht and Liht are capital and labor used in the production of knowledge. The productivity index
for industry i as a whole is Tit ≡ ∫ 1

0 Tiht dh, which firm h takes as given. Let γiht ≡ Tiht+1/Tiht be the growth factor of Tih .
Parameters Zi , κi , σi , ψi and ηi represent technological opportunity, as they affect the productivity of research input. Pa-

rameter Zi is an efficiency parameter for carrying out research in industry i.8 It could be linked to the nature of research in
the industry, or to the institutional environment. Parameter κi represents the effect of in-house knowledge on the produc-
tion of new ideas, and is known in the growth literature as the intertemporal knowledge spillover. Parameter σi represents
spillovers across firms within sector i. The total knowledge spillover ρi ≡ κi + σi is the extent to which the production of
new knowledge in sector i benefits from prior knowledge. Parameter ψi indicates decreasing returns to research inputs. One
interpretation for ψi < 1 is that there is duplication in research, whereby some of the knowledge created by a firm in sector
i might not be new. Parameter ηi captures the share of capital in R&D spending.

Conditional on total knowledge spillovers, industries may differ in the importance of in-house knowledge relative to
knowledge spillovers from its competitors. We define appropriability Ai as the share of total spillovers accounted for by
in-house knowledge: Ai ≡ κi/ρi . This notion of appropriability is defined in technological terms: however, it is also related
to a more common view of appropriability in terms of the share of the profits from innovation that accrue to the innovator.
For example, if Ai is small, then most of firm i’s current knowledge will spill over to other firms, who can use it to create
new knowledge for use in future production to compete with firm i. On the other hand, if Ai = 1, then when a firm creates
new knowledge, the spillovers only applies to this firm’s future knowledge, so it is the only one to benefit and earn profits
from it.

The last set of factors considered by the empirical literature relates to demand, which we present later when we close
the model using standard household preferences.

3.2. Firm’s problem

Each sector i � z is monopolistically competitive. Firm h in sector i produces a differentiated variety h ∈ [0,1] of good i.
Output of variety h of good i is

Yiht = Tiht Kαi
iht N1−αi

iht , αi ∈ (0,1), (3)

where Yiht is output, Kiht and Niht are capital and labor used in the production of output.
Firms are competitive in the input markets. Taking input prices (wt , Rt) and its demand function piht(.) as given, firm

h in sector i chooses both production inputs (Kiht, Niht) and R&D inputs (Q iht , Liht) to maximize the discounted stream of
real profits:

∞∑
t=0

λt
Πiht

pct
, where Πiht ≡ piht Yiht − wt(Niht + Liht) − Rt(Kiht + Q iht), (4)

where pct is the aggregate price-index for consumption goods, λt is the discount factor at time t, with λ0 = 1, λt =∏t
s=1

1
1+rt

for t � 1, and rt is the real interest rate. The transversality condition is limt→∞ χiht T iht+1 = 0, where χiht is the
shadow price of Tiht+1. The complete derivation of the firm’s maximization problem is given in Appendix A.

3.3. Equilibrium productivity growth

Given free mobility of inputs and competitive input markets, marginal rates of substitution are equal across activities
within the firm (5), across firms within each industry (6), and also across sectors (7):

1 − ηi

ηi

Q iht

Liht
= 1 − αi

αi

Kiht

Niht
, (5)

Q iht

Liht
= Q it

Lit
; Kiht

Niht
= Kit

Nit
, (6)

1 − ηi

ηi

Q it

Lit
= 1 − η j

η j

Q jt

L jt
= 1 − αi

αi

Kit

Nit
= 1 − α j

α j

K jt

N jt
. (7)

7 It is common to assume that ideas depreciate. There is a distinction between physical depreciation and economic depreciation, however. For ideas to
physically depreciate would imply that some share of them is exogenously forgotten. Economic depreciation, on the other hand, implies that old knowledge
becomes less valuable (obsolete) as newer knowledge accumulates, and rates of economic depreciation will be endogenous in our model. See Laitner and
Stolyarov (2008) for a different approach based on new knowledge sometimes reducing the value of existing knowledge to zero.

8 Nelson (1988) allows Zi grows at an exogenous rate. Since the trademark of R&D-based growth models is that technical progress is endogenous, our
model does not feature exogenously growing factors other than the population.
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It follows that the growth in capital-labor ratio for research and production are equal:

Q iht+1/Liht+1

Q iht/Liht
= Kiht+1/Niht+1

Kiht/Niht
= gkt, ∀i,h. (8)

Using (1) and (6), the productivity growth of firm h in sector i depends on

γiht − 1 = Fiht

T iht
= Zi

(
Tiht

T it

)κi−1

T ρi−1
it

(
Q it

Lit

)ηiψi

Lψi
iht . (9)

As our interest is in cross-industry comparisons, we focus on equilibria where the distribution of productivity within
sectors is stable and rank-preserving, i.e. in each industry γiht = γit ∀h (which includes the case of symmetric equilibria,
Tiht = Tit ∀h). Then, (9) implies Liht = Lit . Denote Nt as the total labor force, which is growing by constant factor gN . Let
nit ≡ Nit/Nt and lit ≡ Lit/Nt be the fraction of labor allocated to production and research in sector i, thus

∑
i(li + ni) = 1.

To make meaningful comparisons across sectors, we also focus on equilibria with constant productivity growth, using (8)
and (9):

Lemma 1. In any rank-preserving equilibrium, constant γi satisfies

γi =
[

gηi
kt gN

(
lit+1

lit

)] ψi
1−ρi

, ∀i. (10)

Three terms affect cross-industry comparisons of productivity growth: (i) capital intensity of research activities ηi , (ii) the
expression ψi

1−ρi
, and (iii) growth in the fraction of labor allocated to research (

lit+1
lit

).
We are not aware of a precedent to the first factor – the capital intensity of research activity. Technical improvements in

the production of capital goods lead to capital deepening, and the extent to which this encourages research depends on ηi .
Rosenberg (1969) and Nelson and Winter (1977) suggest that capital-intensive industries may enjoy inherently high TFP
growth. However, Eq. (10) shows that what matters is not capital intensity per se, but the capital intensity of research activity.
The capital intensity of production may affect the measurement of productivity, but not equilibrium rates of productivity
growth.

The expression ψi
1−ρi

is related to the historical work of Rosenberg (1969) and Nelson and Winter (1977) that underlines
technological opportunity as a factor of productivity growth. Specifically, our model emphasizes the degree of decreas-
ing returns to research input, the extent of intertemporal knowledge spillovers κi , and the magnitude of spillovers across
firms σi . Interestingly, as far as spillovers are concerned, only total spillovers ρi = κi + σi are important, whereas the source
of spillovers is not.

Other industry-specific factors, such as demand factors and appropriability (Ai ≡ κi/ρi), can only affect relative produc-
tivity growth rates across industries if they affect the growth rate of research labor lit+1

lit
in different industries.9

3.4. Equilibrium research activity

Let χiht be the shadow price of knowledge Tiht+1, which is determined by the arbitrage condition for allocating inputs
across activities. In the case of capital:

χiht = −
(

λt

pct

)
∂Πiht/∂ Q iht

∂ Fiht/∂ Q iht
. (11)

The firm’s dynamic optimization condition implies that

χiht =
[

λt+1

pct+1

∂Πiht+1

∂Tiht+1

]
(a) production

+χiht+1

[
∂ Fiht+1

∂Tiht+1
+ 1

]
(b) research (c) future knowledge

, ∀i � z. (12)

Eq. (12) reflects three benefits to the firm of producing more knowledge: (a) more efficient production of goods and
services, (b) more efficient production of knowledge, and (c) a larger stock of future knowledge.

To determine the extent to which resources are directed towards research (as opposed to production), we define research
intensity as the share of research spending in total costs:

RNDiht ≡ wt Liht + Rt Q iht

wt(Liht + Niht) + Rt(Q iht + Kiht)
.

9 Note that although Eq. (10) implies that γi depends on lit+1/lit , it does not require li to grow in order for sector i to experience positive productivity
growth, as long as either there is capital deepening in research (gk � 1) or positive population growth (gN � 1).
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Using (12):

RNDiht =
[

1 + 1

ψi

( χiht
χiht+1

− 1

γi − 1
− κi

)]−1

, (13)

where using the result in (10) and the definition of χiht in (11). It follows that in any rank-preserving equilibria with
constant γi , we have

χiht

χiht+1
= λt piht/pct

λt+1 piht+1/pct+1
g−αi

kt

(
gN

lit+1

lit

)−1

. (14)

Growth in the price of i relative to consumption piht/pct
piht+1/pct+1

requires knowledge of the demand function faced by each

firm. Assume that price elasticities μi ≡ ∂ piht/∂Yiht
piht/Yiht

are sector-specific constants (i.e. identical across firm within any sector i).
Equating the value of marginal products of labor across firms, together with (6):

piht+1/piht

pih′t+1/pih′t+1
= γih′t

γiht
, ∀i,h,h′, (15)

which implies that in any rank-preserving equilibria with constant γi :

piht+1/piht

p jht+1/p jht
= pit+1/pit

p jt+1/p jt+1
= γ jt

γit
g
α j−αi

kt , (16)

where the last equality follows from using (7) and equating the value of marginal products of labor across sectors. Substi-
tuting into (14), we have:

Lemma 2. If price elasticity μi is a sector-specific constant then, in any rank-preserving equilibria with constant productivity growth,
research intensity for any sector i satisfies:

RNDit =
[

1 + 1

ψi

( χit
χit+1

− 1

γi − 1
− κi

)]−1

, ∀i, (17)

where

χit/χit+1

χ jt/χ jt+1
=

(
γi

γ j

)
lit/lit+1

l jt/l jt+1
, ∀i. (18)

In addition to the factors that determine γi , there are two additional terms affecting cross-industry comparisons of
research intensity: (i) the degree of diminishing returns to research input ψi , and (ii) the effect of in-house knowledge on
the production of new ideas κi .

Recall that κi = Aiρi , implying that research intensity is affected by both opportunity and appropriability. Moreover,
if price elasticities are sector-specific constants, industry-specific demand factors can only matter for cross-industry R&D
intensity comparisons if they alter the growth rate of labor allocated to research across sectors.

3.5. Relating the model to the literature

Consistent with evidence reviewed in Section 2, comparisons of industry TFP growth rates depend on factors of techno-
logical opportunity (Lemma 1), whereas R&D intensity also depends upon appropriability (Lemma 2). Low appropriability
reduces R&D intensity without affecting productivity growth rates, so a prediction is that there should be a negative re-
lationship between measures of intra-industry spillovers and R&D intensity, controlling for other variables. This is exactly
what Nelson and Wolff (1997) find.

Klevorick et al. (1995) identify two effects of appropriability on R&D intensity. First, in their terminology, there is an
“incentive effect” whereby large, un-internalized spillovers reduce R&D activity, causing the negative relationship between
appropriability Ai and R&D intensity in Lemma 2. Second, there is also an “efficiency” effect, whereby larger spillovers may
encourage R&D at other firms. The efficiency effect is seen in that, conditional on κi , a larger value of σi raises ρi while
leaving Aiρi constant, so that R&D intensity rises. However, in our model, the “efficiency” effect is related to the magnitude
of spillovers, not to appropriability per se and, as suggested by Klevorick et al. (1995), this effect disappears once opportunity
is kept constant.

Lemmas 1 and 2 show that industry differences in demand parameters can only affect comparisons of TFP growth rates
and research intensity by affecting growth in the fraction of labor allocated to research (lit+1/lit) in different industries. This
is unlikely to occur for stationary demand parameters such as industry size and the price elasticity of demand in a steady
state,10 something that is broadly consistent with the industry-level evidence in Section 2. We return to this point after
presenting the demand side of the model.

10 Demand parameters could matter in transition, for example if demand parameters change, something we do not explore in this paper.
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3.6. Closing the model: Households

We now close the model by specifying the demand side of the economy.
There is a continuum of households, each of measure Nt , and as noted earlier, it grows at constant factor gN . In what

follows, we use lower case letters to denote per-capita variables. Goods i ∈ {1, . . . ,m − 1} are consumption goods while
goods j ∈ {m, . . . , z} are investment goods.

The life-time utility of a household is

∞∑
t=0

(βgN )t c1−θ
t − 1

1 − θ
, (19)

ct =
m−1∏
i=1

(
cit

ωi

)ωi

; cit =
( 1∫

0

c
μi−1
μi

iht dh

) μi
μi−1

, i ∈ {1, . . . ,m − 1}, (20)

where β is the discount factor, and 1/θ is the intertemporal elasticity of substitution. We assume that βgN < 1, θ > 0,
μi > 1, ωi > 0 and

∑m−1
i=1 ωi = 1. Parameters μi and ωi capture the industry-specific demand factors considered in the

literature. μi is the elasticity of substitution across different varieties of good i which, in equilibrium, determines the price
elasticity of demand, while ωi determines the spending share of each good (market size).

Each household member is endowed with one unit of labor and kt units of capital, and receives income by renting capital
and labor to firms, and by earning profits from the firms. Her budget constraint is

m−1∑
i=1

∫
pihtciht dh +

z∑
j=m

∫
p jht x jht dh � wt + Rtkt + πt, (21)

where x jht is investment in variety h of capital good j, piht is the price of variety h of good i, wt and Rt are rental prices

of labor and capital, and Ntπt ≡ ∑z
i=1

∫ 1
0 Πiht dh equals total profits from firms. Her capital accumulation equation is

gN kt+1 = xt + (1 − δk)kt . (22)

The composite investment good xt is produced using all capital types j:

xt =
z∏

j=m

(
x jt

ω j

)ω j

; x jt =
[∫

x
(μ j−1)/μ j

jht dh

]μ j/(μ j−1)

, j ∈ {m, . . . , z}, (23)

where μ j > 1, ω j > 0 and
∑z

j=m ω j = 1.11 Finally, the transversality condition for capital is limt→∞ ζtkt = 0, where ζt is
the shadow price of capital. Define the price index for the consumption composite ct and the investment composite xt

respectively as:

pct ≡
∑m−1

i=1

∫ 1
0 pihtciht dh

ct
; pxt ≡

∑z
j=m

∫ 1
0 p jht x jht dh

xt
. (24)

4. Decentralized equilibrium

The decentralized equilibrium is standard, where the firms’ and consumers’ problems are defined as in Section 3. In any
period t , prices must clear all goods and input markets:

Yiht = ciht Nt, i < m; Y jht = x jht Nt, j � m; (25)

Kt =
z∑

i=1

1∫
0

(Kiht + Q iht)dh; Nt =
z∑

i=1

1∫
0

(Niht + Liht)dh. (26)

Our aim is to compare productivity dynamics across industries, and not across different varieties of any given good.
Therefore, we focus on equilibria that treat varieties within each sector i symmetrically, and suppress the firm index h
henceforth.12

11 Cobb–Douglas aggregation across goods allows us to derive an aggregate balanced growth path. In a multi-sector model with exogenous technological
progress, Ngai and Pissarides (2007) show that Cobb–Douglas aggregation across capital goods is necessary for deriving an aggregate balanced growth path.
12 In notes available upon request, we show asymmetric rank-preserving equilibria exist in which all the results of the paper hold.
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Full derivation of the household’s utility maximization is given in Appendix A. The implied Euler condition is:

u′(ct)

βu′(ct+1)
= pxt+1/pct+1

pxt/pct

(
1 − δk + Rt+1

pxt+1

)
, (27)

which implies the real discount factor:

λt+1

λt
= 1

1 + rt+1
= βu′(ct+1)

u′(ct)
= pxt/pct

Gt+1 pxt+1/pct+1
, (28)

where Gt+1 ≡ 1 − δk + Rt+1
pxt+1

is the gross return on capital.

4.1. Balanced growth

We look for a balanced growth path equilibrium (BGP), along which aggregate variables are growing at constant rates
although industry TFP growth rates may be different. Such a BGP requires a constant ratio of consumption to capital: c/(qk),
where q is the relative price of capital. Define Φ and γxt as:

Φ =
∑

j=m,z
ω jψ j
1−ρ j

1 − ∑
j=m,z

ω jψ j
1−ρ j

η j
1−αx

; γxt ≡
∏

j=m,z

γ
ω j

jt ; αx ≡
∑

j=m,z

ω jα j . (29)

Proposition 1. Suppose there exists an equilibrium with constant li,ni > 0 that satisfies the transversality conditions for k and Ti , ∀i.
If Φ > 0, then there exists a unique balanced growth path. Along this path c/q and k grow by a constant factor (γx)

1/(1−αx), where
γx = gΦ

N , and the γi are constant and satisfy (10) ∀i.

The proof observes that the return to investment G is constant if k grows by a factor γ
1/(1−αx)
xt , which by (29) is constant

if γi is constant in all capital good sectors. The restriction for constant γi follows from Section 3.3, and γx is derived from
(29).13

Proposition 1 contrasts with the behavior of the one-sector model of Jones (1995). In Jones (1995), Φ is replaced by
ψ1

1−ρ1
, so balanced growth path requires ρ1 < 1 (where the subscript 1 indexes the only industry in the economy). There

are two important differences compared to our requirement that Φ > 0. First, suppose η j = 0, i.e. capital is not used in

the production of knowledge. Then Φ > 0 is equivalent to
∑z

j=m
ω jψ j
1−ρ j

> 0, so the Jones (1995) restriction applies to the

weighted average of
ψ j

1−ρ j
across capital goods in the multi-sector model.14 Second, the restriction

∑z
j=m

ω jψ j
1−ρ j

> 0 is not

sufficient when capital is used in the production of knowledge (η j > 0 for some j � m), as productivity improvements
targeting capital goods become a factor of aggregate productivity growth by inducing capital deepening in R&D.

4.2. Comparing industries

In equilibrium, industries with the same level of technological opportunity (i.e. the same values of ψi,ρi = κi + σi
and ηi ) but different appropriability Ai = κi/ρi display different R&D intensity, even if they have the same TFP growth rate.
It follows from Lemmas 1 and 2 that:

Proposition 2. Along the balanced growth path,

(i) cross-industry comparisons of productivity growth depend only on the technological opportunity factors ρi,ψi and ηi ;
(ii) in addition to these factors, cross-industry comparisons of R&D intensity depend also on appropriability Ai .

Notice that differences in demand parameters affect neither comparisons of productivity growth rates nor of R&D inten-
sity when li are constants.15 General equilibrium mechanisms play a key role in this result.

In the model there are two industry demand parameters: ωi , the weight of good i in the utility function, and μi , the
elasticity of substitution across varieties of i. The spending share of each good depends on ωi , and the elasticity of a firm’s
demand function depends on μi . Since ωi affects the level of returns to production at all dates, but not their growth rate,
it does not affect the decision of whether to use resources for investment in future production (via increases in knowledge)
instead of current production.

13 Appendix A reports sufficient conditions for the existence of a BGP with R&D activity in all sectors.
14 Note that from (10), given gk, gN � 1 and li is constant, productivity growth in sector i is positive only if ρi < 1.
15 Again, as shown in Lemmas 1 and 2, demand factors do not matter for industry differences if they affect only the level of li . In order for demand

factors to matter for industry differences, they have to affect the growth rate of li .
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The reason μi may matter in partial equilibrium is that elastic demand allows an innovator to increase market share
without having to lower her output price to the same extent as the cost reduction. However, in equilibrium, all firms are
performing research: R&D by the firm’s competitors results in a commensurate fall in the relative price of their goods, so
that this partial equilibrium benefit of research need not materialize in general equilibrium.

It is worth elaborating upon this last point. The literature on appropriability distinguishes between two channels whereby
research by a firm might affect its competitors. The first is the “spillover effect” (captured by σi in our model) whereby
innovations by one firm may be used by another. The second is the “business stealing” or “product rivalry” effect whereby
innovations by a firm’s competitors decreases its market share. In our model, the severity of this rivalry depends on μi . To
see this, note that cih is proportional to p−μi

ih , so that the relative market share of two firms h and h′ in the same industry
is:

pihcih

pih′cih′
=

(
pih

pih′

)1−μi

=
(

Tih

Tih′

)μi−1

, (30)

where pihcih are the sales of firm h. Consider two firms that start period t with equal productivity. A given productivity
improvement in one firm relative to the other will result in a larger increase in demand for higher values of μi > 1.

Even though the rivalry effect is present in the model, this does not imply that μi affects equilibrium TFP growth rates,
as these considerations influence R&D incentives at all firms in the industry. In a symmetric equilibrium, firms keep pace
with each other technologically so that μi does not affect equilibrium research expenditure, as it does not affect equilibrium
returns. The results hold in any rank-preserving equilibrium. Consistent with our results, Bloom et al. (2007) estimate that
the rivalry effect is quantitatively dominated by the “spillover effect” as a determinant of research activity.

The model suggests some caution in linking research intensity to demand factors empirically. The most common measure
of research intensity is R&D spending divided by sales or, in terms of the model, RNDSales

i ≡ wLi+R Q i
pi Yi

. Combined with the
conditions for optimal input allocation, the R&D spending to sales ratio is:

RNDSales
i =

(
1 − 1

μi

)
ψi

[ χit
χit+1

− 1

γi − 1
− κi

]−1

. (31)

Comparing (31) to the expenditure-based measure of R&D intensity in (17), the key difference is the markup term. Eq. (31)
would appear to indicate an influence of demand parameters μi on research spending in the model, and indeed Cohen et
al. (1987) find some indicators of industry concentration to be related to the ratio of research spending to sales. However,
in an environment with imperfect competition, the volume of sales contains a markup over cost, which is not an indicator
of the quantity of resources devoted to research as opposed to other activities. The denominator in this measure of research
activity contains demand side variables by construction. Future empirical work may turn out to substantiate an economic
link between R&D and markups or other demand factors: however, the model suggests caution in employing sales-based
measures of R&D activity in such work.

5. Quantitative findings

We now calibrate our model using US industry data to identify which set of factors best accounts for observed industry
differences in R&D and productivity growth. We match the model to United States data because of the rich sources of
information available, because the US is arguably at the technological frontier in most industries, and because US GDP has
grown at a stable rate for over a century, which is consistent with our focus on the balanced growth path of our model.16

We address the following questions:

1. The model predicts that productivity growth should be positively linked to the opportunity parameters ψi , ρi and to ηi .
Which of these parameters do the data suggest to be the main factor?

2. The model suggests that R&D intensity should be linked to opportunity parameters, but also to appropriability A j .
Which of these parameters do the data suggest to be the main factor?

3. What values of these parameters best account for industry variation in productivity change and research intensity in
the data?

To answer these questions, we proceed as follows. We first calibrate as many parameters as possible in the model using
post-war US data. Then, we ask what combinations of the remaining parameters allow the model to match industry data
on both productivity growth and R&D intensity.

We do not match measured TFP growth rates directly. For example, several of the long-term rates of TFP growth esti-
mated by Jorgenson et al. (2007) are negative, and we do not believe that productivity can decline in absolute terms in

16 The model ranking of TFP and R&D intensity is stable in a rank-preserving equilibrium. To make industry comparisons of TFP growth rates and research
intensity requires those features to be stable over time in the data. We computed TFP growth rates for durable goods over non-overlapping 10-year periods,
using the procedure below. We found that the correlations between cross sections were always 80% or higher. Ilyina and Samaniego (2008) find that the
decade-to-decade correlation of R&D intensity across US manufacturing industries is over 90%.
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Fig. 2. Productivity growth and R&D intensity. Productivity growth rates for US industries over the post-war era are values for γi computed using the model.
R&D intensity is the median ratio of R&D expenditures to sales among firms in Compustat over the period 1950–2000. Data are for the 14 capital goods
sectors in the calibrated model. Three asterisks indicate statistical significance at the 10 percent level.

Table 1
Calibrated values of industry parameters. Sources and methodology are reported in Appendices B and C.

Capital good sector ωi αi 1/μi Ai

Computers and office equipment 0.049 0.24 0.55 0.16
Communication equipment 0.057 0.40 0.52 0.16
Aircraft 0.016 0.18 0.18 0.19
Instruments and photocopiers 0.042 0.35 0.20 0.17
Fabricated metal products 0.020 0.30 0.12 0.21
Autos and trucks 0.116 0.20 0.07 0.19
Elec. trans. dist. and ind. app. 0.028 0.40 0.18 0.16
Other durables 0.077 0.35 0.10 0.19
Ships and boats 0.007 0.18 0.21 0.16
Electrical equipment, n.e.c. 0.003 0.40 0.18 0.22
Machinery 0.203 0.26 0.24 0.18
Mining and oilfield machinery 0.009 0.26 0.20 0.34
Furniture and fixtures 0.028 0.26 0.06 0.13
Structures 0.346 0.32 0.17 0.12

Table 2
Calibrated aggregate values (see text).

Variable g y gq gN gk G

Value 1.022 1.0517−1 1.012 1.075 1.125

the long run when it is driven by knowledge accumulation. We take seriously the view of Greenwood et al. (1997) among
others that quality improvements are an important source of productivity change. Thus, we calibrate TFP growth rates γi

using quality-adjusted relative prices. Specifically, Eq. (16) implies a relationship between relative rates of price decline,
capital shares, and TFP growth, and we use these to compute relative TFP growth rates.

To our knowledge, comparable quality-adjusted prices are available only for durable goods. Hence, we assume that m = 2,
so that there is only one sector producing non-durables. We set z = 15, so that there are 14 capital-producing industries.
This partition was the finest that allowed us to match the relative price data with the patent data we employ later to
measure knowledge spillovers.

It is worth pointing out that our quantitative conclusions do not depend on the use of these particular industries. The
main source of discipline on our quantitative exercise turns out to be the fact that productivity growth and R&D intensity
are positively linked across industries. Fig. 1 shows that this holds across manufacturing industries, and Fig. 2 shows that
the same is true across the capital goods industries we consider even using our different measure of productivity change γi .
Calibrated values of these parameters are reported in Tables 1 and 2: more details of the calibration procedure are reported
in Appendix B.
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Table 3
TFP growth rates and industry parameters. γi is based on the quality-adjusted relative price of capital from Cummins and Violante (2002). The capital share
of R&D spending is ηi . Values of ψi/(1 − ρi) are computed using Eq. (32).

Capital good sector logγi ηi
ψi

1−ρi

Computers and office equipment 0.228 0.32 6.53
Communication equipment 0.145 0.35 3.90
Aircraft 0.148 0.46 3.28
Instruments and photocopiers 0.095 0.31 2.78
Fabricated metal products 0.049 0.26 1.62
Autos and trucks 0.060 0.20 2.28
Elec. trans. dist. and ind. app. 0.040 0.32 1.16
Other durables 0.018 0.23 0.64
Ships and boats 0.047 0.36 1.24
Electrical equipment, n.e.c. 0.028 0.22 1.02
Machinery 0.034 0.37 0.88
Mining and oilfield machinery 0.028 0.37 0.72
Furniture and fixtures 0.023 0.30 0.70
Structures 0.018 0.22 0.64

Fig. 3. Productivity growth and capital shares in research, by industry, across US capital goods. Productivity is measured using rate of decline of quality-
adjusted prices relative to the consumption and services deflator. The dotted line represents an OLS regression of the two variables. Sources: Cummins and
Violante (2002), Bureau of Economic Analysis, NSF.

5.1. Opportunity and TFP growth rates

The model implies that variation in industry productivity growth rates depends on technological opportunity. We now
use the data to learn about which of these factors appear quantitatively important. Using (10) and the restrictions imposed
by balanced growth, industry productivity growth follows:

γi = (
gηi

k gN
) ψi

1−ρi , ∀i. (32)

Appendix B discusses in detail how we obtain gk , ηi , gN and γi from the data. Our first step is to ask whether variation
in ηi can account for industry variation in γi . To this end, we use (32) to compute ψi

1−ρi
as a residual. Results are reported

in Table 3. The correlation between γi and ψi
1−ρi

is 0.985. There are two reasons why the contribution of ηi to industry
growth differences is low. First, as seen in Fig. 3, the correlation between ηi and γi is not statistically significant (although
it is positive, as implied by the model). Second, most importantly, variation in ηi is not of sufficient magnitude to generate
large differences in γi on its own. To see this, we re-computed γi from (32) under the assumption that ψi

1−ρi
was equal in

all industries. When we set ψi
1−ρi

to equal the weighted average across industries, we found that productivity growth rates
ranged from 2.9 to 4.7 percent, which accounts for only about a tenth of the variation in Table 3. Thus, industry differences
in productivity growth reflect significant variation in technological opportunities, as captured by ψi and ρi .
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5.2. Decomposing opportunity using R&D intensity

We do not have direct measures of ρi nor of ψi . Hence, to make further progress in decomposing the sources of oppor-
tunity that account for industry growth, we turn to the model predictions for research intensity.

We focus on sales-based measures of R&D intensity. We do so because this is the traditional measure in the empirical
literature, but also due to data constraints.17 Following the literature we measure R&D intensity as the median ratio of
R&D expenditures to sales among firms in Compustat over the period 1950–2000. The model R&D spending to sales ratio
(RNDSales) is determined by Eq. (31), which requires an expression for the growth rate in the shadow price of knowledge
χit+1
χit

along a balanced growth path. Using (14), (16) and (28) this expression is:

χit+1

χit
= γx

Gγi
gαx

k gN = gk gN
Gγi

, (33)

where the last equality follows from Proposition 1, whereby gk = γ
1/(1−αx)
x . Recalling that κi = Aiρi, the expression for

RNDSales in (31) becomes:

RNDSales
i = (1 − 1/μi)ψi

(
Gγi

gk gN
− 1)/(γi − 1) − Aiρi

. (34)

Thus, given data on RNDSales
i and γi , we can identify ψi and ρi using our model equation (32) and (34), given values of

(gk, gN , G, Ai,μi).
We calibrate μi using industry markups, and G using the real rate of return on capital. Values of gk and gN have been

calibrated earlier (see Appendix B). Appropriability is related to whether spillovers across firms are a significant source
of knowledge. Using the NBER patent citation database, which reports the assignee of each patent awarded since 1969,
we define appropriability Ai as the share of own-industry citations that are self-citations. The required assumption is that
Ai does not differ significantly for a given industry depending on whether or not knowledge is patented. If unpatented
knowledge flows across firms more easily than patented knowledge, then the measure of spillovers implied by the patent
data is an upper bound on Ai . On the other hand, if ideas that flow most easily across firms are the ones patented, then
our numbers represent a lower bound on Ai . As we shall see, appropriability differences between patented and unpatented
knowledge must be quite drastic to affect our results (in fact, when we assumed that Ai varied between 0 and 1 and that
it was perfectly correlated with R&D intensity, our results were almost identical). Table 1 reports that appropriability Ai
is generally quite low – 18.5% on average. In addition, it appears to vary little across industries, ranging in the interval
[0.12,0.34]. Thus, R&D intensity in Eq. (34) will be mainly determined by differences in other parameters.

We proceed by matching parameters using data on R&D intensity. As discussed in Section 5.1, we use (32) to compute
ψi

1−ρi
as a residual using data on γi and ηi . Note that the expression for ψi

1−ρi
is linear in ψi given ρi . As shown in (34), R&D

intensity is linear in ψi also (given ρi ), but has a different slope and intercept. Hence, there is a unique pair of parameters
that allows ψi

1−ρi
and R&D intensity to equal two arbitrary numbers.18

Results are reported in Tables 4 and 5. Several findings stand out. First, there is very little variation in ρi , compared to
ψi .19 Second, ψi is very strongly and positively correlated with both R&D intensity and with γi , whereas ρi is not. Thus, the
model indicates that variation in productivity growth and in R&D intensity can be mainly attributed to industry differences
in ψi .

The average of estimates for ψi (weighted using ωi ) is 0.13. Aggregate estimates in the literature of the extent of de-
creasing returns to research investment (analogous to ψi ) vary between 0.1 and 0.6 – see Kortum (1993) and Samaniego
(2007). Our average is towards the low end of this range.20 The average for ρi is high and close to one (0.91), consistent
with the aggregate values surveyed in Samaniego (2007).

5.3. Sensitivity

Our results indicate that variation in ψi is the main factor behind differences in γi and R&D intensity. To emphasize
this finding, we performed two further exercises. First, we assumed that ψi = 0.13 for all i, and computed ρi such that
ψi/(1 −ρi) always takes on the values computed in Table 2. In this way, the weighted average value of ψi is the same as in
the calibrated economy, but variation in ρi accounts for all industry differences in productivity growth. Fig. 4 shows that the
R&D intensity numbers generated by these parameters vary very little compared to the data, and moreover are not highly
correlated with the data (the correlation is 0.15).

17 In Compustat, labor expenditures are reported by very few firms.
18 Let xi = ψi/(1 − ρi), so that ψi = f (ρ, x). Using the expression for R&D intensity, it is also true that ψi = g(ρ,RNDSales

j ). Both f and g are linear and

decreasing in ρ; f (0, x) = 0 and g(0,RNDSales
j ) > 0. Hence generically there is at most one solution for (ρi ,ψi) given values of xi and RNDSales

j .
19 The standard deviation of ρi is 0.07, whereas that of ψi is 0.17. Compared to their respective weighted averages, the standard error of ρi is 0.08,

whereas that of ψi is 1.33.
20 It is worth noting that estimates in the literature are often based on patent data, which may be biased upwards as they may reflect the values of ψi

that correspond to the industries that patent the most (which are also the most R&D intensive).
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Table 4
R&D intensity, ρi and ψi , computed so as to match the calibrated values of γi and R&D intensity. Average values are weighted using ωi . Values of κi and
σi may not add to ρi due to rounding.

Capital good sector R&D ψi ρi κi σi

Computers and office equipment 0.250 0.57 0.91 0.15 0.77
Communication equipment 0.205 0.47 0.88 0.14 0.74
Aircraft 0.071 0.09 0.97 0.18 0.79
Instruments and photocopiers 0.158 0.24 0.91 0.16 0.76
Fabricated metal products 0.026 0.04 0.97 0.20 0.77
Autos and trucks 0.014 0.02 0.99 0.19 0.80
Elec. trans. dist. and ind. app. 0.043 0.09 0.92 0.15 0.77
Other durables 0.024 0.07 0.88 0.17 0.72
Ships and boats 0.022 0.05 0.96 0.15 0.81
Electrical equipment, n.e.c. 0.042 0.10 0.90 0.20 0.70
Machinery 0.096 0.24 0.72 0.13 0.59
Mining and oilfield machinery 0.048 0.12 0.83 0.28 0.55
Furniture and fixtures 0.006 0.01 0.98 0.13 0.85
Structures 0.001 0.01 0.99 0.12 0.88

AVERAGE 0.057 0.13 0.91 0.14 0.77

Table 5
Correlations between R&D intensity, productivity growth rates, ρi and ψi .

Correlations γi ψi ρi

R&D 0.85*** 0.98*** −0.34
γi – 0.80*** 0.06
ψi – – −0.42

*** Statistical significance at the 10 percent level.

Fig. 4. R&D intensity in the model and in the data. The left panel assumes that ψi equals 0.13 and that ρi is chosen to account for all variations in γi . The
right panel assumes that ρi is 0.91 and that ψi is chosen to account for all variations in γi . The dotted line is drawn at 45 degrees.

Second, we assumed that ρi = 0.91 for all i, and computed ψi such that ψi/(1−ρi) always takes on the values computed
in Table 2. The weighted average value of ρi is the same as in the calibrated economy, but variation in ψi accounts for all
industry differences in productivity growth. Fig. 3 shows that the R&D intensity numbers generated by these parameters
vary as much as in the data, and moreover are highly correlated with the data (the correlation is 0.72). This is remarkable
considering that there is nothing in this procedure to purposefully match the R&D intensity values.

Why does allowing ρi to account for productivity differences make it hard to account for R&D differences? When values
of ρi are very different, and the value of ρi is very high for the highest-growth industries, the value of ψi in those industries
is driven towards zero. Since ψi enters the R&D expression multiplicatively, this drives research intensity to zero in those
industries, caeteris paribus. As a result, when ρi is very high in some industries but not others, there is no longer a
monotonic relationship between γi and R&D intensity in the model. Since the data indicate that γi and R&D intensity are
positively correlated, the presence of significant variation in ρi leads patterns of R&D intensity in the model to differ from
those in the data: they become U-shaped instead of monotonic. Thus, the property of the data that imposes the most
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discipline on the results is the positive correlation between R&D and TFP growth, which implies that variation in ρi is
minor.21

6. Discussion and extensions

As mentioned, we focus on capital goods because we think quality adjustment could be important for productivity mea-
surement, and because (to our knowledge) comparable quality-adjusted prices exist only for capital goods. The production
of capital goods accounts for about 20% of US GDP (including structures), however, and it is worth thinking about the repre-
sentativeness of our results. Recall that it is the positive correlation itself between TFP growth and R&D intensity that leads
to our results, and Fig. 1 shows that this property extends to manufacturing as well. This still leaves out the service sector,
which is unfortunately typical of many productivity studies due to the difficulty of measuring prices and output in the
service sector: at the same time, in a model of R&D-based growth, this should not be a concern since R&D is comparatively
rare in the service sector – indeed, capital goods production is responsible for almost the entirety of R&D spending outside
of chemicals.

We have abstracted from cross-industry spillovers to keep the mechanisms of the model transparent, but it would be
interesting to include them in the model. There are two reasons why allowing them is unlikely to change our results. First,
the model does not suggest that knowledge spillovers are the driving force behind industry differences in productivity: ψi
takes center stage. Second, cross-industry spillovers appear small compared to within-industry spillovers. In the working
version of this paper (Ngai and Samaniego, 2009a), we use the patent citation database to gauge the importance of cross-
industry citations. This is analogous to classifying all Economics papers by field, and looking at the rates at which papers in
any given field cite papers in any other given field. For all industries, we find that citations are dominated by within-industry
citations, suggesting that cross-industry spillovers are relatively small.

We do not distinguish between product and process innovation, for several reasons. First, much (although by no means
all) of the related empirical literature neglects the distinction. Second, it is rare that a “truly new” product is introduced.
Rather, thinking of industries as being defined at the 2- or 3-digit SIC level, both product and process innovations may result
in improved (or cheaper) consumer (or capital) services of a given type. Thus, our modeling approach is consistent with our
use of quality-adjusted price data. Third, although one-sector growth models that distinguish between product and process
innovation sometimes have different properties (such as Young, 1998), Jones (1999) argues that these properties require a
restriction on the parameter linking the rate of product innovation to the scale of the economy. Still, it would be interesting
to perform our analysis in a model that allows for product innovation.

There are three ways for a firm to acquire knowledge for use in production. First, firms may produce knowledge by
investing in R&D, as in our model. Second, knowledge that spills between firms may be used as an input into R&D. This
activity is free in the sense that, for example, if one patent cites another, there is no requirement that any payments be
made between patent holders. While our model allows for such spillovers, the knowledge production function (1) implies
that a firm can only receive spillovers from other firms if it is also carrying out research, as argued by Cohen and Levinthal
(1990). Third, firms may employ the knowledge produced by other firms in production, by means of a license payment –
as in Klenow (1996). This amounts to a certain portion of the knowledge acquired by a firm from elsewhere being subject
to licensing fees, as enforced by a patent system. The fact that a firm might benefit from producing knowledge not just by
producing goods at lower cost but also by collecting licensing fees from its competitors might lead to higher R&D intensity.
However, Arora et al. (2002) find that revenues from licensing equal about 4% of R&D expenditure, suggesting that licensing
is not a major incentive behind R&D activity in general, and (more importantly) that industry variation in licensing activity
is unlikely to be sufficient to overturn our results. Aside from contributing to industry variation, one might still wonder
whether allowing licensing might raise the average value of ψi , which (while in the empirically relevant range) is low in
the calibrated model. In fact, adding a factor to the model that might increase model R&D intensity (given other parameters)
implies that the calibrated values of parameters that encourage R&D intensity (i.e. ψi ) are likely to decrease in order to match
the values of R&D intensity in the data. Thus, we abstract from this third form of knowledge transfers, as the other two
appear to be more quantitatively important – although the model could be extended to study patterns of patenting and
licensing activity.

7. Concluding remarks

We develop a multi-sector, general equilibrium model of endogenous growth, incorporating a number of factors iden-
tified in the literature as potential determinants of the costs and benefits of research. We find that the main determinant
of productivity growth differences across sectors are the technological opportunity parameters, especially the extent of de-
creasing returns to research activity. Although this parameter has not been identified as a potentially important source of
cross-industry differences in the related literature, it turns out to play a pivotal role in a growth model that is consistent

21 We also found that if we generated Fig. 3 using higher values of ψi (and correspondingly lower values of ρi ) then R&D correlations between the model
and the data were similar but the level of R&D intensity in the model was much higher than in the data. Thus, the level of R&D in the data is what
identifies ψi as being generally low and ρi as being generally high and close to one. See Ngai and Samaniego (2009a) for details.



L.R. Ngai, R.M. Samaniego / Review of Economic Dynamics 14 (2011) 475–495 489
with stable growth over the long run. Theoretically, we find that two more factors of opportunity may be important – the
extent to which new knowledge “stands on the shoulders” of prior knowledge, and the capital share of research activity –
although quantitatively they do not appear to play an important role.

The fraction of total spillovers that accrues from the firm’s own stock of knowledge affects cross-industry differences
in research intensity but not TFP growth, whereas differences in demand factors affect neither, in line with a sense in the
technology literature that technical change is primarily supply-driven. Nelson and Winter (1977) argue that innovations
follow “natural trajectories” that have a technological or scientific rationale rather than being driven by movements in
demand and, similarly, Rosenberg (1969) writes of innovation following a “compulsive sequence”. In our model, equilibrium
differences in long run productivity growth rates depend on opportunity parameters, so that long-run TFP growth rates are
determined by technological factors: “natural trajectories” are an equilibrium outcome.

We see several directions for future work. It would be interesting to provide microfoundations for different factors of
opportunity and appropriability. For example, could the magnitude of knowledge spillovers or the extent to which they
accrue to different agents depend on the institutions that govern research, or even on organizational structure? Also, we
have not used our model to explore policy implications. However, our results suggest that a “one-size fits all” R&D subsidy
may not be an optimal policy when technological opportunities vary significantly across industries. We leave this topic for
future work.

Appendix A. Derivations and proofs

A.1. Firm’s maximization

Taking the demand function piht(.) and input prices {wt , Rt} as given, the firm chooses {Niht, Kiht , Q iht, Liht}t=0,... to
maximize (4) subject to (1)–(3). Optimal conditions imply:

wt = piht
∂Yiht

∂Niht

(
1 + Yiht

piht

∂ piht

∂Yiht

)
; Rt = piht

∂Yiht

∂ Kiht

(
1 + Yiht

piht

∂ piht

∂Yiht

)
. (35)

Using (3), relative prices are

piht

p jht
=

(1 + Y jht
p jht

∂ p jht
∂Y jht

)(1 − α j)T jhtk
α j

jht

(1 + Yiht
piht

∂ piht
∂Yiht

)(1 − αi)Tihtk
αi
iht

. (36)

All firms take {wt , Rt} as given, so marginal rates of substitution between capital and labor are equal across activities, firms

and sectors: ∂Yiht/∂Niht
∂Yiht/∂ Kiht

= wt
Rt

= ∂ Fiht/∂Liht
∂ Fiht/∂ Q iht

. Using (35), the capital–labor ratios in Eqs. (5)–(7) follow from (2) and (3). Let

kiht ≡ Kiht
Niht

, (5)–(7) imply:

kiht = kit; k jt = α j

1 − α j

1 − αi

αi
kit; Q iht

Liht
= ηi

1 − ηi

1 − αi

αi
kit . (37)

So (16) follows from focusing on a rank-preserving equilibrium where γiht = γit and assuming price elasticities of demand
are constants and sector-specific.

R&D intensity: The firm’s optimal allocation of capital across activities implies (11) and its optimal condition for Tiht+1
implies (12). Using (11),

1

χiht+1

λt+1

pct+1

∂Πiht+1

∂Tiht+1
= − ∂Πiht+1/∂Tiht+1

∂Πiht+1/∂ Q iht+1

∂ Fiht+1

∂ Q iht+1
.

Together with (2)–(4),

λt+1
pct+1

∂Πiht+1
∂Tiht+1

χiht+1
=

(1 + Yiht
piht

∂ piht
∂Yiht

)piht+1
Yiht+1
Tiht+1

(1 + Yiht
piht

∂ piht
∂Yiht

)
αi piht+1Yiht+1

Kiht+1

ηiψi F iht+1

Q iht+1

= Kiht+1

Tiht+1αi

ηiψi F iht+1

Q iht+1
= 1 − ηi

1 − αi

Niht+1

Liht+1
ψi[γiht+1 − 1],

where the last equality follows from (1) and (37). Rearrange (12) as:

χiht

χiht+1
=

λt+1
pct+1

∂Πiht+1
∂Tiht+1

χiht+1
+ ∂ Fiht+1

∂Tiht+1
+ 1

= 1 − ηi Niht+1 [ψiγiht+1 − 1] + κi[γit+1 − 1] + 1,

1 − αi Liht+1
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where the equality follows from (1), finally,

niht+1

liht+1
=

(
1 − αi

1 − ηi

)
1

ψi

[ χiht
χiht+1

− 1

γiht+1 − 1
− κi

]
, (38)

where niht ≡ Niht/Nt and liht ≡ Liht/Nt . Using (35), wt Liht + Rt Q iht = (piht + Yiht
∂ piht
∂Yiht

)Tihtk
αi
iht[(1 − αi)Liht + αi Q iht].

Use (37): wt Liht + Rt Q iht =
(

1 + Yiht

piht

∂ piht

∂Yiht

)
1 − αi

1 − ηi
piht Yiht

Liht

Niht
.

Similarly: wt Niht + Rt Kiht =
(

1 + Yiht

piht

∂ piht

∂Yiht

)
piht Yiht .

So:
wt Niht + Rt Kiht

wt Liht + Rt Q iht
=

(
1 − ηi

1 − αi

)
Niht

Liht
= 1

ψi

( χiht
χiht+1

− 1

γiht+1 − 1
− κi

)
, (39)

where the last equality follows from (38). Substituting into the definition of RNDiht to obtain (13). To derive χiht/χiht+1,

use (2) and (37): ∂ Fiht+1/∂ Q iht+1
∂ Fiht/∂ Q iht

= γ
κi
ihtγ

σi
i gkt

ηiψi−1(
liht+1

liht
)ψi−1.

Use (11) and (35):
χiht

χiht+1
=

(
λt piht/pct

λt+1 piht+1/pct+1

)
γ

κi−1
iht γ

σi
it gηiψi−αi

kt

(
gN

liht+1

liht

)ψi−1

. (40)

A.2. Household maximization

We first determine the consumer’s optimal spending across goods taking as given the total per-capita spending on
consumption sc and investment sx . Omitting time subscripts:

max{cih} c s.t. sc =
m−1∑
i=1

1∫
0

pihcih dh, and

max{x jh} x s.t. sx =
z∑

j=m

∫
p jhx jh dh,

where c and x are defined by (20) and (23). The optimal spending across varieties of consumption goods: (cih/cih′)−1/μi =
pih/pih′ ⇒ cih′ = cih(pih/pih′)μi , so

ci =
( 1∫

0

c
μi−1
μi

ih′ dh′
) μi

μi−1

= cih

[∫ (
pih/pih′

)μi−1
dh′

] μi
μi−1

.

Define pi ≡ [∫ pihcih dh]/ci = [∫ p1−μi
ih dh]1/(1−μi) to rewrite ci = cih(pih/pi)

μi . Thus across good i, pici/(p jc j) = ωi/ω j ⇒
pici = ωi sc , together with (20),

cih = sc(pi/pih)
μi ωi/pi; pc ≡ sc/c =

m−1∏
i=1

pωi
i . (41)

The result follows analogously for investment,

x jh = sx(p j/p jh)
μ j (ω j/p j) and x j = sx(ω j/p j), (42)

p j ≡
∫

p jhc jh dh

x j
=

[∫
p

1−μ j

jh dh

]1/(1−μ j)

; px ≡ sx/x =
z∏

j=m

p
ω j

j . (43)

Finally, the dynamic problem is to maximize
∑∞

t=0(βgN )t u(ct) by choosing {ct, xt}t=0,... s.t.

pctct + pxt xt = wt + Rtkt + πt and gN kt+1 = xt + (1 − δk)kt .

The solution implies (27) and (28).
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A.3. Market equilibrium

The goods market clearing condition (25) together with the demand for goods ih in (41) and (42) imply Yiht
piht

∂ piht
∂Yiht

= 1
μi

together with (37), Eqs. (35) and (36) become:

Rt = αi piht T ihtk
αi−1
it (1 − 1/μi); wt = (1 − αi)piht T ihtk

αi
it (1 − 1/μi), (44)

piht

p jht
= (1 − 1/μ j)(1 − α j)T jhtk

α j

jt

(1 − 1/μi)(1 − αi)Tihtk
αi
it

. (45)

The capital market clearing conditions (26) and (37) imply

k jht =
(

α j

1 − α j

)
kt

Ψt
; Ψt =

∑
i,h

(
αi

1 − αi
niht + ηi

1 − ηi
liht

)
. (46)

In any rank-preserving equilibrium, we know (8) and (16), using (24),

pxt+1/pxt

pit+1/pit+1
=

z∏
j=m

(
p jt+1/p jt

pit+1/pit+1

)ω j

= γit

γxt
gkt

αi−αx ,

pct+1/pct

pit+1/pit+1
=

m−1∏
j=1

(
p jt+1/p jt

pit+1/pit+1

)ω j

= γit

γct
gkt

αi−αc , (47)

γxt ≡
z∏

j=m

γ
ω j

jt ; γct ≡
m−1∏
i=1

γ
ωi
it ; αc ≡

m−1∑
i=1

αiωi; αx ≡
z∑

j=m

α jω j. (48)

So:
qt+1

qt
= γct

γxt
gαc−αx

kt . (49)

In any rank-preserving equilibrium, substituting (28) into (40) implies

χiht

χiht+1
= χit

χit+1
=

(
Gt piht/pxt

piht+1/pxt+1

)
γ

ρi−1
it gηiψi−αi

kt

(
gN

lit+1

lit

)ψi−1

.

Use (47):

χit

χit+1
= Gt

γxt
γ

ρi
it gηiψi−αx

kt

(
gN

lit+1

lit

)ψi−1

. (50)

Symmetric equilibrium
We now focus on the symmetric equilibrium across firms and omit index h. Using (45) and (24),

pi

px
=

z∏
j=m

(
pi

p j

)ω j

=
z∏

j=m

(
(1 − 1/μ j)(1 − α j)T jtk

α j

jt

(1 − 1/μi)(1 − αi)Titk
αi
it

)ω j

.

Use (37):
pit

pxt
= (1 − 1/μx)Txtk

αx−αi
it

∏z
j=m[αα j

j (1 − α j)
1−α j ]ω j

(1 − 1/μi)Titα
αx
i (1 − αi)

1−αx
. (51)

(1 − 1/μx) ≡
z∏

j=m

(1 − 1/μ j)
ω j , Txt ≡

z∏
j=m

T
ω j

jt .

Use (44) and (46):
Rt

pxt
= Txt(1 − 1/μx)k

αx−1
t Ψ

1−αx
t

z∏
j=m

[
α

α j

j (1 − α j)
1−α j

]ω j
. (52)

Market clearing for consumption goods: pit T itk
αi
it nit = ωi pctct ⇒ nit = ωi pct ct

pit T itk
αi
it

.

Use (46) and (51): ni = ct/qt

Txtk
αx
t

(
1 − 1/μi

1 − 1/μx

)
ωi(1 − αi)

Ψt
∏z [αα j

(1 − α j)
1−α j ]ω j

, i = 1, . . . ,m − 1. (53)

j=m j
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Similarly, use market clearing for investment goods, (51) and (46),

n jt = xt

Txtk
αx
t

(
1 − 1/μ j

1 − 1/μx

)
ω j(1 − α j)

Ψt
∏z

j=m[αα j

j (1 − α j)
1−α j ]ω j

, j = m, . . . , z. (54)

Balanced growth path

Proof of Proposition 1. We look for a balanced growth path (BGP) such that x, k and c are growing at constant rates. House-
hold’s (21) and (22) require x/k and c/(qk) to be constants. Define ket = kt T −1/(1−αx)

xt . Let gx ≡ xt+1/xt for all variables x.
Note when ni and li are constants, (46) implies Ψ is constant, so (46) implies kit/kt is constant. Using (27),

1

β

(
ct+1

ct

)θ

= u′(ct)

βu′(ct+1)
= gqt Gt+1, (55)

so gc is constant if gq and G are constants. Using (52), G is constant if and only if ke is constant, i.e. gkt = γ
1/(1−αx)
xt . It

follows from (53) and (54) that both ni are constants ∀i. Substituting (3) into (20) and (23):

xt =
z∏

j=m

( T jtk
α j

jt n jt

ω j

)ω j

and ct =
m−1∏
i=1

(
Titk

αi
it n jt

ω j

)ω j

.

Using (46) and (48), gx = γx gαx
k , together with (49), gc = γc gαc

k = gqγx gαx
x . Given gk = γ

1/(1−αx)
x , both x/k and c/(qk) are

constants when gk and gq are constants. But gk is constant if γ j are constants ∀ j = m, . . . , z. Lemma 1 implies (10) holds
for ∀ j = m, . . . , z, using (48),

γx =
z∏

i=m

γ
ωi
i =

z∏
i=m

(
gN gηi

k

) ωiψi
1−ρi =

z∏
i=m

(
gN

(
γ

ηi/(1−αx)
x

)) ωiψi
1−ρi ,

which implies (29) and γx in Proposition 1. It follows from (49) that gq is constant if and only if γc is constant, i.e. γi are
constants ∀i = 1, . . . ,m − 1. Given ni , gk and γi are constants, (50) and (38) imply χit+1/χit and nit/lit are constants ∀i, so
li are constants ∀i. �
Corollary 1. Let y = ∑ pit

pct
yit . Along BGP, c/y, real interest rate and R&D spending to GDP ratio are constants. Moreover,

gq = γcγ
αc−1
1−αx

x ; gc = γcγ
αc

1−αx
x ; γc = gΥ

N ; Υ ≡
m−1∑
i=1

(
ηiΦ

1 − αx
+ 1

)
ωiψi

1 − ρi
. (56)

Proof. Given G and gq are constants, it follows from (28) that real interest rate r is constant. Using (51) and (46), GDP per
head:

z∑
i=1

pit Yit

Nt
= pxt

z∑
i=1

(1 − 1/μx)Txtk
αx
it ni

∏z
j=m[αα j

j (1 − α j)
1−α j ]ω j

(1 − 1/μi)α
αx
i (1 − αi)

1−αx

= pxtkt Txtk
αx−1
t

z∑
i=1

ni(1 − 1/μx)
∏z

j=m[αα j

j (1 − α j)
1−α j ]ω j

(1 − 1/μi)Ψ (1 − αi)
, (57)

so y/c is constant given Txtk
αx−1
t and c/(qk) are constants. Using (39) and (37),

z∑
i=1

(Li wt + Q i R) = Nt Rt
kt

Ψ

z∑
i=1

li

1 − ηi
.

Given constant Rt/pxt and (57), the R&D spending to GDP ratio is constant. For (56), γc follows from substituting (10) and
gk = gN Φ/(1−αx) into (48). Given gk = γ

1/(1−αx)
x , gc and gq follow from (49) and constant c/(qk). �

Proposition 3. Along the BGP, the non-negativity constraints on li and ni do not bind and the transversality conditions for Ti and k

are satisfied if g
(1+ ηiΦ

1−αx
)

ψi
1−ρi � 1, κi < 1, ∀i and β < {g−1, β̄}, where β̄ ≡ (1/gN )

1+(1−θ)( αcΦ
1−αx

+Υ ) and Υ is defined in (56).
N N
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Proof. First note that βgN < 1 is required for the household maximization to be well-defined. The transversality conditions
(TVC) are: limt→∞ ζtkt+1 = limt→∞ χit T it+1 = 0, ∀i. χit and ζt are the corresponding shadow values. Using (33),

χi T it

χit−1Tit−1
= γx

G
gαx

k gN = γx gαx
k gN βgq g−θ

c = βgN g1−θ
c , (58)

where it uses (55), gk = γ
1/(1−αx)
x and constant c/(qk). Using (56), limt→∞ χit T it+1 = χi0Ti0 limt→∞(βg

1+(1−θ)( αcΦ
1−αx

+Υ )

N )t . So

TVC for Ti holds if β < β̄ . The shadow price for k is the discounted marginal utility, ζt = (βgN )t(
pxt
pct

)u′(ct) = (βgN )tqtc−θ
t ,

constant c
qk implies ζtkt

ζt−1kt−1
= βgN g1−θ

c , so TVC for k holds when TVC for Ti in (58) holds. Finally, from (1), li > 0 ⇔ γi > 1,

so (10) implies g
(1+ ηiΦ

1−αx
)

ψi
1−ρi

N � 1. From (58), χit/χit+1
γi

= χit T it
χit+1 Tit+1

= (βgN g1−θ
c )−1 > 1, for β < β̄. So from (38), a sufficient

condition for ni/li > 0 (so ni > 0) is κi < 1. �
Appendix B. Calibration

This section describes the detailed calibration procedure for the parameters used in Section 5.

Calibration for (ωi,αi,μi, Ai)

We compute industry spending shares ωi from the Bureau of Economic Analysis’ capital flow tables, 1947–2007. The
shares for each of our 14 capital goods sectors appear to be fairly stable during the post-war era, consistent with our
Cobb–Douglas capital good aggregator (23). We compute αi from the BEA industry GDP tables (see Appendix C for details).

We calibrate the elasticity parameter μi using industry markups from Oliveira et al. (1996). These authors report markups
over average cost. In the model, μi is linked to the markup over production cost – which could be significantly larger
than the markup over total cost in very research-intensive industries. In Appendix C we discuss the mapping between the
reported markups and those required to calibrate μi . The calibration for Ai is described in Section 5.

Values for (ωi,αi,μi, Ai) are reported in Table 3.

Calibration for aggregate values (gk, gN , G)

Let g y equal the growth factor of real output measured in units of consumption. US National Income and Product
Accounts indicate that g y = 1.022 in consumption units. In the model, g y also represents the growth of real consumption,
so we can compute the growth rate of capital in quality-adjusted units gk = g y/gq .

By definition, gq = ∏15
j=2(

p jt+1/pct+1
p jt/pct

)ω j . We obtain the growth of the quality-adjusted capital price relative to consump-

tion from Cummins and Violante (2002) for our 14 capital goods. However, these are gross-output prices. Our model is a
multi-industry value-added model, thus our prices pit are value-added prices. Assuming that the share and the composition
of intermediate goods in gross output are each similar across sectors, Ngai and Samaniego (2009b) show that there is a
simple transformation between relative prices in a value-added model and relative prices in the data. If the relative price of
a good in a value-added model is pit

pct
, and the relative price of good i in the data is p̃it

p̃ct
(measured at the level of the good,

i.e. gross output) then pit
pct

= (
p̃it
p̃ct

)
1

1−ζ where ζ is the share of intermediate goods in gross output.22 We set ζ = 0.45, and

find that gq = 1.052−1, thus gk = (1.022)(1.052).23

The growth rate of the population is reported by the US Census Bureau, gN = 1.012. Using the Euler condition (28), the
gross return to capital, G = (1 + r)/gq . We match the real rate of return on capital to be 7% as in Greenwood et al. (1997).
Hence the gross return in terms of capital goods is G = 1.07/gq .

Values for (gk, gN , G) are reported in Table 1.

Calibration for (γi, ηi)

As discussed in text, we do not match measured TFP growth, instead we calibrate γi using quality-adjusted relative
prices. However, this will give us mainly relative TFP growth, to pin down the level of TFP growth we use the model
prediction that gk = γ

1/(1−αx)
x from Proposition 1. By definition, αx ≡ ∑15

j=2 ω jα j . Given the computed values for (ωi,αi),

the implied value of αx equals 0.3, thus γx = [(1.022)(1.052)]0.7 = 1.052.
As discussed earlier, we compute TFP growth to match the decline in the quality-adjusted relative prices for our 14

capital goods industries. This mapping is slightly complicated in our model compared to Greenwood et al. (1997) because

22 Though their model assume identical capital intensities across sectors while we allow capital intensities to differ, it is straightforward to show that
the same transformation between the relative prices in a value-added model and relative prices in the data continue to hold as long as the share and
composition of intermediate goods in gross output are each identical across sectors.
23 In the working version of the paper, however, we show that our main results are similar when we use unadjusted prices.
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we allow input shares to differ across industries. Using (16), the definition of px and the calibrated value of γx , we compute
γi as:

pxt+1/pxt

pit+1/pit+1
= γi

γx
gαi−αx

k �⇒ γi = γx gαx−αi
k gq

(
pit+1/pit

pct+1/pct+1

)−1

, (59)

where values of pit+1/pit
pct+1/pct+1

are drawn from Cummins and Violante (2002), and adjusted as discussed above.
We measure ηi as the capital share of research expenditures using data from the National Science Foundation Industrial

Research and Development Survey. The values of γi and ηi are reported in Table 3. Measurement details are in the data
appendix below.

Appendix C. Data

C.1. Patent data

The NBER patent database, described in detail in Hall et al. (2001), classifies patents according to their industry of origin
and type of innovation. This involves tracking the industry of origin of each patent, and of the patents that each patent
cites, for 16,522,438 citation entries. While data on patents begin in 1963, citations are only available for patents granted
since 1975. We place durables into 14 categories we could identify in the citation data. The industry classification in Hall
et al. (2001) mostly coincides with that in Table 2. The exceptions were Aircraft, Ships and Boats, Autos and Trucks, and
Structures, which we put together from their finer classification, including only rubrics that we could definitively associate
with the industry in question. Autos and Trucks combines classes 180, 280, 293, 278, 296, 298, 305 and 301. Structures
combines classes 14 and 52 (Bridges and Static Structures). Aircraft equals class 244 (Aeronautics), and Ships and Boats is
class 114 (Ships). The full list of categories may be found at http://www.nber.org/patents/list_of_classes.txt.

C.2. Capital shares

We use the 2003 edition of the NSF Industrial Research and Development Survey. The NSF does not report capital
expenditures related to R&D, rather they report a value of depreciation costs. Using a perpetual inventory method and the
physical depreciation rates in the model, we derive the capital stocks implied by the depreciation costs and use them to
impute the values of ηi reported in Table 2. This requires a value of the depreciation rate for capital δk: we use a value of
0.056, which we calibrate as in Greenwood et al. (1997).

Values of αi come from the Bureau of Economic Analysis Industry GDP tables. Not all industries were specifically listed
as the industry classification of the BEA is coarser than ours. Thus, for example, the BEA entry for “Machinery” included
both our “Machinery” and our “Mining and oilfield Machinery”. In this case we used the same value for both sub industries.
We used tables for 1987–1997 as earlier years were even more aggregated. We followed the same procedure for ηi .

C.3. Research intensity

We measure R&D intensity using the R&D to sales ratio of the median firm. The maintained assumption is that the
median firm in Compustat is subject to weak if any financial constraints, so that its R&D behavior should reflect the “pure”
technologically determined level of R&D intensity for the industry. See Rajan and Zingales (1998) and Ilyina and Samaniego
(2008) on the use of median firms to detect technological characteristics. We discard the top and bottom 1 percent of
observations in the sample, to reduce the influence of outliers and of possible measurement error.24

Research intensity numbers from Compustat include labor and materials costs but not capital. In the model we have
removed intermediates, and we also include capital. To make the numbers comparable, first, we remove materials using the
materials share of R&D in NSF data (which is small and averages around a fifth of labor spending). Then, to impute capital
expenditures related to research, we use the values of ηi reported earlier. Finally, formal R&D spending does not necessarily
reflect all the costs of conducting R&D. For example, the Bureau of Labor Statistics Occupational Employment Statistics
2007 report that, for firms in NAICS 541700 (Scientific Research and Development Services) scientists and engineers make
up about 40 percent of the wage bill. Assuming that the activities of pure research firms are broadly similar to those at
research units within firms that do not outsource their R&D, this suggests multiplying the Compustat R&D numbers by a
factor of 2.5. The effect of the above adjustments was to increase the values of RNDSales somewhat above the raw numbers
in Compustat, but the results that follow were qualitatively unchanged by using the “raw” numbers from Compustat instead.

24 The medians were in fact quite close to R&D/sales numbers reported by the NSF, so we view them as accurate (NSF values were not available for all
industries, which is why we did not use them directly).

http://www.nber.org/patents/list_of_classes.txt
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C.4. Markups

Markups are from Oliveira et al. (1996). Where industry values were not available for the US, we took them from Canada
(or in the case of Aircraft from Italy25). These are markups over average cost. In the model calibrating μi requires a measure
of the markup over production cost – which could be significantly larger than the markup over total cost in very research-
intensive industries. Let M be the markup in the model, so M = 1

μ , X is the measured markup, which is the markup over

average cost. Suppose P is sales, R is research cost and C is production cost. Then, the measured markup X = P−R−C
R+C . Let r

equal R&D intensity as measured in the data (relative to sales), so that R = r P . Then, it can be shown that M = r(X+1)+X
1+r(X+1)

, so
the measured markups can be derived from those reported in the data using R&D intensity numbers. See Table 3 for these
and other parameters discussed in this appendix.
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