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Abstract

Researchers frequently test identifying assumptions in regression
based research designs (which include e.g. instrumental variables or
differences-in-differences models) by adding additional control vari-
ables on the right hand side of the regression. If such additions do
not affect the coeffi cient of interest (much) a study is presumed to
be reliable. We caution that such invariance may result from the
fact that many observed variables are poor measures of the potential
underlying confounders. In this case, a more powerful test of the
identifying assumption is to put the variable on the left hand side
of the candidate regression. We provide relevant derivations for the
estimators and test statistics involved, as well as power calculations,
which can help applied researchers to interpret their findings. We
illustrate these results in the context of various strategies which have
been suggested to identify the returns to schooling.

∗This paper builds on ideas in our paper “A Cautionary Note on Using Industry Af-
filiation to Predict Income,”NBER WP18384. We thank Alberto Abadie, Josh Angrist,
and Brigham Frandsen for helpful comments.
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1 Introduction

Research on causal effects depends on implicit identifying assumptions, which

typically form the core of a debate about the quality and credibility of a

particular research design. In regression or matching based strategies, this

is the claim that variation in the regressor of interest is as good as random

after conditioning on a suffi cient set of control variables. In instrumental

variables models it is the exclusion restriction. In panel or differences-in-

differences designs it is the parallel trends assumption, possibly after suitable

conditioning. The credibility of a design can be enhanced when researchers

can show explicitly that potentially remaining sources of selection bias have

been eliminated. This is often done through some form of balancing or

falsification tests.

The research designs mentioned above can all be thought of as variants

of regression strategies. If the researcher has access to a candidate con-

founder, tests for the identifying assumption take two canonical forms. The

confounder can be added as a control variable on the right hand side of the

regression. The identifying assumption is confirmed if the estimated causal

effect of interest is insensitive to this variable addition—we call this the coeffi -

cient comparison test. Alternatively, the candidate confounder can be placed

on the left hand side of the regression instead of the outcome variable. A

zero coeffi cient on the causal variable of interest then confirms the identi-

fying assumption. This is analogous to the balancing test typically carried

out using baseline characteristics or pre-treatment outcomes in a randomized

trial, and frequently used in regression discontinuity designs.

Researchers often rely on one or the other of these tests. We argue that

the balancing test, using the candidate confounder on the left hand side of

the regression, is generally more powerful. This is particularly the case when

the available variable is a noisy measure of the true underlying confounder.

The attenuation due to measurement error often implies that adding the

candidate variable on the right hand side as a regressor does little to eliminate

any omitted variables bias. The same measurement error does comparatively
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less damage when putting this variable on the left hand side. Regression

strategies work well in finding small but relevant amounts of variation in

noisy dependent variables.

These two testing strategies are intimately related through the omitted

variables bias formula. The omitted variables bias formula shows that the

coeffi cient comparison test involves two regression parameters, while the bal-

ancing test only involves one of these two. If the researcher has a strong prior

that the added regressor ought to matter for the outcome under study then

the balancing test will provide the remaining information necessary to assess

the research design. This maintained assumption is the ultimate source of

the superior power of the balancing test. However, we show that meaningful

differences emerge only when there is some substantial amount of measure-

ment error in the added regressor in practice. We derive the biases in the

relevant estimators in Section 3.

A second point we are making is that the two strategies both lead to

explicit statistical tests. The balancing test is a simple t-test used routinely

by researchers. When adding a covariate on the right hand side, comparing

the coeffi cient of interest across the two regressions can be done using a

generalized Hausman test. In practice, we haven’t seen this test carried

out in applied papers, where researchers typically just eye-ball the results.1

We provide the relevant test statistics and discuss how they behave under

measurement error in Section 4. We also show how this test is simple to

implement for varying identification strategies. We demonstrate the superior

power of the balancing test under a variety of scenarios in Section 4.2.

While we stress the virtues of the balancing test, this does not mean that

the explicit coeffi cient comparison is without value, even when the added

regressor is measured with error. Suppose the added candidate regressor,

measured correctly, is the only confounder. In this case, the same model with

classical measurement error in this variable is under-identified by one para-

meter. The reliability ratio of the mismeasured variable is a natural metric

for this missing parameter, and we show how researchers can point identify

1An exception is Gelbach (2009), who discusses the Hausman test in this context.
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the parameter of interest with assumptions about the measurement error.

The same result can be used to place bounds on the parameter of interest

using ranges of the measurement error, or the amount of measurement error

necessary for a zero effect can be obtained. We feel that this is a simple and

useful way of combing the results from the three regressions underlying all

the estimation and testing here in terms of a single metric.

The principles underlying the points we are making are not new but the

consequences do not seem to be fully appreciated in much applied work.

Griliches (1977) is a classic reference for the issues arising when regression

controls are measured with error. Like us, Griliches’discussion is framed

around the omitted variables bias arising in linear regressions, the general

framework used most widely in empirical studies.

This explicit measurement error scenario has played relatively little role

in subsequent discussions of omitted variables bias. Rosenbaum and Rubin

(1983) discuss adjustments for an unobserved omitted variable in a framework

with a binary outcome, binary treatment, and binary covariate by making

assumptions about the parameters in the relevant omitted variables bias

formula. Imbens (2003) extends this analysis by transforming the unknown

parameters to partial correlations rather than regression coeffi cients, which

he finds more intuitive. This strand of analysis needs assumptions about

two unknown parameters because no information about the omitted regressor

is available. We assume that the researcher has a noisy measure available,

which is enough to identify one of the missing parameters.

Battistin and Chesher (2014) is closely related as it discusses identifi-

cation in the presence of a mismeasured covariate. They go beyond our

analysis in focusing on measurement error in non-linear models. Like in the

literature following Rosenbaum and Rubin (1983) they discuss identification

given assumptions about the missing parameter, namely the degree of mea-

surement error in the covariate. While we show these results for the linear

case, we go beyond the Battistin and Chesher analysis in our discussion of

testing. This should be of interest to applied researchers who would like to

show that they cannot reject identification in their sample given a measure
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for a candidate confounder.

Altonji, Elder and Taber (2005) discuss an alternative but closely related

approach to the problem. Applied researchers have often argued that relative

stability of regression coeffi cients when adding additional controls provides

evidence for credible identification. Implicit in this argument is the idea that

other confounders not controlled for are similar to the controls just added to

the regression. The paper by Altonji, Elder and Taber (2005) formalizes this

argument. In practice, adding controls will typically move the coeffi cient of

interest somewhat even if it is not much. Altonji et al. (2013) and Oster

(2015) extend the Altonji, Elder and Taber work by providing more precise

conditions for bounds and point identification in this case. The approach

in these papers relies on an assumption about how the omitted variables

bias due to the observed regressor is related to omitted variables bias due to

unobserved confounders.

The unobserved confounder in this previous work can be thought of as

the source of measurement error in the covariate which is added to the re-

gression in our analysis. For example, in our empirical example below, we

use mother’s education as a measure for family background but this variable

may only capture a small part of all the relevant family background infor-

mation, a lot of which may be orthogonal to mother’s education. Since our

discussion of inference and testing covers this case, our framework is a useful

starting point for researchers who are willing to make the type of assumptions

in Altonji, Elder and Taber (2005) and follow up work.

Griliches (1977) uses estimates of the returns to schooling, which have

formed a staple of labor economics ever since, as example for the method-

ological points he makes. We use Griliches’data from the National Longitu-

dinal Survey of Young Men to illustrate our results in section 5. In addition

to Griliches (1977) this data set has been used in a well known study by

Card (1995). It is well suited for our purposes because the data contain

various test score measures which can be used as controls in a regression

strategy (as investigated by Griliches, 1977), a candidate instrument for col-

lege attendance (investigated by Card, 1995), as well as a myriad of other
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useful variables on individual and family background. The empirical results

support our theoretical claims.

2 A Simple Framework

Consider the following simple framework starting with a regression equation

yi = αs + βssi + esi (1)

where yi is an outcome like log wages, si is the causal variable of interest, like

years of schooling, and ei is a regression residual. The researcher proposes this

short regression model to be causal. This might be the case because the data

come from a randomized experiment, so the simple bivariate regression is all

we need. More likely, the researcher has a particular research design applied

to observational data. For example, in the case of a regression strategy

controlling for confounders, yi and si would be residuals from regressions of

the original variables on the chosen controls. In the case of panel data or

differences-in-differences designs the controls are sets of fixed effects. In the

case of instrumental variables si would be the predicted values from a first

stage regression. In practice, (1) encompasses a wide variety of empirical

approaches.

Now consider the possibility that the estimate βs from (1) may not actu-

ally be causal. There may be a candidate confounder xi, so that the causal

effect of si on yi would only be obtained conditional on xi, as in the long

regression

yi = α + βsi + γxi + ei (2)

and the researcher would like to probe whether this is a concern. For exam-

ple, in the returns to schooling context, xi might be some remaining part

of an individual’s earnings capacity which is also related to schooling, like

ability and family background.

Researchers who find themselves in a situation where they start with

a proposed causal model (1) and a measure for a candidate confounder xi
typically do one of two things: They either regress xi on si and check whether
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si is significant, or they include xi on the right hand side of the original

regression, and check whether the estimate of β changes materially when

xi is added to the regression of interest. The first strategy constitutes

a test for “balance,” a standard check for successful randomization in an

experiment. In principle, the second strategy has the advantage that it goes

beyond testing whether (1) qualifies as a causal regression. If β changes

appreciably this suggests that the original estimate βs is biased. However,

the results obtained with xi as an additional control should be closer to the

causal effect we seek to uncover. In particular, if xi were the only relevant

confounder and if we measure it without error, the β estimate from the

controlled regression is the causal effect of interest. In practice, there is

usually little reason to believe that these two conditions are met, and hence

a difference between β and βs again only indicates a flawed research design.

The relationship between these two strategies is easy to see. Write the

regression of xi on si, which we will call the balancing regression, as

xi = δ0 + δsi + ui. (3)

The change in the coeffi cient β from adding xi to the regression (1) is given

by the omitted variables bias formula

βs − β = γδ (4)

where δ is the coeffi cient on si in the balancing regression. The change in

the coeffi cient of interest β from adding xi consists of two components, the

coeffi cient γ on xi in (2) and the coeffi cient δ from the balancing regression.

Here we consider the relationship between the two approaches: the bal-

ancing test, consisting of an investigation of the null hypothesis

H0 : δ = 0, (5)

compared to the inspection of the coeffi cient movement βs − β. The lat-

ter strategy of comparing βs and β is often done informally but it can be

formalized as a statistical test of the null hypothesis

H0 : βs − β = 0, (6)
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which we will call the coeffi cient comparison test. We have not seen this

carried out explicitly in applied research. From (4) it is clear that (6) amounts

to

H0 : βs − β = 0⇔ γ = 0 or δ = 0.

This highlights that the two approaches formally test the same hypothesis

under the maintained assumption γ 6= 0. We may often have a strong sense

that γ 6= 0; i.e. we are dealing with a variable xi which we believe affects the

outcome, but we are unsure whether it is related to the regressor of interest

si. In this case, both tests would seem equally suitable. Nevertheless, in

other cases γ may be zero, or we may be unsure. In this case the coeffi cient

comparison test seems to dominate because it directly addresses the question

we are after, namely whether the coeffi cient of interest β is affected by the

inclusion of xi in the regression.

Here we make the point that the balancing test adds valuable information

particularly when the true confounder is measured with error. In general, xi
may not be easy to measure. If the available measure for xi contains classi-

cal measurement error, the estimate of γ in (2) will be attenuated, and the

comparison βs − β will be too small (in absolute value) as a result. The

estimate of δ from the balancing regression is still unbiased in the presence

of measurement error; this regression simply loses precision because the mis-

measured variable is on the left hand side. Under the maintained assumption

that 0 < γ <∞, the balancing test is more powerful than the coeffi cient com-
parison test. In order to make these statements precise, we collect results for

the estimators of the relevant parameters and test statistics for the case of

classical measurement error in the following section.
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3 Estimators in the Presence of Measurement
Error

The candidate variable xi is not observed. Instead, the researcher works

with the mismeasured variable

xmi = xi +mi. (7)

The measurement error mi is classical, i.e. E (mi) = 0, Cov (xi,mi) = 0. As

a result, the researcher compares the regressions

yi = αs + βssi + esi

yi = αm + βmsi + γmxmi + emi . (8)

Notice that the short regression does not involve the mismeasured xi, so that

βs = β + γδ as before. However, the coeffi cients βm and γm are biased now

and are related to the coeffi cients from (2) in the following way:

βm = β + γδ
1− λ

1−R2 = β + γδθ (9)

γm = γ
λ−R2
1−R2 = γ (1− θ)

where R2 is the R2 of the regression of si on xmi and

λ =
V ar (xi)

V ar (xmi )

is the reliability of xmi . It measures the amount of measurement error present

as the fraction of the variance in the observed xmi , which is due to the signal

in the true xi. λ is also the attnuation factor in a simple bivariate regression

on xmi . An alternative way to parameterize the amount of measurement error

is

θ =
1− λ

1−R2 =
σ2m

σ2u + σ2m
.

1 − θ is the multivariate attenuation factor. Recall that ui is the residual

from the balancing regression (3).
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Notice that

xmi = δm0 + δmsi + ui +mi, (10)

and hence λ > R2. As a result

0 <
1− λ

1−R2 < 1

0 <
λ−R2
1−R2 < λ.

θ is an alternative way to parameterize the degree of measurement error in

xi compared to λ and R2. The θ parameterization uses only the variation in

xmi which is orthogonal to si. This is the part of the variation in x
m
i which

is relevant to the estimate of γm in regression (8), which also has si as a

regressor. θ turns out to be a useful parameter in many of the derivations

that follow.

The coeffi cient βm is biased but less so than βs. In fact, βm lies between

βs and β. The estimate γm is attenuated; the attenuation is bigger than in

the case of a bivariate regression of yi on xmi without the regressor si if x
m
i

and si are correlated (R2 > 0).

These results highlight a number of issues. The gap βs−βm is too small
compared to the desired βs − β, directly affecting the coeffi cient comparison
test. In addition, γm is biased towards zero. Ceteris paribus, this is making

the assessment of the hypothesis γ = 0 more diffi cult. Finally, the balancing

regression (10) with the mismeasured xmi involves measurement error in the

dependent variable and therefore no bias in the estimate of δm, i.e. δm = δ,

but simply a loss of precision.

The results here can be used to think about identification of β in the

presence of measurement error. Rearranging (9) yields

γ = γm
1−R2
λ−R2

β = βm − δγm 1− λ
λ−R2 . (11)

Since R2 is observed from the data this only involves the unknown parameter

λ. If we are willing to make an assumption about the measurement error we
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are able to point identify β. Even if λ is not known precisely, (11) can be

used to bound β for a range of plausible reliabilities. Alternatively, (9) can

be used to derive the value of λ for which β = 0. These calculations are

similar in spirit to the ones suggested by Oster (2015) in her setting.

4 Inference

In this section, we consider how conventional standard errors and test sta-

tistics for the quantities of interest are affected in the homoskedastic case.2

We present the theoretical power functions for the two alternative test sta-

tistics; derivations are in the appendix. The power results are extended to

the heteroskedastic case and non-classical measurement error in simulations.

Our basic conclusions are very robust in all these different scenarios.

Start with the coeffi cient δ̂
m
from the balancing regression:

se
(
δ̂
m
)

=
1√
n

√
σ2u + σ2m
σs

=
σu√

nσs
√

1− θ
.

Compare this to the standard error of the error free estimator

se
(
δ̂
)

=
1√
n

σu
σs

so that

se
(
δ̂
m
)

=
se
(
δ̂
)

√
1− θ

.

It is easy to see that the standard error is inflated compared to the case with

no measurement error. The t-test

tδm =
δ̂
m

se
(
δ̂
m
)

2See the appendix for the precise setup of the model. The primitive disturbances are
si, ui, ei, and mi, which we assume to be uncorrelated with each other. Other variables
are determined by (3), (2), and (7).
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remains consistent because mi is correctly accounted for in the residual of

the balancing regression (10), but the t-statistic is smaller than in the error

free case.
1√
n
tδm −→

√
1− θ δ(

σu
σs

) < δ(
σu
σs

) ← 1√
n
tδ

This means the null hypothesis (5) is rejected less often. The test is less

powerful than in the error free case; the power loss is capture by the term
√

1− θ.
We next turn to γ̂m, the coeffi cient on the mismeasured xmi in (8). The

estimate of γ is of interest since it determines the coeffi cient movement βs−
β = γδ in conjunction with the result from the balancing regression. The

standard error for γ̂m is

se (γ̂m) =
1√
n

√
V ar (emi )√
V ar (x̃mi )

=
1√
n

√
γ2θσ2u + σ2e
σ2u + σ2m

=
1√
n

√
1− θ

(√
θγ2 +

σe
σu

)
while

se (γ̂) =
1√
n

σe
σu
.

The standard error for γ̂m involves two terms: the first term is an attenuated

version of the standard error for γ̂ from the corresponding regression with

the correctly measured xi, while the second term depends on the value of γ.

The parameters in the two terms are not directly related, so se (γ̂m) ≷ se (γ̂).

Measurement error does not necessarily inflate the standard error here.

The two terms have a simple, intuitive interpretation. Measurement

error biases the coeffi cient γm towards zero, the attenuation factor is 1 − θ.
The standard error is attenuated in the same direction; this is reflected in

the
√

1− θ, which multiplies the remainder of the standard error calculation.
The second influence from measurement error comes from the term

√
θγ2,

which comes from the fact that the residual variance V ar (emi ) is larger when
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there is measurement error. The increase in the variance is related to the

true γ, which enters the residual. But attenuation matters here as well, so

this term is inverse U-shaped in θ and is greatest when θ = 0.5.

The t-statistic is

tγm =
γ̂m

se (γ̂m)

and it follows that

1√
n
tγm −→

√
1− θ γ(√

θγ2 + σe
σu

) < γ(
σe
σu

) ← 1√
n
tγ.

As in the case of δ̂
m
from the balancing regression, the t-statistic γ̂m is smaller

than tγ for the error free case. But in contrast to the balancing test statistic

tδm , measurement error reduces tγm relatively more, namely due to the term√
θγ2 in the denominator, in addition to the attenuation factor

√
1− θ. This

is due to the fact that measurement error in a regressor both attenuates the

relevant coeffi cient towards zero as well introducing additional variance into

the residual. The upshot from this discussion is that classical measurement

error makes the assessment of whether γ = 0 comparatively more diffi cult

compared to the assessment whether δ = 0.

Finally, consider the quantity βs − βm, which enters the coeffi cient com-
parison test,

V ar
(
β̂
s
− β̂

m
)

= V ar
(
β̂
s
)

+ V ar
(
β̂
m
)
− 2Cov

(
β̂
s
, β̂

m
)
.

There are various things to note about this expression. V ar
(
β̂
s
)
and

V ar
(
β̂
m
)
cannot be ranked. Adding an additional regressor may increase

or lower the standard error on the regressor of interest. Secondly, the covari-

ance term reduces the sampling variance of the coeffi cient comparison test.

The covariance term will generally be sizeable compared to the V ar
(
β̂
s
)

and V ar
(
β̂
m
)
because the regression residuals esi and e

m
i will be highly cor-

related. In fact,

Cov (esi , e
m
i ) = γ2θσ2u + σ2e
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and

Cov
(
β̂
s
, β̂

m
)

=
1

n

γ2θσ2u + σ2e
σ2s

.

We show that the covariance term is closely related to the sampling variance

of the short regression coeffi cient

V ar
(
β̂
s
)

=
1

n

γ2σ2u + σ2e
σ2s

.

Because the covariance term gets subtracted, looking at the standard errors of

β̂
s
and β̂

m
alone can be very misleading about the precision of the coeffi cient

comparison.

Putting everything together

V ar
(
β̂
s
− β̂

m
)

=
1

n
(1− θ)

(
γ2
σ2u
σ2s

+ θδ2γ2 + δ2
σ2e
σ2u

)
.

Setting θ = 0, it is easy to see that, like V ar (γ̂m), V ar
(
β̂
s
− β̂

m
)
has both

an attenuation factor as well as an additional positive term compared to

V ar
(
β̂
s
− β̂

)
. Measurement error may therefore raise or lower the sampling

variance for the coeffi cient comparison test.

The coeffi cient comparison test itself can be formulated as a t-test as well,

since we are interested in the movement in a single parameter.

t(βs−βm) =
√
n

β̂
s
− β̂

m√
(1− θ)

(
γ2 σ

2
u

σ2s
+ θδ2γ2 + δ2 σ

2
e

σ2u

) .
Note that

βs − βm = δγm = δγ (1− θ)

so that

1√
n
t(βs−βm) →

δγ (1− θ)√
(1− θ)

(
γ2 σ

2
u

σ2s
+ θδ2γ2 + δ2 σ

2
e

σ2u

)
=
√

1− θ δγ√
γ2 σ

2
u

σ2s
+ θδ2γ2 + δ2 σ

2
e

σ2u

.
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Not surprsingly, since βs − βm = δγm, it turns out that(
1

t(βs−βm)

)2
=

(
1

tγm

)2
+

(
1

tδm

)2
.

In other words, the t-statistic for the coeffi cient comparison test inherits

exactly the same two sources of bias which are also present in tγm and tδm .

In particular, t(βs−βm) is subject both to the attenuation factor
√

1− θ and
to the additional variance term θδ2γ2. As a result, it follows that under the

maintained hypothesis γ 6= 0, the balancing test will be more powerful than

the coeffi cient comparison test. This result itself is not surprising; after all

it ought to be easier to test δ = 0 while maintaining γ 6= 0, compared to

testing the compound hypothesis δ = 0 or γ = 0. Below we show that the

differences in power between the tests can be substantial when there is a

lot of measurement error in xmi . Before we do so, we briefly note how the

coeffi cient comparison test can be implemented in practice.

4.1 Implementing the Coeffi cient Comparison Test

The balancing test is a straightforward t-test, which regression software calcu-

lates routinely. We noted that the coeffi cient comparison test is a generalized

Hausman test. Regression software will typically calculate this as well if it

allows for seemingly unrelated regression estimation (SURE). SURE takes

Cov (esi , e
m
i ) into account and therefore facilitates the test. In Stata, this is

implemented via the suest command. Generically, the test would take the

following form:

reg y s

est store reg1

reg y s x

est store reg2

suest reg1 reg2

test[reg1_mean]s=[reg2_mean]s

The test easily accommodates covariates or can be carried out with the

variables y, s, and x being residuals from a previous regression (hence facili-

14



tating large numbers of fixed effects though degrees of freedom may have to

be adjusted in this case).

As far as we can tell, the Stata suest or 3reg commands don’t work for

the type of IV regressions we might be interested in here. An alternative,

which also works for IV, is to take the regressions (1) and (2) and stack them:

[
yi
yi

]
=

[
1 0
0 1

] [
αs

α

]
+

[
si 0
0 si

] [
βs

β

]
+

[
0 0
0 xi

] [
0
γ

]
+

[
esi
ei

]
.

Testing βs − β = 0 is akin to a Chow test across the two specifications (1)

and (2). Of course, the data here are not two subsamples but the original

data set duplicated. To take account of this and allow for the correlation in

the residuals across duplicates, it is crucial to cluster standard errors on the

observation identifier i.

4.2 Power comparisons

The ability of a test to reject when the null hypothesis is false is described by

the power function of the test. The power functions here are functions of d,

the values the parameter δ might take. Using the results from the previous

section, the power function for a 5% critical value of the balancing test is

Powertδm (d) = 1−Φ

(
1.96− d

√
nσs
√

1− θ
σu

)
+Φ

(
−1.96− d

√
nσs
√

1− θ
σu

)
while the power function for the coeffi cient comparison test is

Powert(βs−βm)
(d; γ) = 1−Φ

(
1.96− d

√
nγ (1− θ)√
Vβ (d; γ)

)
+Φ

(
−1.96− d

√
nγ (1− θ)√
Vβ (d; γ)

)
where

Vβ (d; γ) = (1− θ)
(
γ2σ2u
σ2s

+ θd2γ2 +
d2σ2e
σ2u

)
.

Note that the power function for the balancing test does not involve the

parameter γ. Nevertheless, for 0 < γ <∞ it can be written as

Powertδm (d) = 1−Φ

(
1.96− d

√
nγ (1− θ)√
Vδ (d; γ)

)
+Φ

(
−1.96− d

√
nγ (1− θ)√
Vδ (d; γ)

)
.
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where

Vδ (d; γ) = (1− θ) γ
2σ2u
σ2s

.

It is hence apparent that Vβ (d; γ) > Vδ (d; γ), i.e. the coeffi cient comparison

test has a larger variance. As a result

Powertδ (d) > Powert(βs−βm)
(d; γ) .

In practice, this result may or may not be important, so we illustrate it

with a number of numerical examples. Table 1 displays the parameter values

as well as the implied values of the R2 of regression (8). The values were

chosen so that for intermediate amounts of measurement error in xmi the R
2s

are reflective of regressions fairly typical of those in applied microeconomics,

for example, a wage regression.

In Figure 1, we plot the power functions for both tests for three different

magnitudes of the measurement error. The first set involves the power

functions with no measurement error. The power functions can be seen

to increase quickly with d, and both tests reject with virtual certainty as d

reaches values of 1. The balancing test is slightly more powerful but this

difference is small, and only visible in the figure for a small range of d.

The second set of power functions corresponds to a reliability ratio for xmi
of λ = 0.5. Measurement error of that magnitude visibly affects the power

of both tests. The balancing test still rejects with certainty for d > 1.5

while the power the coeffi cient comparison test flattens out around a value

of 0.93. This discrepancy becomes even more pronounced with a λ = 0.25.

The power of the coeffi cient comparison test does not rise above 0.6 in this

case, while the balancing test still rejects with a probability of 1 at values of

d slightly above 2.3

The results in Figure 1 highlight two important things. There are para-

meter combinations where the balancing test has substantially more power
3Power for the cc test can actually be seen to start to decline as d increases. This

comes from the fact that the amount of measurement error is parameterized in terms
of the reliability λ of xmi . For a constant reliability the amount of measurement error
increases with d. We felt that thinking about the reliability is probably the most natural
way for applied researchers to think about the amount of measurement error they face in
a variable.
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than the coeffi cient comparison test. On the other hand, there are other

regions where the power of the two tests is very similar, for example, the

region where d < 0.5 in Figure 1. In these cases, both tests perform very

similar but, of course, specific results may differ in small samples. Hence, in

a particular application, the coeffi cient comparison test may reject when the

balancing test doesn’t.

The homoskedastic case with classical measurement error might be highly

stylized and not correspond well to the situations typically encountered in

empirical practice. We therefore explore some other scenarios as well using

simulations. Figure 2 shows the original theoretical power functions for the

case with no measurement error from Figure 1. It adds empirical rejection

rates from simulations with heteroskedastic errors ui and ei of the form

σ2u,i =

(
e|si|

1 + e|si|

)2
σ20u

σ2e,i =

(
e|si|

1 + e|si|

)2
σ20e.

We chose the baseline variances σ20u and σ
2
0e so that σ

2
u = 3 and σ2e = 30 to

match the variances in Figure 1. All test statistics employ robust standard

errors. We plot the rejection rates for data with no measurement error and for

the more severe measurement error given by a reliability ratio λ = 0.25.4 As

can be seen in Figure 2, both the balancing and the coeffi cient comparison

tests lose some power when the residuals are heteroskedastic compared to

the homoskedastic baseline. Otherwise, the results look very similar to

those in Figure 1. Heteroskedasticity does not seem to alter the conclusions

appreciatively.

Next, we explore mean reverting measurement error (Bound et al., 1994).

We generate measurement error as

mi = κxi + µi

where κ is a parameter and Cov (xi, µi) = 0, so that κxi captures the error

related to xi and µi the unrelated part. We set κ = −0.5 . Notice that xmi
4We did 25,000 replications in these simulations, and the underlying regressions have

a 100 observations.
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can now be written as

xmi = (1 + κ) δ0 + (1 + κ) δsi + (1 + κ)ui + µi,

so that this parameterization directly affects the coeffi cient in the balancing

regression, which will be smaller than δ for a negative κ. At the same time,

the residual variance in this regression is also reduced for a given reliabil-

ity ratio.5 Figure 3 demonstrates that the power of both tests deteriorates

even for moderate amounts of measurement error now but the coeffi cient

comparison test is still most affected.

The case of mean reverting measurement error captures a variety of ideas,

including the one that we may observe only part of a particular concept.

Imagine we would like to include in our regression a variable xi = w1i + w2i,

where w1i and w2i are two orthogonal variables. We observe xmi = w1i. For

example, xi may be family background, w1i is mother’s education and other

parts of family background correlated with it, and w2i are all relevant parts

of family background, which are uncorrelated with mother’s education. As

long as selection bias due to w1i and w2i is the same, this amounts to the

mean reverting measurement error formulation above. This scenario is also

isomorphic to the model studied by Oster (2015). See the appendix for

details.

5 Empirical Analysis

We illustrate the theoretical results in the context of estimating the returns

to schooling using data from the National Longitudinal Survey of Young

Men. This is a panel study of about 5,000 male respondents interviewed

from 1966 to 1981. The data set has featured in many prominent analyses

of the returns to education, including Griliches (1977) and Card (1995). We

5Note that fixing λ, σ2µ is given by

σ2µ =
1− λ (1 + κ)

λ
V ar (xi) .
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use the NLS extract posted by David Card and augment it with the variable

on body height measured in the 1973 survey. We estimate regressions similar

to eq. (2). The variable yi is the log hourly wage in 1976 and si is the number

of years of schooling reported by the respondent in 1976. Our samples are

restricted to observations without missing values in any of the variables used

in a particular table or set of tables.

We start in Table 2 by presenting simple OLS regressions controlling for

experience, race, and region of residence. The estimated return to schooling

is 7.5%. This estimate is unlikely to reflect the causal effect of education

on income because important confounders, which influence both education

and income simultaneously such as ability or family background, are not

controlled for.

In columns (2) to (5) we include variables which might proxy for the re-

spondent’s family background. In column (2) we include mother’s education,

in column (3) whether the household had a library card when the respondent

was 14, and in column (4) we add body height measured in inches. Each of

these variables is correlated with earnings and the coeffi cient on education

moves moderately when these controls are included. Mother’s education

captures an important component of a respondent’s family background. The

library card measure has been used by researchers to proxy for important

parental attitudes (e.g. Farber and Gibbons, 1996). Body height is a vari-

able determined by parents’genes and by nutrition and disease environment

during childhood. It is unlikely a particularly powerful control variable but

it is predetermined and correlated with family background, self-esteem, and

ability (e.g. Persico, Postlewaite, and Silverman, 2004; Case and Paxson,

2008). The return to education falls by .1 to .2 log points when these con-

trols are added. In column (5) we enter all three variables simultaneously.

The coeffi cients on the controls are somewhat attenuated and the return to

education falls slightly further to 7.1%.

It might be tempting to conclude from the relatively small change in the

estimated returns to schooling that this estimate might safely be given a

causal interpretation. We provide a variety of evidence that this conclusion
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is unlikely to be a sound one. Below the estimates in columns (2) to (5), we

display the p-values from the coeffi cient comparison test, comparing each of

the estimated returns to education to the one from column (1). Although

the coeffi cient movements are small, the tests all reject at the 5% level, and

in columns (4) and (5) they reject at the 1% level.

The results in columns 6 to 8, where we regress maternal education, the

library card, and body height on education demonstrates this worry. The ed-

ucation coeffi cient is positive and strongly significant in all three regressions,

with t-values ranging from 4.4 to 13.1. The magnitudes of the coeffi cients

are substantively important. It is diffi cult to think of these results as causal

effects: the respondent’s education should not affect predetermined proxies

of family background. Instead, these estimates reflect selection bias. Individ-

uals with more education have significantly better educated mothers, were

more likely to grow up in a household with a library card, and experienced

more body growth when young. Measurement error leads to attenuation bias

when these variables are used on the right-hand side which renders them fairly

useless as controls. The measurement error does not matter for the estimates

in columns 6-8, and these are informative about the role of selection. Com-

paring the p-values at the bottom of the table to the corresponding ones for

the coeffi cient comparison test in columns 2 to 4 demonstrates the superior

power of the balancing test.

Finally, we report a number of additional results in the table. The R2

from regression of education on the added regressor (mother’s education,

the library card, or height) is an ingredient necessary for the calculations

that follow. Next, we report the values for β if the added regressor was the

only remaining source of omitted variables bias, assuming various degrees of

measurement error. These calculations are based on equation (11). Since

the idea that any of the candidate controls by themselves would identify

the return in these bare bones wage equations does not seem particularly

believable we will discuss these results in the context of Table 3.

In Table 3 we repeat the same set of regressions including a direct measure

for ability, the respondent’s score on the Knowledge of the World of Work
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test (KWW), a variable used by Griliches (1977) as a proxy for ability. The

sample size is reduced due to the exclusion of missing values in the test

score. Estimated returns without the KWW score are very similar to those

in the original sample. Adding the KWW score reduces the coeffi cient on

education by almost 20%, from 0.075 to 0.061. Adding maternal education,

the library card, and body height does very little now to the estimated returns

to education. The coeffi cient comparison test indicates that none of the

small changes in the returns to education are significant. Controlling for the

KWW scores has largely knocked out the library card effect but done little

to the coeffi cients on maternal education and body height. The relatively

small and insignificant coeffi cient movements in columns (2) to (5) suggest

that the specification controlling for the KWW score might solve the ability

bias problem.

Columns (6)-(8), however, show that the regressions with the controls on

the left hand side still mostly result in significant education coeffi cients even

when the KWW score is in the regression. This suggests that the estimated

returns in columns 1-5 might also still be biased by selection. The estimated

coeffi cients on education for the three controls are on the order of half their

value from Table 1, and the body height measure is now only significant

at the 10% level. Particularly the relationship between mother’s and own

education is still sizable, and this measure still indicates the possibility of

important selection.

The calculations at the bottom of the table based on equation (11) also

confirm that mother’s education might potentially pick up variation due to an

important confounder. These calculations assume that mother’s education is

the only omitted control in column (1) while acknowledging that the available

measure might contain a lot of noise compared to the correct control. With

the moderate amounts of measurement error implied by a reliability of 0.75

or 0.5 the returns to education coeffi cient still moves fairly little when adding

mother’s education. For a reliability of 0.5 the return remains .058 compared

to .061 without controlling for mother’s education. If the reliability is only

0.25 the return falls more strongly to 0.055. In order for the entire estimated
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return in column (1) to be explained by omitted variables bias due to mother’s

education the reliability needs to be as low as 0.05, as can be seen in the last

row.

These numbers highlight a lot of curvature in the relationship between

the reliability and the implied return to education. Figure 4 illustrates this

for the case of the mother’s education variable. It becomes clear that the

return changes little for reliabilities above 0.25 but then falls precipitously

for more severe measurement error. If we believe that mother’s education

captures family background poorly enough there is a lot room for bias from

this source.

Looking at the columns (3) and (4) we can see that the same isn’t true

for the library card and body height measures. Here the returns relationship

is essentially flat over the range of reliabilities as low as 0.25. Reliabilities as

low as 0.01 are necessary for a zero return. This confirms that these variables

have lost most of their power as confounders once KWW is controlled in the

regressions. The flat relationship between the reliability and returns is due

to the fact that both δ and γm are lower for the library card and body

height in Table 3 compared to Table 2. We don’t claim here that adding

these variables to the regressions with the KWW score would be a suitable

identification strategy in any case. Rather, we see the implied β calculation

for different reliabilities as an intuitive measure summarizing the impact of

the relevant values of δ, γm, and the R2 between years of education and the

added regressor.

While the KWW score might be a powerful control it is likely also mea-

sured with substantial error. Griliches (1977) proposes to instrument this

measure with an IQ testscore variable, which is also contained in the NLS

data, to eliminate at least some of the consequences of this measurement er-

ror. In Table 4 we repeat the schooling regressions with IQ as instrument for

the KWW score. The coeffi cient on the KWW score almost triples, in line

with the idea that an individual test score is a very noisy measure of ability.

The education coeffi cient now falls to only about half its previous value from

0.061 to 0.034. This might be due to positive omitted variable bias present
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in the previous regressions which is eliminated by IQ-instrumented KWW

(although there may be other possible explanations for the change as well).

Both the coeffi cient comparison tests and the balancing tests indicate no ev-

idence of selection any more. This is due to a combination of lower point

estimates and larger standard errors. The contrast between tables 3 and 4

highlights the usefulness of the balancing test: it warns about the Table 3

results, while the coeffi cient comparison test delivers insignificant differences

in either case.

Finding an instrumental variable for education is an alternative to con-

trol strategies, such as using test scores. In Table 5 we follow Card’s (1995)

analysis and instrument education using distance to the nearest college, while

dropping the KWW score.6 We use the same sample as in Table 2, which

differs from Card’s sample.7 Our IV estimates of the return to education are

slightly higher than in Table 2 but a lot lower than in Card (1995) at around

8%. The IV returns estimates are noisy, never quite reaching a t-statistic of

2. Columns 1-5 of Table 5 show that the IV estimate on education, while

bouncing around a bit, does not change significantly when maternal edu-

cation, the library card, or body height are included. In particular, if these

three controls are included at the same time in column (5) the point estimate

is clearly indistinguishable from the unconditional estimate in column (1).

IV regressions with pre-determined variables on the left hand side can

be thought of as a test for the exclusion restriction or random assignment

of the instruments. Unfortunately, in this case the selection regressions in

columns (6)-(8) are also much less precise and as a result less informative.

The coeffi cients in the regressions for mother’s education and body height

have the wrong sign but confidence intervals cover anything ranging from zero

selection to large positive amounts. Only the library card measure is large,

positive, and significant around the 6% level, warning of some remaining

potential for selection even in the IV regressions. While the data do not

6We use a single dummy variable for whether there is a four year college in the county,
and we instrument experience and experience squared by age and age squared.

7We restrict Card’s sample to non-missing values in maternal education, the library
card, and body height.

23



speak clearly in this particular case this does not render the methodology

any less useful.

6 Conclusion

Using predetermined characteristics as dependent variables offers a useful

specification check for a variety of identification strategies popular in empiri-

cal economics. We argue that this is the case even for variables which might

be poorly measured and are of little value as control variables. Such vari-

ables should be available in many data sets, and we encourage researchers

to perform such “balancing” tests more frequently. We show that this is

a more powerful strategy than adding the same variables on the right hand

side of the regression as controls and looking for movement in the coeffi cient

of interest.

We have illustrated our theoretical results with an application to the

returns to education. Taking our assessment from this exercise at face value,

a reader might conclude that the results in Table 4, returns around 3.5%, can

safely be regarded as causal estimates. Of course, this is not the conclusion

reached in the literature, where much higher IV estimates like those in Table

5 are generally preferred (see e.g. Card, 2001 or Angrist and Pischke, 2015,

chapter 6). This serves as a reminder that the discussion here is focused on

sharpening one particular tool in the kit of applied economists; it is not a

miracle cure for all ills.

The balancing test and other statistics we discuss here are useful to gauge

selection bias due to observed confounders, even when they are potentially

measured poorly. It does not address any other issues which may also haunt

a successful empirical investigation of causal effects. One possible issue

is measurement error in the variable of interest, which is also exacerbated

as more potent controls are added. Griliches (1977) shows that a modest

amount of measurement error in schooling may be responsible for the patterns

of returns we have displayed in Tables 2 to 4. Another issue, also discussed

by Griliches, is that controls like test scores might themselves at least be
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partly influenced by schooling, which would make them bad controls. For all

these reasons, IV estimates of the returns may be preferable.

There are other issues we have sidestepped in our analysis. Our discus-

sion has focused on the case where a researcher has a single regressor or a

small set of such regressors available for addition to a candidate regression.

But sometimes we might be interested in the robustness of the original re-

sults when a large number of regressor are added. An example would be a

differences-in-differences analysis in a state-year panel, where the researcher

is interested in checking whether the results are robust to the inclusion of

state specific trends. The balancing test seems to be of little use in this

case. In fact, the analysis in Hausman (1978) and Holly (1982) highlights

that the coeffi cient comparison (Hausman) test may be particularly powerful

in some cases where many regressors are added.8 Whether the principles of

the balancing test can be harnessed in a fruitful way for such scenarios is a

useful avenue for future research.
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Figure 1: Theoretical Rejection Rates 

 

 
Figure 2: Simulated Rejection Rates with Heteroskedasticity 

 

Note: The black lines are theoretical power functions for the homoskedastic case with conventional 
standard errors, the blue and red and lines are simulated rejection rates with heteroskedastic errors and 
robust standard errors. 
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Figure 3: Simulated Rejection Rates with Mean Reverting Measurement Error 

 

Note: The black lines are theoretical power functions with classical measurement error and 
conventional standard errors, the blue and red and lines are simulated rejection rates with 
mean reverting measurement error and robust standard errors. 

 

Figure 4: Implied s for Different Values the Reliability of Mother’s Education 
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Table 1: Parameters for Power Calculations and Implied R2s 
 

௦ଶߪ ൌ 1   = 3  
௨ଶߪ ൌ 3  n = 100  
௘ଶߪ ൌ 30    

 
d 

R2 
 = 1  = 0.5  = 0.25 

0 0.47 0.24 0.12 
0.5 0.49 0.26 0.15 
1.0 0.55 0.31 0.22 
1.5 0.61 0.39 0.32 
2.0 0.68 0.47 0.42 
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Table 2: Baseline Regressions for Returns to Schooling and Specification Checks 
 

 
Log hourly earnings 

Mother's years of 
education 

Library card 
at age 14 

Body height 
in inches 

(1) (2) (3) (4) (5) (6) (7) (8) 

Years of education 
0.0751 0.0728 0.0735 0.0740 0.0710 0.3946 0.0371 0.1204 

(0.0040) (0.0042) (0.0040) (0.0040) (0.0042) (0.0300) (0.0040) (0.0273) 
         

Mother's years of education 
0.0059 0.0044 

(0.0029) (0.0030)

Library card at age 14 
0.0428 0.0361 

(0.0183) (0.0184)

Body height in inches 
0.0090 0.0084 

(0.0027) (0.0027)
              
p-values 

Coefficient comparison test 0.045 0.023 0.010 0.002 
Balancing test 0.000 0.000 0.000 

R2 of education on added regressor 0.073 0.032 0.007 
Implied β for reliability = 0.75 0.0719 0.0730 0.0737 

reliability = 0.50 0.0700 0.0718 0.0729 
reliability = 0.25 0.0628 0.0680 0.0707 

Reliability that implies =0 0.102 0.052 0.022 
 
N = 2,500 in all regressions. Heteroskedasticity robust standard errors in parentheses. All regressions control for experience, experience-squared, indicators 
for black, for southern residence and residence in an SMSA in 1976, indicators for region in 1966 and living in an SMSA in 1966.  
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Table 3:  Regressions for Returns to Schooling and Specification Checks Controlling for the KWW Score 
 

 
Log hourly earnings 

Mother's years of 
education 

Library card 
at age 14 

Body height 
in inches 

(1) (2) (3) (4) (5) (6) (7) (8) 

Years of education 
0.0609 0.0596 0.0608 0.0603 0.0591  0.2500  0.0133  0.0731 

(0.0059) (0.0060) (0.0059) (0.0059) (0.0060)  (0.0422) (0.0059)  (0.0416) 
            

KWW score 
0.0070 0.0068 0.0069 0.0069 0.0067  0.0410  0.0076  0.0145 

(0.0015) (0.0016) (0.0016) (0.0015) (0.0016)  (0.0107)  (0.0016)  (0.0117) 
                 

Mother's years of education 
  0.0053     0.0048          
  (0.0037)     (0.0037)          
                      

Library card at age 14 
    0.0097   0.0045          
    (0.0215)   (0.0216)          
                      

Body height in inches 
      0.0078 0.0075          
      (0.0034) (0.0034)          

                    

p-values 
Coefficient comparison test 0.163 0.652 0.158 0.085 
Balancing test 0.000  0.025  0.079 

R2 of education on added regressor 0.033 0.006 0.002 
Implied β for reliability = 0.75 0.0591 0.0607 0.0602 

reliability = 0.50 0.0582 0.0607 0.0598 
reliability = 0.25 0.0550 0.0604 0.0586 

Reliability that implies =0 0.054 0.008 0.011 

N = 1,773 in all regressions, due to missing values in IQ. Heteroskedasticity robust standard errors in parentheses. All regressions control for experience, 
experience-squared, indicators for black, for southern residence and residence in an SMSA in 1976, indicators for region in 1966 and living in an SMSA in 
1966.  
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Table 4: Regressions for Returns to Schooling and Specification Checks Instrumenting the KWW Score 
 

 
Log hourly earnings 

Mother's years of 
education 

Library card 
at age 14 

Body height 
in inches 

(1) (2) (3) (4) (5) (6) (7) (8) 

Years of education 
0.0340 0.0339 0.0342 0.0343 0.0345  0.0234  0.0168  -0.0486 

(0.0139) (0.0139) (0.0138) (0.0139) (0.0138)  (0.0952)  (0.0134)  (0.0998) 
            

KWW score instrumented by IQ 
0.0194 0.0195 0.0200 0.0194 0.0191   0.1496   0.0060   0.0728 

(0.0063) (0.0063) (0.0063) (0.0062) (0.0064)   (0.0422)   (0.0060)   (0.0449) 
                 

Mother's years of education 
   0.0028       0.0026               
   (0.0039)       (0.0039)               

                      

Library card at age 14 
      -0.0130    -0.0154               
      (0.0245)    (0.0243)               

                      

Body height in inches 
         0.0070 0.0069               
         (0.0034) (0.0034)               

                    

p-values 
Coefficient comparison test 0.818 0.635 0.636 0.552 
Balancing test            0.806   0.212   0.626 

R2 of education on added regressor 0.000 0.001 0.004 
Implied β for reliability = 0.75 0.0339 0.0343 0.0344 

reliability = 0.50 0.0338 0.0344 0.0347 
reliability = 0.25 0.0337 0.0349 0.0353 

Reliability that implies =0 0.002 -0.006 -0.006 

N = 1,773 in all regressions, due to missing values in IQ. Heteroskedasticity robust standard errors in parentheses. All regressions control for experience, 
experience-squared, indicators for black, for southern residence and residence in an SMSA in 1976, indicators for region in 1966 and living in an SMSA in 
1966. 
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Table 5: Regressions for Returns to Schooling and Specification Checks Instrumenting Schooling by Proximity to College 
 

 
Log hourly earnings 

Mother's years of 
education 

Library card 
at age 14 

Body height 
in inches 

(1) (2) (3) (4) (5) (6) (7) (8) 

Years of education instrumented by 
college proximity 

0.0816 0.0818 0.0778 0.0845 0.0822  -0.0952  0.1015  -0.3658 
(0.0431) (0.0417) (0.0518) (0.0418) (0.0466)  (0.3594)  (0.0542)  (0.3681) 

         

Mother's years of education 
   0.0030       0.0012               
   (0.0143)       (0.0140)               

Library card at age 14 
      0.0367    0.0237               
      (0.0886)    (0.0581)               

Body height in inches 
         0.0081 0.0079               
         (0.0044) (0.0032)               

              
p-values 

Coefficient comparison test 0.873 0.686 0.380 0.908 
Balancing test            0.791   0.061   0.321 

 
N = 2,500 in all regressions. Heteroskedasticity robust standard errors in parentheses. All regressions control for experience, experience-squared, indicators 
for black, for southern residence and residence in an SMSA in 1976, indicators for region in 1966 and living in an SMSA in 1966. 
 



7 Appendix

7.1 Power Functions

7.1.1 The Balancing Test

The desired balancing regression is

xi = δ0 + δsi + ui,

however, xi is measured with error

xmi = xi +mi.

Effectively, we run the balancing regression

xmi = δm0 + δmsi + ui +mi.

The test statistic for the null hypothesis that the balancing coeffi cient δ
is zero is

tδm =
δ̂
m

se
(
δ̂
m
) =

δ̂
m

1√
n

√
σ2u+σ

2
m

σs

Define

θ =
σ2m

σ2u + σ2m

⇒ σ2u + σ2m =
σ2u

1− θ

Hence

tδm = δ̂
m
√
nσs
√

1− θ
σu

.
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The rejection probability is

Pr ( |tδm | > C|H1) = Pr (tδm > C|H1) + Pr (tδm < −C|H1)

= Pr

 δ̂
m

se
(
δ̂
m
) > C

∣∣∣∣∣∣H1

+ Pr

 δ̂
m

se
(
δ̂
m
) < −C

∣∣∣∣∣∣H1


= Pr

 δ̂
m
− d

se
(
δ̂
m
) > C − d

√
nσs
√

1− θ
σu

∣∣∣∣∣∣H1


+ Pr

 δ̂
m
− d

se
(
δ̂
m
) < −C − √nσs√1− θ

σu

∣∣∣∣∣∣H1


d−→ 1− Φ

(
C − d

√
nσs
√

1− θ
σu

)
+ Φ

(
−C − d

√
nσs
√

1− θ
σu

)
This is the power function of the balancing test

Powertδ (d) = 1−Φ

(
1.96− d

√
nσs
√

1− θ
σu

)
+Φ

(
−1.96− d

√
nσs
√

1− θ
σu

)
.

7.1.2 The Coeffi cient Comparison Test

The short and long regressions are

yi = αs + βssi + esi
yi = α + βsi + γxi + ei,

and
xi = δ0 + δsi + ui.

Adding measurement error in xi:

xmi = xi +mi,

we have

yi = αs + βssi + esi
yi = αm + βmsi + γmxmi + emi
xmi = δ0 + δsi + ui +mi.

Treat si, ui, ei, and mi as the underlying disturbances which in turn will
determine xi, yi and esi . Because ei is a residual uncorrelated with si and

36



xi, it follows that Cov (ei, ui) = 0. We normalize si to a mean zero variable.
Hence,

si
ui
ei
mi

∼




0
0
0
0

 ,

σs 0 0 0
0 σu 0 0
0 0 σe 0
0 0 0 σm


 .

We want to test βs − βm = 0. Of course

βs − βm = δγm,

and we will assume γ 6= 0, so that

βs − βm = 0⇔ δ = 0.

The test statistic is

tβ =
β̂
s
− β̂

m√
V ar

(
β̂
s
)

+ V ar
(
β̂
m
)
− 2Cov

(
β̂
s
, β̂

m
) ,

which is asymptotically standard normal. The sampling variances are

V ar
(
β̂
m
)

=
1

n

V ar (emi )

V ar (s̃mi )

V ar
(
β̂
s
)

=
1

n

V ar (esi )

σ2s
,

which we will now derive in terms of the underlying parameters.
We start by deriving V ar

(
β̂
m
)
. s̃mi is given by

si = π0 + π1x
m
i + s̃mi

and

V ar (xmi ) = δ2σ2s + σ2u + σ2m
Cov (xmi , si) = δσ2s

so

σ2s = π21V ar (xmi ) + V ar (s̃mi )

σ2s =
Cov (xmi , si)

2

V ar (xmi )2
V ar (xmi ) + V ar (s̃mi )

=
δ2σ4s

δ2σ2s + σ2u + σ2m
+ V ar (s̃mi )

V ar (s̃mi ) =
σ2s (σ2u + σ2m)

δ2σ2s + σ2u + σ2m

37



Next, we need V ar (emi ). Define the reliability

λ =
V ar (xi)

V ar (xmi )
=

δ2σ2s + σ2u
δ2σ2s + σ2u + σ2m

and the R2 of the regression of si on xmi

R2 = 1− V ar (s̃mi )

σ2s

= 1− σ2u + σ2m
δ2σ2s + σ2u + σ2m

=
δ2σ2s

δ2σ2s + σ2u + σ2m
,

Then

βm = β + γδ
1− λ

1−R2

= β + γδ

σ2m
δ2σ2s+σ

2
u+σ

2
m

σ2u+σ
2
m

δ2σ2s+σ
2
u+σ

2
m

= β + γδ
σ2m

σ2u + σ2m
,

and

γm = γ
λ−R2
1−R2

= γ

σ2u
δ2σ2s+σ

2
u+σ

2
m

σ2u+σ
2
m

δ2σ2s+σ
2
u+σ

2
m

= γ
σ2u

σ2u + σ2m
.

Using

θ =
σ2m

σ2u + σ2m
we have

βm = β + γδθ

γm = γ (1− θ)

Using these results in

yi = αm + βmsi + γmxmi + emi
= αm + (β + γδθ) si + γ (1− θ)xmi + emi
= (αm + γ (1− θ) δ0) + (β + γδ) si + γ (1− θ) (ui +mi) + emi

yi = α + βsi + γ (δ0 + δsi + ui) + ei

= (α + γδ0) + (β + γδ) si + γui + ei
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Matching residuals yields

γui + ei = γ (1− θ) (ui +mi) + emi
emi = γθui − γ (1− θ)mi + ei

V ar (emi ) = γ2θ2σ2u + γ2 (1− θ)2 σ2m + σ2e

= γ2

((
σ2m

σ2u + σ2m

)2
σ2u +

(
σ2u

σ2u + σ2m

)2
σ2m

)
+ σ2e

= γ2θσ2u + σ2e

So

V ar
(
β̂
m
)

=
1

n

V ar (emi )

V ar (s̃mi )

=
1

n

γ2θσ2u + σ2e
σ2s(σ

2
u+σ

2
m)

δ2σ2s+σ
2
u+σ

2
m

=
1

n

(
δ2 (1− θ)

σ2u
+

1

σ2s

)(
γ2θσ2u + σ2e

)
and similarly we can derive

V ar (γ̂m) =
1

n

V ar (emi )

V ar (x̃mi )

=
1

n

γ2θσ2u + σ2e
σ2u + σ2m

=
1− θ
n

(
γ2θ +

σ2e
σ2u

)
Now we derive V ar

(
β̂
s
)
, which does not involve the mismeasured xi.

Comparing the short and the long regression, the relationship between the
residuals is

yi = αs + βssi + esi
= αs + (β + γδ) si + esi

yi = α + βsi + γ (δ0 + δsi + ui) + ei

= α + γδ0 + (β + γδ) si + γui + ei

esi = γui + ei,

and hence
V ar (esi ) = γ2σ2u + σ2e,
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so

V ar
(
β̂
s
)

=
1

n

V ar (esi )

σ2s
=

1

n

γ2σ2u + σ2e
σ2s

.

Finally, we derive Cov
(
β̂
s
, β̂
)
. Using

β̂
s
− βs =

∑
esisi∑
s2i

β̂
m
− βm =

∑
emi s̃

m
i∑

(s̃mi )2

we have

√
n

[ ∑
esisi∑
emi s̃

m
i

]
d−→ N

(
0,

[
E
[
(esi )

2 s2i
]

E [esie
m
i sis̃

m
i ]

E [esie
m
i sis̃

m
i ] E

[
(emi )2 (s̃mi )2

] ]) .
In addition, using

p lim
1

n

∑
s2i = σ2s

p lim
1

n

∑
(s̃mi )2 = V ar (s̃mi ) ,

by Slutsky’s theorem

Cov
(
β̂
s
, β̂
)

=
1

n

E [esie
m
i sis̃

m
i ]

σ2sV ar (s̃mi )

=
1

n

E [E (esie
m
i |si, s̃mi ) sis̃

m
i ]

σ2sV ar (s̃mi )

=
1

n

Cov (esi , e
m
i )V ar (s̃mi )

σ2sV ar (s̃mi )

=
1

n

Cov (esi , e
m
i )

σ2s
.

Using our earlier result that

yi = (αm + γ (1− θ) δ0) + (β + γδ) si + γ (1− θ) (ui +mi) + emi

and comparing this to the short regression

yi = αs + βssi + esi ,

we have
esi = γ (1− θ) ( ui +mi) + emi .
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Note that ui +mi is the residual from a regression of xmi on si, we have

Cov (esi , e
m
i ) = V ar(emi ) = γ2θσ2u + σ2e

and hence

Cov
(
β̂
s
, β̂

m
)

=
1

n

γ2θσ2u + σ2e
σ2s

.

Returning to the test statistic

tβ =
β̂
s
− β̂

m√
V ar

(
β̂
s
)

+ V ar
(
β̂
m
)
− 2Cov

(
β̂
s
, β̂

m
)

we first derive

1

n
Vβ (d; γ) = V ar

(
β̂
s
)

+ V ar
(
β̂
m
)
− 2Cov

(
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=
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γ2σ2u + σ2e
σ2s

+
1

n

δ2σ2s + σ2u + σ2m
σ2s (σ2u + σ2m)

(
γ2θσ2u + σ2e

)
− 2

1
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γ2θσ2u + σ2e
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=
1
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(
(γ2 (1− 2θ)σ2u − σ2e) (σ2u + σ2m) +
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)
Note that

βs − βm = δγm = δγ (1− θ)
so the power function of the coeffi cient comparison test is

Powertβ (d; γ) = 1−Φ

(
1.96− d

√
nγ (1− θ)√
Vβ (d; γ)

)
+Φ

(
−1.96− d

√
nγ (1− θ)√
Vβ (d; γ)

)
.

7.2 Comparison with Oster (2015)

Oster’s (2015) formulation of the causal regression takes the form

yi = α + βsi + λw1i + w2i + ei,

where w1i is an observed covariate and w2i is an unobserved covariate, un-
correlated with w1i. To map this into our setup, think of the true xi as
capturing both w1i and w2i, i.e. xi = λw1i +w2i. Furthermore, there is equal
selection, i.e.

Cov(si, λw1i)

λ2σ21
=
Cov(si, w2i)

σ22
,
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where σ21 and σ
2
2 are the variances of w1i and w2i, respectively. Then, Oster’s

regression can be written as

yi = α + βsi + xi + ei,

which is our regression with γ = 1 (the scaling of xi is arbitrary of course; it
could be xi = w1i + w2i/λ instead and γ = λ or anything else).
Our observed xmi = λw1i, so measurement errormi = −w2i. Measurement

error here is mean reverting, i.e.

mi = κxi + µi. (A1)

Notice that
Cov (mi, xi) = −σ22

and hence

κ =
−σ22

λ2σ21 + σ22
(A2)

and

µi = −w2i − κ (λw1i + w2i)

= −κλw1i − (1 + κ)w2i

=
σ22

λ2σ21 + σ22
λw1i −

λ2σ21
λ2σ21 + σ22

w2i.

It turns out that µi implicitly defined in (A1) and the κ given by (A2) satisfy
Cov(xi, µi) = 0 and Cov(si, µi) = 0. Hence, these two equations represent
mean reverting measurement error as defined in the body of the manuscript.
However, note that Cov(si, µi) = 0 depends on the equal selection assump-
tion. With proportional selection, i.e.

δ
Cov(si, λw1i)

λ2σ21
=
Cov(si, w2i)

σ22
,

and δ 6= 1 we would have Cov(si, µi) 6= 0.

42


