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Abstract

Researchers frequently test identifying assumptions in regression
based research designs (which include e.g. instrumental variables or
differences-in-differences models) by adding additional control vari-
ables on the right hand side of the regression. If such additions do
not affect the coefficient of interest (much) a study is presumed to
be reliable. We caution that such invariance may result from the
fact that many observed variables are poor measures of the potential
underlying confounders. In this case, a more powerful test of the
identifying assumption is to put the variable on the left hand side
of the candidate regression. We provide relevant derivations for the
estimators and test statistics involved, as well as power calculations,
which can help applied researchers to interpret their findings. We
illustrate these results in the context of various strategies which have
been suggested to identify the returns to schooling.

*This paper builds on ideas in our paper “A Cautionary Note on Using Industry Af-
filiation to Predict Income,” NBER WP18384. We thank Alberto Abadie, Josh Angrist,
and Brigham Frandsen for helpful comments.



1 Introduction

Research on causal effects depends on implicit identifying assumptions, which
typically form the core of a debate about the quality and credibility of a
particular research design. In regression or matching based strategies, this
is the claim that variation in the regressor of interest is as good as random
after conditioning on a sufficient set of control variables. In instrumental
variables models it is the exclusion restriction. In panel or differences-in-
differences designs it is the parallel trends assumption, possibly after suitable
conditioning. The credibility of a design can be enhanced when researchers
can show explicitly that potentially remaining sources of selection bias have
been eliminated. This is often done through some form of balancing or
falsification tests.

The research designs mentioned above can all be thought of as variants
of regression strategies. If the researcher has access to a candidate con-
founder, tests for the identifying assumption take two canonical forms. The
confounder can be added as a control variable on the right hand side of the
regression. The identifying assumption is confirmed if the estimated causal
effect of interest is insensitive to this variable addition—we call this the coeffi-
cient comparison test. Alternatively, the candidate confounder can be placed
on the left hand side of the regression instead of the outcome variable. A
zero coefficient on the causal variable of interest then confirms the identi-
fying assumption. This is analogous to the balancing test typically carried
out using baseline characteristics or pre-treatment outcomes in a randomized
trial, and frequently used in regression discontinuity designs.

Researchers often rely on one or the other of these tests. We argue that
the balancing test, using the candidate confounder on the left hand side of
the regression, is generally more powerful. This is particularly the case when
the available variable is a noisy measure of the true underlying confounder.
The attenuation due to measurement error often implies that adding the
candidate variable on the right hand side as a regressor does little to eliminate

any omitted variables bias. The same measurement error does comparatively



less damage when putting this variable on the left hand side. Regression
strategies work well in finding small but relevant amounts of variation in
noisy dependent variables.

These two testing strategies are intimately related through the omitted
variables bias formula. The omitted variables bias formula shows that the
coefficient comparison test involves two regression parameters, while the bal-
ancing test only involves one of these two. If the researcher has a strong prior
that the added regressor ought to matter for the outcome under study then
the balancing test will provide the remaining information necessary to assess
the research design. This maintained assumption is the ultimate source of
the superior power of the balancing test. However, we show that meaningful
differences emerge only when there is some substantial amount of measure-
ment error in the added regressor in practice. We derive the biases in the
relevant estimators in Section 3.

A second point we are making is that the two strategies both lead to
explicit statistical tests. The balancing test is a simple t-test used routinely
by researchers. When adding a covariate on the right hand side, comparing
the coefficient of interest across the two regressions can be done using a
generalized Hausman test. In practice, we haven’t seen this test carried
out in applied papers, where researchers typically just eye-ball the results.
We provide the relevant test statistics and discuss how they behave under
measurement error in Section 4. We also show how this test is simple to
implement for varying identification strategies. We demonstrate the superior
power of the balancing test under a variety of scenarios in Section 4.2.

While we stress the virtues of the balancing test, this does not mean that
the explicit coefficient comparison is without value, even when the added
regressor is measured with error. Suppose the added candidate regressor,
measured correctly, is the only confounder. In this case, the same model with
classical measurement error in this variable is under-identified by one para-
meter. The reliability ratio of the mismeasured variable is a natural metric

for this missing parameter, and we show how researchers can point identify

I An exception is Gelbach (2009), who discusses the Hausman test in this context.



the parameter of interest with assumptions about the measurement error.
The same result can be used to place bounds on the parameter of interest
using ranges of the measurement error, or the amount of measurement error
necessary for a zero effect can be obtained. We feel that this is a simple and
useful way of combing the results from the three regressions underlying all
the estimation and testing here in terms of a single metric.

The principles underlying the points we are making are not new but the
consequences do not seem to be fully appreciated in much applied work.
Griliches (1977) is a classic reference for the issues arising when regression
controls are measured with error. Like us, Griliches’ discussion is framed
around the omitted variables bias arising in linear regressions, the general
framework used most widely in empirical studies.

This explicit measurement error scenario has played relatively little role
in subsequent discussions of omitted variables bias. Rosenbaum and Rubin
(1983) discuss adjustments for an unobserved omitted variable in a framework
with a binary outcome, binary treatment, and binary covariate by making
assumptions about the parameters in the relevant omitted variables bias
formula. Imbens (2003) extends this analysis by transforming the unknown
parameters to partial correlations rather than regression coefficients, which
he finds more intuitive. This strand of analysis needs assumptions about
two unknown parameters because no information about the omitted regressor
is available. We assume that the researcher has a noisy measure available,
which is enough to identify one of the missing parameters.

Battistin and Chesher (2014) is closely related as it discusses identifi-
cation in the presence of a mismeasured covariate. They go beyond our
analysis in focusing on measurement error in non-linear models. Like in the
literature following Rosenbaum and Rubin (1983) they discuss identification
given assumptions about the missing parameter, namely the degree of mea-
surement error in the covariate. While we show these results for the linear
case, we go beyond the Battistin and Chesher analysis in our discussion of
testing. This should be of interest to applied researchers who would like to

show that they cannot reject identification in their sample given a measure



for a candidate confounder.

Altonji, Elder and Taber (2005) discuss an alternative but closely related
approach to the problem. Applied researchers have often argued that relative
stability of regression coefficients when adding additional controls provides
evidence for credible identification. Implicit in this argument is the idea that
other confounders not controlled for are similar to the controls just added to
the regression. The paper by Altonji, Elder and Taber (2005) formalizes this
argument. In practice, adding controls will typically move the coefficient of
interest somewhat even if it is not much. Altonji et al. (2013) and Oster
(2015) extend the Altonji, Elder and Taber work by providing more precise
conditions for bounds and point identification in this case. The approach
in these papers relies on an assumption about how the omitted variables
bias due to the observed regressor is related to omitted variables bias due to
unobserved confounders.

The unobserved confounder in this previous work can be thought of as
the source of measurement error in the covariate which is added to the re-
gression in our analysis. For example, in our empirical example below, we
use mother’s education as a measure for family background but this variable
may only capture a small part of all the relevant family background infor-
mation, a lot of which may be orthogonal to mother’s education. Since our
discussion of inference and testing covers this case, our framework is a useful
starting point for researchers who are willing to make the type of assumptions
in Altonji, Elder and Taber (2005) and follow up work.

Griliches (1977) uses estimates of the returns to schooling, which have
formed a staple of labor economics ever since, as example for the method-
ological points he makes. We use Griliches’ data from the National Longitu-
dinal Survey of Young Men to illustrate our results in section 5. In addition
to Griliches (1977) this data set has been used in a well known study by
Card (1995). It is well suited for our purposes because the data contain
various test score measures which can be used as controls in a regression
strategy (as investigated by Griliches, 1977), a candidate instrument for col-

lege attendance (investigated by Card, 1995), as well as a myriad of other



useful variables on individual and family background. The empirical results

support our theoretical claims.

2 A Simple Framework
Consider the following simple framework starting with a regression equation
yi = o’ + s + € (1)

where y; is an outcome like log wages, s; is the causal variable of interest, like
years of schooling, and e; is a regression residual. The researcher proposes this
short regression model to be causal. This might be the case because the data
come from a randomized experiment, so the simple bivariate regression is all
we need. More likely, the researcher has a particular research design applied
to observational data. For example, in the case of a regression strategy
controlling for confounders, y; and s; would be residuals from regressions of
the original variables on the chosen controls. In the case of panel data or
differences-in-differences designs the controls are sets of fixed effects. In the
case of instrumental variables s; would be the predicted values from a first
stage regression. In practice, (1) encompasses a wide variety of empirical
approaches.

Now consider the possibility that the estimate 8° from (1) may not actu-
ally be causal. There may be a candidate confounder z;, so that the causal
effect of s; on y; would only be obtained conditional on z;, as in the long
regression

Y = o+ Bs; +yx; + e (2)

and the researcher would like to probe whether this is a concern. For exam-
ple, in the returns to schooling context, x; might be some remaining part
of an individual’s earnings capacity which is also related to schooling, like
ability and family background.

Researchers who find themselves in a situation where they start with
a proposed causal model (1) and a measure for a candidate confounder x;

typically do one of two things: They either regress x; on s; and check whether



s; is significant, or they include z; on the right hand side of the original
regression, and check whether the estimate of 5 changes materially when
x; is added to the regression of interest. The first strategy constitutes
a test for “balance,” a standard check for successful randomization in an
experiment. In principle, the second strategy has the advantage that it goes
beyond testing whether (1) qualifies as a causal regression. If § changes
appreciably this suggests that the original estimate 3° is biased. However,
the results obtained with x; as an additional control should be closer to the
causal effect we seek to uncover. In particular, if x; were the only relevant
confounder and if we measure it without error, the [ estimate from the
controlled regression is the causal effect of interest. In practice, there is
usually little reason to believe that these two conditions are met, and hence
a difference between [ and 3° again only indicates a flawed research design.

The relationship between these two strategies is easy to see. Write the

regression of z; on s;, which we will call the balancing regression, as

The change in the coefficient 8 from adding x; to the regression (1) is given

by the omitted variables bias formula

) (@)

where ¢ is the coefficient on s; in the balancing regression. The change in

the coefficient of interest S from adding z; consists of two components, the

coefficient v on z; in (2) and the coefficient § from the balancing regression.
Here we consider the relationship between the two approaches: the bal-

ancing test, consisting of an investigation of the null hypothesis
Hy:0=0, (5)

compared to the inspection of the coefficient movement ° — 3. The lat-
ter strategy of comparing $° and f is often done informally but it can be

formalized as a statistical test of the null hypothesis
Hy:p°— =0, (6)
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which we will call the coefficient comparison test. We have not seen this
carried out explicitly in applied research. From (4) it is clear that (6) amounts
to

Hy:6°=—p=0s~vy=0o0rd=0.

This highlights that the two approaches formally test the same hypothesis
under the maintained assumption v # 0. We may often have a strong sense
that v # 0; i.e. we are dealing with a variable x; which we believe affects the
outcome, but we are unsure whether it is related to the regressor of interest
s;. In this case, both tests would seem equally suitable. Nevertheless, in
other cases v may be zero, or we may be unsure. In this case the coefficient
comparison test seems to dominate because it directly addresses the question
we are after, namely whether the coefficient of interest 3 is affected by the
inclusion of z; in the regression.

Here we make the point that the balancing test adds valuable information
particularly when the true confounder is measured with error. In general, z;
may not be easy to measure. If the available measure for x; contains classi-
cal measurement error, the estimate of v in (2) will be attenuated, and the
comparison 3° —  will be too small (in absolute value) as a result. The
estimate of ¢ from the balancing regression is still unbiased in the presence
of measurement error; this regression simply loses precision because the mis-
measured variable is on the left hand side. Under the maintained assumption
that 0 < 7 < oo, the balancing test is more powerful than the coefficient com-
parison test. In order to make these statements precise, we collect results for
the estimators of the relevant parameters and test statistics for the case of

classical measurement error in the following section.



3 Estimators in the Presence of Measurement
Error

The candidate variable x; is not observed. Instead, the researcher works

with the mismeasured variable
xt = x; + m;. (7)

The measurement error m; is classical, i.e. E (m;) =0, Cov(x;,m;) =0. As

a result, the researcher compares the regressions

yi = o*+3si+¢
yi = "+ B"s +y"a + e (8)
Notice that the short regression does not involve the mismeasured z;, so that

B° = [+ 6 as before. However, the coefficients 5™ and 4™ are biased now

and are related to the coefficients from (2) in the following way:

- -\

" = B =B+ 700 (9)
- A R

7= ’Yl_—m*’Y(l—Q)

where R? is the R? of the regression of s; on 7" and

_ Var (x;)

A= Var ()

is the reliability of 2!". It measures the amount of measurement error present
as the fraction of the variance in the observed z", which is due to the signal
in the true z;. A is also the attnuation factor in a simple bivariate regression
on z7". An alternative way to parameterize the amount of measurement error
s 1—A o2

m

6

:1—R2_JZ+J%L'

1 — @ is the multivariate attenuation factor. Recall that wu; is the residual

from the balancing regression (3).



Notice that

and hence A\ > R?. As a result

1—A
— <1
0 < 1—R2<
A — R?
0 < 1_—R2<)\

f is an alternative way to parameterize the degree of measurement error in
x; compared to A and R2. The § parameterization uses only the variation in
x" which is orthogonal to s;. This is the part of the variation in z]* which
is relevant to the estimate of 4™ in regression (8), which also has s; as a
regressor. # turns out to be a useful parameter in many of the derivations
that follow.

The coefficient 5™ is biased but less so than 3°. In fact, 5™ lies between
B° and 3. The estimate v™ is attenuated; the attenuation is bigger than in
the case of a bivariate regression of y; on z]" without the regressor s; if x!"
and s; are correlated (R* > 0).

These results highlight a number of issues. The gap 5* — 5™ is too small
compared to the desired 5° — (3, directly affecting the coefficient comparison
test. In addition, 4™ is biased towards zero. Ceteris paribus, this is making
the assessment of the hypothesis v = 0 more difficult. Finally, the balancing
regression (10) with the mismeasured z}" involves measurement error in the
dependent variable and therefore no bias in the estimate of 0™, i.e. ™ = 4,
but simply a loss of precision.

The results here can be used to think about identification of S in the

presence of measurement error. Rearranging (9) yields

o 1-R
’y - ’y )\_RZ
m m L= A

Since R? is observed from the data this only involves the unknown parameter

A. If we are willing to make an assumption about the measurement error we
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are able to point identify 5. Even if A is not known precisely, (11) can be
used to bound S for a range of plausible reliabilities. Alternatively, (9) can
be used to derive the value of A for which f = 0. These calculations are

similar in spirit to the ones suggested by Oster (2015) in her setting.

4 Inference

In this section, we consider how conventional standard errors and test sta-
tistics for the quantities of interest are affected in the homoskedastic case.?
We present the theoretical power functions for the two alternative test sta-
tistics; derivations are in the appendix. The power results are extended to
the heteroskedastic case and non-classical measurement error in simulations.
Our basic conclusions are very robust in all these different scenarios.

Start with the coefficient 3 from the balancing regression:

</(§m> 1 oi+0o2
se = ="
N

Tu
Vo /1 -0

Compare this to the standard error of the error free estimator

%@:%%

so that

()
se <(5 > = .
1-106
It is easy to see that the standard error is inflated compared to the case with

no measurement error. The t-test

~m
tsm = ——7 5%
se (5m)

2See the appendix for the precise setup of the model. The primitive disturbances are
Si, U;, €;, and m;, which we assume to be uncorrelated with each other. Other variables
are determined by (3), (2), and (7).
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remains consistent because m; is correctly accounted for in the residual of
the balancing regression (10), but the ¢-statistic is smaller than in the error

free case.
%t(gm — m% < (i—u> — %t(g
Os Os
This means the null hypothesis (5) is rejected less often. The test is less
powerful than in the error free case; the power loss is capture by the term
1-6.

We next turn to 4™, the coefficient on the mismeasured " in (8). The
estimate of v is of interest since it determines the coefficient movement 5° —
B = 70 in conjunction with the result from the balancing regression. The
standard error for 7" is

amy = 1 /Var(em)

se (Y

while
~ 1 o,

se(y) = %U—u
The standard error for 7™ involves two terms: the first term is an attenuated
version of the standard error for 7 from the corresponding regression with
the correctly measured x;, while the second term depends on the value of ~.
The parameters in the two terms are not directly related, so se (™) 2 se (7).
Measurement error does not necessarily inflate the standard error here.

The two terms have a simple, intuitive interpretation. Measurement
error biases the coefficient v™ towards zero, the attenuation factor is 1 — 4.
The standard error is attenuated in the same direction; this is reflected in
the v/1 — 6, which multiplies the remainder of the standard error calculation.
The second influence from measurement error comes from the term \/0_2,

which comes from the fact that the residual variance Var (e") is larger when
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there is measurement error. The increase in the variance is related to the
true v, which enters the residual. But attenuation matters here as well, so
this term is inverse U-shaped in 6 and is greatest when 6 = 0.5.

The t-statistic is

-~m

t,}ﬂn = ~m
)

se (7
and it follows that

%tw — \/m< 073+ g_u) < <l> — %tm

Ou

Asin the case of 0 from the balancing regression, the t-statistic 3™ is smaller
than ¢, for the error free case. But in contrast to the balancing test statistic
tsm, measurement error reduces t,» relatively more, namely due to the term
\/W in the denominator, in addition to the attenuation factor v/1 — . This
is due to the fact that measurement error in a regressor both attenuates the
relevant coefficient towards zero as well introducing additional variance into
the residual. The upshot from this discussion is that classical measurement
error makes the assessment of whether v = 0 comparatively more difficult
compared to the assessment whether § = 0.

Finally, consider the quantity 8° — 8™, which enters the coefficient com-

parison test,

S -~m

Var <BS — Bm> =Var (6 ) + Var (6 ) —2Cov (BS, Bm> .

There are various things to note about this expression. Var (Bs> and

Var (Bm> cannot be ranked. Adding an additional regressor may increase
or lower the standard error on the regressor of interest. Secondly, the covari-
ance term reduces the sampling variance of the coefficient comparison test.

The covariance term will generally be sizeable compared to the Var (BS>

and Var <3m) because the regression residuals e] and e]" will be highly cor-
related. In fact,

Cov (€5, e") = v*00? + o2
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and L2002 )
Cov (BS,BW> =TT G“;— Ie

s

We show that the covariance term is closely related to the sampling variance

o

of the short regression coefficient

~s 1 2 2 2
Var (5’):——W O“+Ue.

2
n o

Because the covariance term gets subtracted, looking at the standard errors of
38 and Em alone can be very misleading about the precision of the coefficient
comparison.

Putting everything together

Var (Bs - Bm) _Lazy (720—12; 40572 + 52"—5) .
n o2 o?

Setting 6 = 0, it is easy to see that, like Var (™), Var (BS — Bm) has both
an attenuation factor as well as an additional positive term compared to
Var (BS — B) Measurement error may therefore raise or lower the sampling
variance for the coefficient comparison test.

The coeflicient comparison test itself can be formulated as a t-test as well,

since we are interested in the movement in a single parameter.

5 -5"
tps—pm) =V - =
\/(1 —0) (125 + 00*2 + 0°%)
Note that
B° =B =6y" =dy(1—0)
so that

1 vy (1 —0)
\/(1 —0) (v2% + 00** + 8°% )

5
= VI ——u-" .

<

13



Not surprsingly, since 8° — 8™ = 4™, it turns out that

1 2 1)\? 1\?2
o) () )
<t(65—6m)> <tw) tom

In other words, the t-statistic for the coefficient comparison test inherits

exactly the same two sources of bias which are also present in t.,» and tsm.
In particular, #(gs_gm) is subject both to the attenuation factor v1—6 and
to the additional variance term #6%72. As a result, it follows that under the
maintained hypothesis v # 0, the balancing test will be more powerful than
the coefficient comparison test. This result itself is not surprising; after all
it ought to be easier to test 6 = 0 while maintaining v # 0, compared to
testing the compound hypothesis 6 = 0 or v = 0. Below we show that the
differences in power between the tests can be substantial when there is a
lot of measurement error in zj". Before we do so, we briefly note how the

coefficient comparison test can be implemented in practice.

4.1 Implementing the Coefficient Comparison Test

The balancing test is a straightforward ¢-test, which regression software calcu-
lates routinely. We noted that the coefficient comparison test is a generalized
Hausman test. Regression software will typically calculate this as well if it
allows for seemingly unrelated regression estimation (SURE). SURE takes
Cov (e, el") into account and therefore facilitates the test. In Stata, this is
implemented via the suest command. Generically, the test would take the
following form:

reg y s

est store regl

reg y s x

est store reg2

suest regl reg2

test[regl_mean]s=[reg2_mean]s

The test easily accommodates covariates or can be carried out with the

variables y, s, and x being residuals from a previous regression (hence facili-
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tating large numbers of fixed effects though degrees of freedom may have to
be adjusted in this case).

As far as we can tell, the Stata suest or 3reg commands don’t work for
the type of IV regressions we might be interested in here. An alternative,

which also works for IV, is to take the regressions (1) and (2) and stack them:

=Dl 25 T 2T L)

Testing ° — 8 = 0 is akin to a Chow test across the two specifications (1)
and (2). Of course, the data here are not two subsamples but the original
data set duplicated. To take account of this and allow for the correlation in
the residuals across duplicates, it is crucial to cluster standard errors on the

observation identifier 3.

4.2 Power comparisons

The ability of a test to reject when the null hypothesis is false is described by
the power function of the test. The power functions here are functions of d,
the values the parameter ¢ might take. Using the results from the previous
section, the power function for a 5% critical value of the balancing test is

—\/%SM) +O (—1.96 . d—ﬁw/m)

Oy

Poweryy,, (d) =1-® (1.96 —d

Oy

while the power function for the coefficient comparison test is

ny(l—6 ny (1—96
Powert(ﬁs,gm) (d;y) =1-® (1‘96 o d%) e <_1'96 a d%)

where

2
s Ou

202 d*o?
Vs (d;v) = (1-10) (—702 + 0d*y + —) :

Note that the power function for the balancing test does not involve the

parameter 7. Nevertheless, for 0 < v < 0o it can be written as

1 _gYm -9 196 gV 10
Powery,,, (d) =1 cI)<1.96 d %(d;7)>+q)< 1.96 d\/m>.
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where 5 o
o
Vi (diy) = (1-6) T3

2
0%

It is hence apparent that Vs (d;y) > Vs (d; ), i.e. the coeflicient comparison

test has a larger variance. As a result
Powery,; (d) > Powery y._ ., (d;7) .

In practice, this result may or may not be important, so we illustrate it
with a number of numerical examples. Table 1 displays the parameter values
as well as the implied values of the R? of regression (8). The values were
chosen so that for intermediate amounts of measurement error in =7 the R?s
are reflective of regressions fairly typical of those in applied microeconomics,
for example, a wage regression.

In Figure 1, we plot the power functions for both tests for three different
magnitudes of the measurement error. The first set involves the power
functions with no measurement error. The power functions can be seen
to increase quickly with d, and both tests reject with virtual certainty as d
reaches values of 1. The balancing test is slightly more powerful but this
difference is small, and only visible in the figure for a small range of d.

The second set of power functions corresponds to a reliability ratio for x}"
of A = 0.5. Measurement error of that magnitude visibly affects the power
of both tests. The balancing test still rejects with certainty for d > 1.5
while the power the coefficient comparison test flattens out around a value
of 0.93. This discrepancy becomes even more pronounced with a A = 0.25.
The power of the coefficient comparison test does not rise above 0.6 in this
case, while the balancing test still rejects with a probability of 1 at values of
d slightly above 2.3

The results in Figure 1 highlight two important things. There are para-

meter combinations where the balancing test has substantially more power

3Power for the cc test can actually be seen to start to decline as d increases. This
comes from the fact that the amount of measurement error is parameterized in terms
of the reliability A of 2}*. For a constant reliability the amount of measurement error
increases with d. We felt that thinking about the reliability is probably the most natural
way for applied researchers to think about the amount of measurement error they face in
a variable.
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than the coefficient comparison test. On the other hand, there are other
regions where the power of the two tests is very similar, for example, the
region where d < 0.5 in Figure 1. In these cases, both tests perform very
similar but, of course, specific results may differ in small samples. Hence, in
a particular application, the coefficient comparison test may reject when the
balancing test doesn’t.

The homoskedastic case with classical measurement error might be highly
stylized and not correspond well to the situations typically encountered in
empirical practice. We therefore explore some other scenarios as well using
simulations. Figure 2 shows the original theoretical power functions for the
case with no measurement error from Figure 1. It adds empirical rejection

rates from simulations with heteroskedastic errors u; and e; of the form

2 el N’ 2
U, 14+ €|Si| Ou

. 2
2 elsl 2
o,, = 00,
et 1 e|3i| Oe

We chose the baseline variances o2, and o2, so that 2 = 3 and 2 = 30 to
match the variances in Figure 1. All test statistics employ robust standard
errors. We plot the rejection rates for data with no measurement error and for
the more severe measurement error given by a reliability ratio A = 0.25.% As
can be seen in Figure 2, both the balancing and the coefficient comparison
tests lose some power when the residuals are heteroskedastic compared to
the homoskedastic baseline.  Otherwise, the results look very similar to
those in Figure 1. Heteroskedasticity does not seem to alter the conclusions
appreciatively.

Next, we explore mean reverting measurement error (Bound et al., 1994).

We generate measurement error as
m; = Kx; + [

where k is a parameter and Cov (z;, i1;) = 0, so that kx; captures the error

related to x; and p; the unrelated part. We set K = —0.5 . Notice that z}"

4We did 25,000 replications in these simulations, and the underlying regressions have
a 100 observations.
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can now be written as
ri' =1+ K)o+ (1+K)dsi + (L+K)u; + p,

so that this parameterization directly affects the coefficient in the balancing
regression, which will be smaller than ¢ for a negative x. At the same time,
the residual variance in this regression is also reduced for a given reliabil-

5 Figure 3 demonstrates that the power of both tests deteriorates

ity ratio.
even for moderate amounts of measurement error now but the coefficient
comparison test is still most affected.

The case of mean reverting measurement error captures a variety of ideas,
including the one that we may observe only part of a particular concept.
Imagine we would like to include in our regression a variable x; = wy; + wo;,
where wy; and wy; are two orthogonal variables. We observe z]" = wy;. For
example, z; may be family background, wy; is mother’s education and other
parts of family background correlated with it, and ws; are all relevant parts
of family background, which are uncorrelated with mother’s education. As
long as selection bias due to wy; and wy; is the same, this amounts to the
mean reverting measurement error formulation above. This scenario is also

isomorphic to the model studied by Oster (2015). See the appendix for
details.

5 Empirical Analysis

We illustrate the theoretical results in the context of estimating the returns
to schooling using data from the National Longitudinal Survey of Young
Men. This is a panel study of about 5,000 male respondents interviewed
from 1966 to 1981. The data set has featured in many prominent analyses
of the returns to education, including Griliches (1977) and Card (1995). We

5Note that fixing A, Uﬁ is given by

2 1—=X(1+r)

o, Var (z;).
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use the NLS extract posted by David Card and augment it with the variable
on body height measured in the 1973 survey. We estimate regressions similar
to eq. (2). The variable y; is the log hourly wage in 1976 and s; is the number
of years of schooling reported by the respondent in 1976. Our samples are
restricted to observations without missing values in any of the variables used
in a particular table or set of tables.

We start in Table 2 by presenting simple OLS regressions controlling for
experience, race, and region of residence. The estimated return to schooling
is 7.5%. This estimate is unlikely to reflect the causal effect of education
on income because important confounders, which influence both education
and income simultaneously such as ability or family background, are not
controlled for.

In columns (2) to (5) we include variables which might proxy for the re-
spondent’s family background. In column (2) we include mother’s education,
in column (3) whether the household had a library card when the respondent
was 14, and in column (4) we add body height measured in inches. Each of
these variables is correlated with earnings and the coefficient on education
moves moderately when these controls are included. Mother’s education
captures an important component of a respondent’s family background. The
library card measure has been used by researchers to proxy for important
parental attitudes (e.g. Farber and Gibbons, 1996). Body height is a vari-
able determined by parents’ genes and by nutrition and disease environment
during childhood. It is unlikely a particularly powerful control variable but
it is predetermined and correlated with family background, self-esteem, and
ability (e.g. Persico, Postlewaite, and Silverman, 2004; Case and Paxson,
2008). The return to education falls by .1 to .2 log points when these con-
trols are added. In column (5) we enter all three variables simultaneously.
The coefficients on the controls are somewhat attenuated and the return to
education falls slightly further to 7.1%.

It might be tempting to conclude from the relatively small change in the
estimated returns to schooling that this estimate might safely be given a

causal interpretation. We provide a variety of evidence that this conclusion
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is unlikely to be a sound one. Below the estimates in columns (2) to (5), we
display the p-values from the coefficient comparison test, comparing each of
the estimated returns to education to the one from column (1). Although
the coefficient movements are small, the tests all reject at the 5% level, and
in columns (4) and (5) they reject at the 1% level.

The results in columns 6 to 8, where we regress maternal education, the
library card, and body height on education demonstrates this worry. The ed-
ucation coefficient is positive and strongly significant in all three regressions,
with t-values ranging from 4.4 to 13.1. The magnitudes of the coefficients
are substantively important. It is difficult to think of these results as causal
effects: the respondent’s education should not affect predetermined proxies
of family background. Instead, these estimates reflect selection bias. Individ-
uals with more education have significantly better educated mothers, were
more likely to grow up in a household with a library card, and experienced
more body growth when young. Measurement error leads to attenuation bias
when these variables are used on the right-hand side which renders them fairly
useless as controls. The measurement error does not matter for the estimates
in columns 6-8, and these are informative about the role of selection. Com-
paring the p-values at the bottom of the table to the corresponding ones for
the coefficient comparison test in columns 2 to 4 demonstrates the superior
power of the balancing test.

Finally, we report a number of additional results in the table. The R?
from regression of education on the added regressor (mother’s education,
the library card, or height) is an ingredient necessary for the calculations
that follow. Next, we report the values for 3 if the added regressor was the
only remaining source of omitted variables bias, assuming various degrees of
measurement error. These calculations are based on equation (11). Since
the idea that any of the candidate controls by themselves would identify
the return in these bare bones wage equations does not seem particularly
believable we will discuss these results in the context of Table 3.

In Table 3 we repeat the same set of regressions including a direct measure

for ability, the respondent’s score on the Knowledge of the World of Work
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test (KWW), a variable used by Griliches (1977) as a proxy for ability. The
sample size is reduced due to the exclusion of missing values in the test
score. Estimated returns without the KWW score are very similar to those
in the original sample. Adding the KWW score reduces the coefficient on
education by almost 20%, from 0.075 to 0.061. Adding maternal education,
the library card, and body height does very little now to the estimated returns
to education. The coefficient comparison test indicates that none of the
small changes in the returns to education are significant. Controlling for the
KWW scores has largely knocked out the library card effect but done little
to the coefficients on maternal education and body height. The relatively
small and insignificant coefficient movements in columns (2) to (5) suggest
that the specification controlling for the KWW score might solve the ability
bias problem.

Columns (6)-(8), however, show that the regressions with the controls on
the left hand side still mostly result in significant education coefficients even
when the KWW score is in the regression. This suggests that the estimated
returns in columns 1-5 might also still be biased by selection. The estimated
coefficients on education for the three controls are on the order of half their
value from Table 1, and the body height measure is now only significant
at the 10% level. Particularly the relationship between mother’s and own
education is still sizable, and this measure still indicates the possibility of
important selection.

The calculations at the bottom of the table based on equation (11) also
confirm that mother’s education might potentially pick up variation due to an
important confounder. These calculations assume that mother’s education is
the only omitted control in column (1) while acknowledging that the available
measure might contain a lot of noise compared to the correct control. With
the moderate amounts of measurement error implied by a reliability of 0.75
or 0.5 the returns to education coefficient still moves fairly little when adding
mother’s education. For a reliability of 0.5 the return remains .058 compared
to .061 without controlling for mother’s education. If the reliability is only

0.25 the return falls more strongly to 0.055. In order for the entire estimated
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return in column (1) to be explained by omitted variables bias due to mother’s
education the reliability needs to be as low as 0.05, as can be seen in the last
TOW.

These numbers highlight a lot of curvature in the relationship between
the reliability and the implied return to education. Figure 4 illustrates this
for the case of the mother’s education variable. It becomes clear that the
return changes little for reliabilities above 0.25 but then falls precipitously
for more severe measurement error. If we believe that mother’s education
captures family background poorly enough there is a lot room for bias from
this source.

Looking at the columns (3) and (4) we can see that the same isn’t true
for the library card and body height measures. Here the returns relationship
is essentially flat over the range of reliabilities as low as 0.25. Reliabilities as
low as 0.01 are necessary for a zero return. This confirms that these variables
have lost most of their power as confounders once KWW is controlled in the
regressions. The flat relationship between the reliability and returns is due
to the fact that both 6 and ™ are lower for the library card and body
height in Table 3 compared to Table 2.  We don’t claim here that adding
these variables to the regressions with the KWW score would be a suitable
identification strategy in any case. Rather, we see the implied (5 calculation
for different reliabilities as an intuitive measure summarizing the impact of
the relevant values of §, v™, and the R? between years of education and the
added regressor.

While the KWW score might be a powerful control it is likely also mea-
sured with substantial error. Griliches (1977) proposes to instrument this
measure with an IQ testscore variable, which is also contained in the NLS
data, to eliminate at least some of the consequences of this measurement er-
ror. In Table 4 we repeat the schooling regressions with IQ as instrument for
the KWW score. The coefficient on the KWW score almost triples, in line
with the idea that an individual test score is a very noisy measure of ability.
The education coefficient now falls to only about half its previous value from

0.061 to 0.034. This might be due to positive omitted variable bias present
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in the previous regressions which is eliminated by IQ-instrumented KWW
(although there may be other possible explanations for the change as well).
Both the coefficient comparison tests and the balancing tests indicate no ev-
idence of selection any more. This is due to a combination of lower point
estimates and larger standard errors. The contrast between tables 3 and 4
highlights the usefulness of the balancing test: it warns about the Table 3
results, while the coefficient comparison test delivers insignificant differences
in either case.

Finding an instrumental variable for education is an alternative to con-
trol strategies, such as using test scores. In Table 5 we follow Card’s (1995)
analysis and instrument education using distance to the nearest college, while
dropping the KWW score.® We use the same sample as in Table 2, which
differs from Card’s sample.” Our IV estimates of the return to education are
slightly higher than in Table 2 but a lot lower than in Card (1995) at around
8%. The IV returns estimates are noisy, never quite reaching a t-statistic of
2. Columns 1-5 of Table 5 show that the IV estimate on education, while
bouncing around a bit, does not change significantly when maternal edu-
cation, the library card, or body height are included. In particular, if these
three controls are included at the same time in column (5) the point estimate
is clearly indistinguishable from the unconditional estimate in column (1).

IV regressions with pre-determined variables on the left hand side can
be thought of as a test for the exclusion restriction or random assignment
of the instruments. Unfortunately, in this case the selection regressions in
columns (6)-(8) are also much less precise and as a result less informative.
The coefficients in the regressions for mother’s education and body height
have the wrong sign but confidence intervals cover anything ranging from zero
selection to large positive amounts. Only the library card measure is large,
positive, and significant around the 6% level, warning of some remaining

potential for selection even in the IV regressions. While the data do not

6We use a single dummy variable for whether there is a four year college in the county,
and we instrument experience and experience squared by age and age squared.

"We restrict Card’s sample to non-missing values in maternal education, the library
card, and body height.
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speak clearly in this particular case this does not render the methodology

any less useful.

6 Conclusion

Using predetermined characteristics as dependent variables offers a useful
specification check for a variety of identification strategies popular in empiri-
cal economics. We argue that this is the case even for variables which might
be poorly measured and are of little value as control variables. Such vari-
ables should be available in many data sets, and we encourage researchers
to perform such “balancing” tests more frequently. We show that this is
a more powerful strategy than adding the same variables on the right hand
side of the regression as controls and looking for movement in the coefficient
of interest.

We have illustrated our theoretical results with an application to the
returns to education. Taking our assessment from this exercise at face value,
a reader might conclude that the results in Table 4, returns around 3.5%, can
safely be regarded as causal estimates. Of course, this is not the conclusion
reached in the literature, where much higher IV estimates like those in Table
5 are generally preferred (see e.g. Card, 2001 or Angrist and Pischke, 2015,
chapter 6). This serves as a reminder that the discussion here is focused on
sharpening one particular tool in the kit of applied economists; it is not a
miracle cure for all ills.

The balancing test and other statistics we discuss here are useful to gauge
selection bias due to observed confounders, even when they are potentially
measured poorly. It does not address any other issues which may also haunt
a successful empirical investigation of causal effects. One possible issue
is measurement error in the variable of interest, which is also exacerbated
as more potent controls are added. Griliches (1977) shows that a modest
amount of measurement error in schooling may be responsible for the patterns
of returns we have displayed in Tables 2 to 4. Another issue, also discussed

by Griliches, is that controls like test scores might themselves at least be

24



partly influenced by schooling, which would make them bad controls. For all
these reasons, IV estimates of the returns may be preferable.

There are other issues we have sidestepped in our analysis. Our discus-
sion has focused on the case where a researcher has a single regressor or a
small set of such regressors available for addition to a candidate regression.
But sometimes we might be interested in the robustness of the original re-
sults when a large number of regressor are added. An example would be a
differences-in-differences analysis in a state-year panel, where the researcher
is interested in checking whether the results are robust to the inclusion of
state specific trends. The balancing test seems to be of little use in this
case. In fact, the analysis in Hausman (1978) and Holly (1982) highlights
that the coefficient comparison (Hausman) test may be particularly powerful
in some cases where many regressors are added.® Whether the principles of
the balancing test can be harnessed in a fruitful way for such scenarios is a

useful avenue for future research.
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Figure 1: Theoretical Rejection Rates
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Figure 2: Simulated Rejection Rates with Heteroskedasticity
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Note: The black lines are theoretical power functions for the homoskedastic case with conventional
standard errors, the blue and red and lines are simulated rejection rates with heteroskedastic errors and
robust standard errors.
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Figure 3: Simulated Rejection Rates with Mean Reverting Measurement Error
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Note: The black lines are theoretical power functions with classical measurement error and
conventional standard errors, the blue and red and lines are simulated rejection rates with
mean reverting measurement error and robust standard errors.

Figure 4: Implied g for Different Values the Reliability of Mother’s Education
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Table 1: Parameters for Power Calculations and Implied R%s

ol = y=3

02 =3 n =100

g2 =30

R2

d A=1 A=05 A =0.25
0 0.47 0.24 0.12
0.5 0.49 0.26 0.15
1.0 0.55 0.31 0.22
15 0.61 0.39 0.32
2.0 0.68 0.47 0.42
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Table 2:

Baseline Regressions for Returns to Schooling and Specification Checks

Loa hourlv earninas Mother's years of Library card Body height
g y g education at age 14 in inches
1) ) ®3) (4) (5) (6) ) (8)
vears of education 0.0751 0.0728 0.0735 0.0740 0.0710 0.3946 0.0371 0.1204
(0.0040) (0.0042) (0.0040) (0.0040) (0.0042) (0.0300) (0.0040) (0.0273)
, . 0.0059 0.0044
Mother's years of education (0.0029) (0.0030)
. 0.0428 0.0361
Library card at age 14 (0.0183) (0.0184)
o 0.0090 0.0084
Body height in inches (0.0027) (0.0027)
p-values
Coefficient comparison test 0.045 0.023 0.010 0.002
Balancing test 0.000 0.000 0.000

R? of education on added regressor
Implied £ for reliability = 0.75
reliability = 0.50
reliability = 0.25
Reliability that implies /=0

0.073 0.032  0.007
0.0719 0.0730 0.0737
0.0700 0.0718 0.0729
0.0628 0.0680 0.0707
0.102 0.052  0.022

N = 2,500 in all regressions. Heteroskedasticity robust standard errors in parentheses. All regressions control for experience, experience-squared, indicators
for black, for southern residence and residence in an SMSA in 1976, indicators for region in 1966 and living in an SMSA in 1966.
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Table 3: Regressions for Returns to Schooling and Specification Checks Controlling for the KWW Score

Log hourly earnings Mother's years of Library card Body height

education atage 14 in inches
1) ) (©) (4) () (6) () (8)
vears of education 0.0609 0.0596 0.0608 0.0603 0.0591 0.2500 0.0133 0.0731
(0.0059) (0.0060) (0.0059) (0.0059) (0.0060) (0.0422) (0.0059) (0.0416)
KWW score 0.0070 0.0068 0.0069 0.0069 0.0067 0.0410 0.0076 0.0145
(0.0015) (0.0016) (0.0016) (0.0015) (0.0016) (0.0107) (0.0016) (0.0117)
. 0.0053 0.0048
Mother's years of education
y ucatl (0.0037) (0.0037)
. 0.0097 0.0045
Library card at age 14
torary g (0.0215) (0.0216)
L 0.0078 0.0075
Body height in inches
yhelg (0.0034) (0.0034)
p-values
Coefficient comparison test 0.163 0.652 0.158 0.085
Balancing test 0.000 0.025 0.079
R? of education on added regressor 0.033 0.006 0.002
Implied £ for reliability = 0.75 0.0591 0.0607 0.0602
reliability = 0.50 0.0582 0.0607 0.0598
reliability = 0.25 0.0550 0.0604 0.0586
Reliability that implies /=0 0.054 0.008 0.011

N = 1,773 in all regressions, due to missing values in 1Q. Heteroskedasticity robust standard errors in parentheses. All regressions control for experience,
experience-squared, indicators for black, for southern residence and residence in an SMSA in 1976, indicators for region in 1966 and living in an SMSA in
1966.
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Table 4: Regressions for Returns to Schooling and Specification Checks Instrumenting the KWW Score

Loa hourlv earninas Mother's years of Library card Body height
g y g education atage 14 in inches
1) ) (©) (4) () (6) () (8)
vears of education 0.0340 0.0339 0.0342 0.0343 0.0345 0.0234 0.0168 -0.0486
(0.0139) (0.0139) (0.0138) (0.0139) (0.0138) (0.0952) (0.0134) (0.0998)
KWW score instrumented by 1Q 0.0194 0.0195 0.0200 0.0194 0.0191 0.1496 0.0060 0.0728
(0.0063) (0.0063) (0.0063) (0.0062) (0.0064) (0.0422) (0.0060) (0.0449)
. 0.0028 0.0026
Mother's years of education
y veat (0.0039) (0.0039)
. -0.0130 -0.0154
Library card at age 14
torary g (0.0245) (0.0243)
L 0.0070  0.0069
Body height in inches
yhelg (0.0034) (0.0034)
p-values
Coefficient comparison test 0818 0.635 0.636  0.552
Balancing test 0.806 0.212 0.626

R? of education on added regressor
Implied £ for reliability = 0.75
reliability = 0.50
reliability = 0.25
Reliability that implies /=0

0.000 0.001 0.004
0.0339 0.0343 0.0344
0.0338 0.0344 0.0347
0.0337 0.0349 0.0353

0.002  -0.006  -0.006

N = 1,773 in all regressions, due to missing values in 1Q. Heteroskedasticity robust standard errors in parentheses. All regressions control for experience,
experience-squared, indicators for black, for southern residence and residence in an SMSA in 1976, indicators for region in 1966 and living in an SMSA in

1966.
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Table 5: Regressions for Returns to Schooling and Specification Checks Instrumenting Schooling by Proximity to College

Log hourly earnings Mother's years of Library card Body height

education atage 14 in inches
1) ) ®3) (4) (5) (6) ) (8)
Years of education instrumented by 0.0816 0.0818 0.0778 0.0845 0.0822 -0.0952 0.1015 -0.3658
college proximity (0.0431) (0.0417) (0.0518) (0.0418) (0.0466) (0.3594) (0.0542) (0.3681)
. 0.0030 0.0012
Mother's years of education
y veat (0.0143) (0.0140)
. 0.0367 0.0237
Lib dat 14
ibrary card at age (0.0886) (0.0581)
. 0.0081 0.0079
Body height in inches
Yy el (0.0044) (0.0032)
p-values
Coefficient comparison test 0873 0.686 0.380  0.908
Balancing test 0.791 0.061 0.321

N = 2,500 in all regressions. Heteroskedasticity robust standard errors in parentheses. All regressions control for experience, experience-squared, indicators
for black, for southern residence and residence in an SMSA in 1976, indicators for region in 1966 and living in an SMSA in 1966.
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7 Appendix

7.1 Power Functions
7.1.1 The Balancing Test

The desired balancing regression is
x; = 0o +0s; + uy,
however, z; is measured with error
x" = x; + m,.
Effectively, we run the balancing regression
' =0y +0"s; + u; + m,.

The test statistic for the null hypothesis that the balancing coefficient ¢
is zero is

~m -~m
)
tém = —m = > >
se( > 1 V%tTn
vn O
Define
2
g = —Im
02402
u m
2
o
2 2 u
= 0, t+o, =
Hence

té‘m =

Am\/ﬁ(fs\/l —0

Oy
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The rejection probability is

Pr(|tgn| > C|Hy) = Pr(tym > C|H))+ Pr(tgm < —C|H,)

= Pr 6—Am>0 H1 +PI' 5—/\m<_C H1
se<5> se(é)
Y R LA AL %
se<5> Ou
I L AN LA SR S
se<(5> Ou
i>1—<b<0—d—ﬁ““1_9)+<b<—0—d—\/ﬁ“”1_9)
Oy Ou

This is the power function of the balancing test

v1i—+6 V1—10
Powery, (d) = 1—® <1.96 _ d\/ﬁas—) P (—1.96 B d\/ﬁas ) .

Oy Oy

7.1.2 The Coefficient Comparison Test

The short and long regressions are

yi = o +0%si+¢;
Yy = o+ Bsi+yT + e,

and
€T; = 50 +581 + ;.

Adding measurement error in z;:
" = x; +my,
we have

yi = o’ +3%si+e
yi = "+ B"si "] + el

Treat s;, u;, €;, and m; as the underlying disturbances which in turn will
determine z;, y; and e;. Because e; is a residual uncorrelated with s; and
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x;, it follows that Cov (e;,u;) = 0. We normalize s; to a mean zero variable.
Hence,

Si 0 o, 0 0 O
u; 0 0 oo 0 O
€ Of’f 0 0 o O
m; 0 0 0 0 opn
We want to test 3° — 8™ = 0. Of course
B~ B = by,

and we will assume v # 0, so that
=" =0<6=0.
The test statistic is

S -~m

_ g -5

\/Var (BS) + Var (Em) —2Cov (Bs, Bm> 7

which is asymptotically standard normal. The sampling variances are

tg

vor (") = W¥ar)
v () = 10

which we will now derive in terms of the underlying parameters.
We start by deriving Var (Bm> s is given by
s; =mo + My + 5"
and
Var (") = 602+ 02+ 02,

Cov (27",s;) = do?
SO
o2 = 7iVar(z!") + Var (57")
9 Cov (2", s;)

2
o, = ————=Var(z]")+Var(s]"
Var (z7)? () (&)

2 .2 2 2
%02 402 4+ 02
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Next, we need Var (ef*). Define the reliability

~ Var (x) 6202 + o2

\ = —
Var (z")  6%02 + 02 + 02,

and the R? of the regression of s; on x7"

~ Var (57)
o2
R o2+ 02, - 5202 |
002402402  0°02+ 0%+ 02

R = 1

Then
1—A
1— R?

o2

m
5202402402,
DA =7 e A - arape-y
CuT%m Uu + O'm
8202 +o2+o3,

g = B+

2
Om

)

and

\—R?
1—R2
2 i 2
6°02+02+02, (o
, o2+02,
5202402402,

"=y

Using

we have

B = B+ 08
"= (10

Using these results in

yi = o+ ["s "l + e
= Q"+ (B+~00) s+ (1—0)z]" + el
= (" +7(1—=0)do) + (B+75)si+7(1—0)(ui+m;) + €

yi = a+pBs;+v(0o+0si+ w) + e
= (a+7600) + (B+76) s +yu; + e
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Matching residuals yields

yui+e; = (1 —=0)(u; +my) + e
e = ANu;—y(1—0)m; +¢;

Var (ef") = 7%0°02 ++*(1 - 0)? 02, + o2

o2 2 o2 2
o 2 m 2 U 2 2
-7 ((azw%n) "”(azwzn) “m>+"e

So

and similarly we can derive

Var (3")

1— 2
n

Ou

Now we derive Var <B8>, which does not involve the mismeasured z;.

Comparing the short and the long regression, the relationship between the
residuals is

yi = o’ +3si+e
= o'+ (B+70)si+e;
yi = a+fsi+v(00+0s;+ w;)+e
= a+ 5+ (B+70)si +yu; + e
e; = Yu; + e,

and hence
Var (ef) = y*02 + o2,
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Finally, we derive C'ov <Bs, @) Using

~8 s Z 6?81‘
S o

R ST

- /8 = 3~

> (&)

we have

‘“[%ﬁ%@‘LN(Q{gé?;% ;ﬁ§%§%1>'

In addition, using

1
lim — 2 = 52
plim Z S; o
1 2
lim — T — Var (3"
plim LS E = Var (7).
by Slutsky’s theorem
LB ey
n o2Var (s7)
LE[E (ejef"]si, 857") 5i57"]
n a2Var (s")
1 Cov (€f,ef™) Var (s")

Cov <BS, B) =

n aVar (s")
1 Cov (e, e)

1771

n o2
Using our earlier result that
yi= (@™ +v(1—=0)d) + (B+70)si +v(1—0) (u; +m;) + e
and comparing this to the short regression
yi =’ + B%s; + €],

we have
et = (1= 0) (us+m) + €'

40



Note that u; + m; is the residual from a regression of z]* on s;, we have

Cov (€5,el") = Var(el") = v*002 + o2

1771

and hence L2002 )
Cov <§S,Bm> = 2% T % 0u2+ e

0-8
Returning to the test statistic

NS -~m

s =
\/Var (ES> + Var (Bm> —2Cov (Bs, Bm)

tg

we first derive
1 ~5 ~m ~5 ~m

—Vs(d;y) = Var (5 > + Var (ﬁ ) —2Cov (ﬁ B )
n

17202 + 02  16%0% 402 + 02,
n o2 n o?(o2+o02)

((72 (1-20)02 = 0?) (02 + 02) + (802 + 02 + 02,) (42002 + a§>>

o3 (0% +o%)

1 72003 + 02

€

2092 | 2\ _ ot
(v*002 + 0?) 2n -

Sl— 3

2
s u

2 2 5252
(1-0) (H + 06297 + —Z)

o o
Note that

B =" =0y" =0y (1-0)

so the power function of the coefficient comparison test is

Powery, (d;v) = 1-® (1.96 A ) 9)>+q> (—1.96 _ Ym0 9)> .
Vi () Vs (d;

7.2 Comparison with Oster (2015)

Oster’s (2015) formulation of the causal regression takes the form
Yi =+ BSZ' + )\wli + wo; + €4,

where wy; is an observed covariate and ws; is an unobserved covariate, un-
correlated with wy;.  To map this into our setup, think of the true z; as
capturing both wy; and ws;, i.e. x; = Awy; +wy;. Furthermore, there is equal
selection, i.e.

Cov(s;, Mwy;)  Cov(si, wy)

2 o 2
Ao 05

)
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where a% and a% are the variances of wy; and wy;, respectively. Then, Oster’s
regression can be written as

Yi = a+ Bs; +x; + €,

which is our regression with v = 1 (the scaling of z; is arbitrary of course; it
could be z; = wy; + wy; /A instead and v = A or anything else).

Our observed z" = A\wy;, so measurement error m; = —ws;. Measurement
error here is mean reverting, i.e.

m; = KT; + [, (A1)
Notice that
Cov (my, x;) = —05
and hence
o (A2)
K="
No? + a3
and
L = —wo — kK (Awy; + wy)
= —Ii)\wli — (]. + Ii) Wa;
2 2 9
05 No7
= AWy — —5————1Wy;.
)\20% + Ug ! )\20% + a% 2

It turns out that p, implicitly defined in (A1) and the  given by (A2) satisfy
Cov(z;, p;) = 0 and Cov(s;, p;) = 0. Hence, these two equations represent
mean reverting measurement error as defined in the body of the manuscript.
However, note that Cov(s;, p;) = 0 depends on the equal selection assump-
tion. With proportional selection, i.e.

Cov(si, Awy;)  Cov(sy, wy)

- )
No? o2

J

and 0 # 1 we would have Couv(s;, u1;) # 0.
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