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Abstract

Researchers frequently test identifying assumptions in regression
based research designs (which include instrumental variables or di↵erence-
in-di↵erences models) by adding additional control variables on the
right hand side of the regression. If such additions do not a↵ect the
coe�cient of interest (much) a study is presumed to be reliable. We
caution that such invariance may result from the fact that the observed
variables used in such robustness checks are often poor measures of the
potential underlying confounders. In this case, a more powerful test of
the identifying assumption is to put the variable on the left hand side
of the candidate regression. We provide derivations for the estimators
and test statistics involved, as well as power calculations, which can
help applied researchers interpret their findings. We illustrate these
results in the context of various strategies which have been suggested
to identify the returns to schooling.
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1 Introduction

Research on causal e↵ects depends on implicit identifying assumptions, which

typically form the core of a debate about the quality and credibility of a par-

ticular research design. In regression based strategies, this is the claim that

variation in the regressor of interest is as good as random after conditioning

on a su�cient set of control variables. In instrumental variables models it in-

volves the assumption that the instrument is as good as randomly assigned.

In panel or di↵erences-in-di↵erences designs it is the parallel trends assump-

tion, possibly after suitable conditioning. The credibility of a design can be

enhanced when researchers can show explicitly that potentially remaining

sources of selection bias have been eliminated. This is often done through

some form of balancing tests or robustness checks.

The research designs mentioned above can all be thought of as variants of

regression strategies. If the researcher has access to a variable for a potentially

remaining confounder, tests for the identifying assumption take two canonical

forms. The variable can be added as a control on the right hand side of

the regression. The identifying assumption is confirmed if the estimated

causal e↵ect of interest is insensitive to this variable addition—we call this

the coe�cient comparison test. Alternatively, the variable can be placed on

the left hand side of the regression instead of the outcome variable. A zero

coe�cient on the causal variable of interest then confirms the identifying

assumption. This is the balancing test which is typically carried out using

baseline characteristics or pre-treatment outcomes in a randomized trial or

in a regression discontinuity design.

Researchers often rely on one or the other of these tests. The main point

of our paper is to show that the balancing test, using the proxy for the

candidate confounder on the left hand side of the regression, is generally

more powerful. This is particularly the case when the available variable is

a noisy measure of the true underlying confounder. The attenuation due to
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measurement error often implies that adding the candidate variable on the

right hand side as a regressor does little to eliminate any omitted variables

bias. The same measurement error does comparatively less damage when

putting this variable on the left hand side. Regression strategies work well in

finding small but relevant amounts of variation in noisy dependent variables.

These two testing strategies are intimately related through the omitted

variables bias formula. The omitted variables bias formula shows that the co-

e�cient comparison test involves two regression parameters, the coe�cient

from the balancing test and the coe�cient from the added regressor in the

outcome equation. If the researcher has a strong prior that the added re-

gressor ought to matter for the outcome under study then the balancing

test will provide the remaining information necessary to assess the research

design. This maintained assumption is the ultimate source of the superior

power of the balancing test. However, we show that quantitatively meaning-

ful di↵erences emerge particularly when there is some substantial amount of

measurement error in the added regressor. We derive the relevant parameters

in the presence of measurement error in Section 3.

Of course, sometimes researchers may be more agnostic about whether the

added regressor matters for the outcome. In case it does not matter, rejecting

balance for this variable is of no consequence for this particular research

design. In this view, only the coe�cient comparison test is really relevant

while the balancing test provides no additional information. However, this

strikes us as a narrow view and not one shared by many in the experimental

community, where balancing tests are commonly used. Lack of balance is

seen as an indictment of the randomization in an experiment irrespective

of whether the variable in question a↵ects the outcome. Lack of balance

with respect to one or more observed covariates raises the possibility that

there may also be lack of balance for other unobservables, and would lead a

prudent researcher to reassess the credibility of their research design. The

same should be true for quasi-experimental research based on observational
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data.

A second point we are making is that the two strategies, coe�cient com-

parison and balancing, both lead to explicit statistical tests. The balancing

test is a simple t-test used routinely by researchers. When adding a covariate

on the right hand side, comparing the coe�cient of interest across the two

regressions can be done using a generalized Hausman test. In practice, we

have not seen this test carried out in applied papers, where researchers typ-

ically just eye-ball the results.2 We provide the relevant test statistics and

discuss how they behave under measurement error in Section 4. We also

show how the coe�cient comparison test is simple to implement for varying

identification strategies. We demonstrate the superior power of the balancing

test under a variety of scenarios in Section 5.

The principles underlying the points we are making are not new but the

consequences do not seem to be fully appreciated in much applied work.

Griliches (1977) is a classic reference for the issues arising when regression

controls are measured with error. A subsequent literature, for example Rosen-

baum and Rubin (1983) and Imbens (2003), has considered omitted variables

bias in non-linear models without measurement error. More closely related is

Battistin and Chesher (2014), as it discusses identification in the presence of

a mismeasured covariate in non-linear models. Like in the literature following

Rosenbaum and Rubin (1983), they discuss identification given assumptions

about a missing parameter, namely the degree of measurement error in the

covariate. We follow Griliches (1977) in framing our discussion around the

omitted variables bias arising in linear regressions, the general framework

used most widely in empirical studies. Unlike this literature, we are less in-

terested in point identification in the presence of missing information. We go

beyond the analysis in all of these papers in our explicit discussion of testing,

which forms the core of our study.

2An exception is Gelbach (2016), who discusses the Hausman test in this context.
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Altonji, Elder, and Taber (2005) discuss an alternative but closely related

approach to the problem. As we noted above, applied researchers often argue

that relative stability of regression coe�cients when adding additional con-

trols provides evidence for credible identification. Implicit in this argument is

the idea that other confounders not controlled for are similar to the controls

just added to the regression. The paper by Altonji, Elder, and Taber (2005)

formalizes this argument. In practice, adding controls will typically move the

coe�cient of interest somewhat even if it is not by much. Altonji, Conley,

Elder, and Taber (2013) and Oster (forthcoming) extend the original Altonji,

Elder and Taber work by providing more precise conditions for bounds and

point identification in this case. The approach in these papers relies on an

assumption about how the omitted variables bias due to the observed re-

gressor is related to any remaining omitted variables bias due to unobserved

confounders.

The remaining unobserved confounders in this previous work can be

thought of as the source of measurement error in the covariate which is added

to the regression in our analysis. For example, in our empirical example be-

low, we use mother’s education as a measure for family background but this

variable may only capture a small part of all the relevant family background

information, a lot of which may be orthogonal to mother’s education. In fact,

we show that our formulation and Oster’s (forthcoming) are isomorphic. This

means that our framework is a useful starting point for researchers who are

willing to make the type of assumptions in Altonji, Elder, and Taber (2005)

and follow-up papers as well.

Another related strand of work is by Belloni, Chernozhukov, and Hansen

(2014a, b), who tackle the opposite problem from Altonji, Elder, and Taber

(2005), namely choosing the best controls when the researcher has a poten-

tially bigger set of candidate controls available than is necessary. This large

dimensional set comes from the fact that they consider possible nonlineari-

ties and interactions among regressors. Belloni, Chernozhukov, and Hansen
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(2014b) use Lasso to select regressors which are highly correlated with either

the treatment or the outcome conditional on other covariates. They then es-

timate an outcome equation including as controls all the regressors selected

in this preliminary step. In a sense, this is more closely related to our setup

than the Altonji, Elder and Taber approach as Belloni, Chernozhukov, and

Hansen (2014b) also postulate that identification can be achieved when using

a subset of the available covariates as controls. Their variable selection prob-

lem is related to the two testing strategies we discuss in this paper. However,

like Altonji, Conley, Elder, and Taber (2013) and Oster (forthcoming), their

ultimate interest is in point identification and inference for the treatment

e↵ects parameter, not in testing whether a particular specification is subject

to remaining confounders. Their setup is also not specifically geared towards

dealing with control variables which are subject to error, which is our focus.

An older literature by Hausman (1978), Hausman and Taylor (1980),

and Holly (1982) (see also the summary in MacKinnon, 1992, section II.9)

considers the relative power of the Hausman test compared to alternatives,

in particular an F -test for the added covariates in the outcome equation

when potentially multiple covariates are added. This comparison e↵ectively

maintains that there is a lack of balance, and instead tests whether the added

regressors matter for explaining the outcome. While this is a di↵erent exercise

from ours, this literature highlights the potential power of the Hausman

test when it succinctly transforms a test with multiple restrictions (like the

F -test for the added covariates) into a test with a single restriction (the

coe�cient comparison test). We briefly discuss how to extend our framework

to multiple added controls in Section 5.4. We also reach the conclusion that

the Hausman test may be useful when the goal is to summarize a large

number of restrictions.

Griliches (1977) uses estimates of the returns to schooling as example for

the methodological points he makes. Such estimates have formed a staple of

labor economics ever since. We use Griliches’ data from the National Lon-
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gitudinal Survey of Young Men to illustrate our power results in Section 6.

In addition to Griliches (1977), this data set has been used in a well known

study by Card (1995). It is well suited for our purposes because the data

contain various test score measures which can be used as controls in a regres-

sion strategy (as investigated by Griliches, 1977), a candidate instrument for

college attendance (investigated by Card, 1995), as well as a myriad of other

useful variables on individual and family background. The empirical results

support and illustrate our theoretical claims.

2 A Simple Framework

Consider the following simple framework starting with a population regres-

sion equation

yi = ↵s + �ssi + esi (1)

where yi is an outcome like log wages, si is the causal variable of interest, like

years of schooling, and esi is the regression residual. The researcher proposes

this short regression model to be causal. This might be the case because the

data come from a randomized experiment, so the simple bivariate regression

is all we need. More likely, the researcher has a particular research design

applied to observational data. For example, in the case of a regression strategy

controlling for confounders, yi and si would be residuals from regressions of

the original outcome and treatment variables on the chosen controls. In the

case of panel data or di↵erences-in-di↵erences designs the controls are sets of

fixed e↵ects. In the case of instrumental variables, si would be the predicted

value from a first stage regression. In practice, (1) encompasses a wide variety

of empirical approaches, and should be thought of as a short-hand for these.3

Now consider the possibility that the population regression parameter �s

from (1) may not actually capture a causal e↵ect. There may be a candidate

3Of course, all subsequent regression equations and results also inherit the structure of
the actual underlying research design.
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confounder xi, so that the causal e↵ect of si on yi would only be obtained

conditional on xi, as in the long regression

yi = ↵ + �si + �xi + ei (2)

and the researcher would like to probe whether this is a concern. For example,

in the returns to schooling context, xi might be some remaining part of an

individual’s earnings capacity which is also related to schooling, like ability

or family background.

Researchers who find themselves in a situation where they start with

a proposed causal model (1) and a measure for a candidate confounder xi

typically do one of two things: They either regress xi on si and check whether

si is significant, or they include xi on the right hand side of the original

regression as in (2), and check whether the estimate of � changes materially

when xi is added to the regression of interest. The first strategy constitutes

a test for “balance,” a standard check for successful randomization in an

experiment. In principle, the second strategy has the advantage that it goes

beyond testing whether (1) qualifies as a causal regression. An appreciable

change in � suggests that the original estimate �s is biased. The results

obtained with xi as an additional control should be closer to the causal e↵ect

we seek to uncover. In particular, if xi were the only relevant confounder and

if we measure it without error, the � parameter from the controlled regression

is the causal e↵ect of interest. In practice, there is usually little reason to

believe that these two conditions are met, and hence a di↵erence between �

and �s again only indicates a flawed research design.

The relationship between these two strategies is easy to see. Write the

regression of xi on si, which we will call the balancing regression, as

xi = �0 + �si + ui. (3)

The change in the coe�cient � from adding xi to the regression (1) is given
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by the omitted variables bias formula

�s � � = ��. (4)

The change in the coe�cient of interest � from adding xi consists of two

components, the coe�cient � on xi in the outcome equation (2) and the

coe�cient � from the balancing regression.

Here we consider the relationship between these two approaches: the bal-

ancing test, consisting of an investigation of the null hypothesis

H0 : � = 0, (5)

compared to the inspection of the coe�cient movement �s � �. The lat-

ter strategy of comparing �s and � is often done informally, but it can be

formalized as a statistical test of the null hypothesis

H0 : �
s � � = 0, (6)

which we will call the coe�cient comparison (CC) test. From (4) it is clear

that (6) amounts to

H0 : �
s � � = 0, � = 0 or � = 0. (7)

This highlights that the two approaches formally test the same hypothesis

under the maintained assumption � 6= 0. We may often have a strong sense

that � 6= 0; i.e. we are dealing with a variable xi which we believe a↵ects the

outcome, but we are unsure whether it is related to the regressor of interest

si. In this case, both tests would seem equally suitable. Nevertheless, in

other cases � may be zero, or we may be unsure. In this case, the coe�cient

comparison test seems to dominate because it directly addresses the question

we are after, namely whether the coe�cient of interest � is a↵ected by the

inclusion of xi in the regression.4

4Equations (4) and (7) highlight that a regressor ought to be included in the long
regression when both � 6= 0 and � 6= 0. This di↵ers from the selection rule chosen by
Belloni, Chernozhukov, and Hansen (2014b), who include a regressor when either � 6= 0
or � 6= 0 is true.

8



Here we make the point that the balancing test adds valuable information

particularly when the true confounder is measured with error. In general,

xi may not be easy to measure. If the available measure for xi contains

classical measurement error, the estimator of � in (2) will be attenuated,

and the comparison �s � � will be too small (in absolute value) as a result.

The estimator of � from the balancing regression is still consistent in the

presence of measurement error; this regression simply loses precision because

the mismeasured variable is on the left hand side. Under the maintained

assumption that 0 < � < 1, the balancing test is more powerful than the

coe�cient comparison test. In order to make these statements precise, we

collect results for the relevant population parameters for the case of classical

measurement error in the following section, before moving on to the test

statistics.

3 Population Parameters in the Presence of
Measurement Error

The candidate variable xi is not observed. Instead, the researcher works with

the mismeasured variable

xm
i = xi +mi. (8)

Here we assume the measurement error mi is classical, i.e. E (mi) = 0,

Cov (xi,mi) = 0. In section 5 below we also investigate the impact of non-

classical errors. As a result of the measurement error, the researcher com-

pares the regressions

yi = ↵s + �ssi + esi

yi = ↵m + �msi + �mxm
i + emi . (9)

Notice that the short regression does not involve the mismeasured xi, so

that �s = � + �� as before. However, the population regression coe�cients
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�m and �m are now di↵erent from � and � from equation (2), and they are

related in the following way:

�m = � + ��
1� �

1�R2
= � + ��✓

�m = �
��R2

1�R2
= � (1� ✓) (10)

where R2 is the population R2 of the regression of si on xm
i and

� =
V ar (xi)

V ar (xm
i )

is the reliability of xm
i .

5 It measures the amount of measurement error present

as the fraction of the variance in the observed xm
i , which is due to the signal

in the true xi. � is also the attenuation factor in a simple bivariate regression

on xm
i . In the multivariate model (9), an alternative way to parameterize the

amount of measurement error is

✓ =
1� �

1�R2
=

�2
m

�2
u + �2

m

.

where �2· denotes the variance of the random variable in the subscript. 1� ✓

is the multivariate attenuation factor. Recall that ui is the residual from the

balancing regression (3).

With the mismeasured xm
i the balancing regression becomes

xm
i = �m0 + �msi + ui +mi, (11)

which implies that

� = 1� �2
m

V ar (xm
i )

> 1� �2
u + �2

m

V ar (xm
i )

= R2.

As a result

0 <
1� �

1�R2
< 1

0 <
��R2

1�R2
< �.

5Note R

2 is also the population R

2 of the regression of xm
i on si.
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✓ is an alternative way to parameterize the degree of measurement error in

xi compared to � and R2. The ✓ parameterization uses only the variation in

xm
i which is orthogonal to si. This is the part of the variation in xm

i relevant

to the estimate of �m in regression (9), which also has si as a regressor. ✓

turns out to be a useful parameter in many of the derivations that follow.

The population coe�cient �m di↵ers from � but less so than �s. In fact,

�m lies between �s and �, as can be seen from (10). The parameter �m

is attenuated compared to �; the attenuation is bigger than in the case of

a bivariate regression of yi on xm
i without the regressor si if xm

i and si are

correlated (R2 > 0).

These results highlight a number of issues. The gap �s � �m is too small

compared to the desired �s � �, directly a↵ecting the coe�cient comparison

test. In addition, �m is biased towards zero. Ceteris paribus, this is making

the assessment of the hypothesis � = 0 more di�cult. Finally, the balancing

regression (11) with the mismeasured xm
i involves measurement error in the

dependent variable and therefore no bias in the OLS estimator of �m, i.e.

plim
⇣
b�m
⌘
= �m = �, but simply a loss of precision as compared to �̂.

The results here are also useful for thinking about the identification of �

and � in the presence of measurement error. Rearranging (10) yields

� = �m 1�R2

��R2

� = �m � ��m 1� �

��R2
. (12)

Since R2 can be estimated from the data, these expressions only involve the

unknown parameter �. If we are willing to make an assumption about the

measurement error, we are able to point identify �. Even if � is not known

precisely, (12) can be used to bound � for a range of plausible reliabilities.

Alternatively, (10) can be used to derive the value of � for which � = 0. These

calculations are similar in spirit to the ones suggested by Oster (forthcoming)

in a setting that is closely related.
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4 Inference

In this section, we consider how conventional standard errors and test statis-

tics for the quantities of interest are a↵ected in the homoskedastic case.6 We

present the theoretical power functions for the two alternative test statis-

tics; derivations are in Appendix A, which also shows that our results carry

over to robust standard errors. We extend the power results to the het-

eroskedastic case and non-classical measurement error in simulations. Our

basic conclusions are the same in all these di↵erent scenarios.

Start with the standard error of estimator b�m from the balancing regres-

sion:
p
n bse

⇣
b�m
⌘

p!

s
�2
u + �2

m

�2
s

=
1p
1� ✓

�u

�s
,

where we use bse(·) to denote the estimated standard error of a given esti-

mator. Let se(·) denote the asymptotic standard error of an estimator, i.e.,

se(·) ⌘ 1p
nplim{

p
n bse(·)}. In the case of b�m,

se
⇣
b�m
⌘
=

1p
n

1p
1� ✓

�u

�s
.

Comparing the asymptotic standard error of b�m to its counterpart in the

case with no measurement error,

se
⇣
b�
⌘
=

1p
n

�u

�s
,

we have

se
⇣
b�m
⌘
=

se
⇣
b�
⌘

p
1� ✓

.

Since 0 < ✓ < 1, the standard error is inflated compared to the case with no

measurement error.
6See Appendix A for the precise setup of the model. The primitive disturbances are si,

ui, ei, and mi, which we assume to be uncorrelated with each other. Other variables are
determined by (3), (2), and (8).
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A test based on the t-statistic

t�m =
b�m

bse
⇣
b�m
⌘

remains consistent because mi is correctly accounted for in the residual of the

balancing regression (11), but the t-statistic is asymptotically smaller than

in the error free case: As n!1

1p
n
t�m

p!
p
1� ✓

�⇣
�u
�s

⌘ <
�⇣
�u
�s

⌘ p 1p
n
t�

This means the null hypothesis (5) is rejected less often. The test is less

powerful than in the error free case; the power loss is captured by the term
p
1� ✓.

We next turn to b�m, the estimator for the coe�cient on the mismeasured

xm
i in (9). The parameter � is of interest since it determines the coe�cient

movement �s � � = �� in conjunction with the result from the balancing

regression. Let x̃m
i be the residual from the population regression of xm

i on

si. For ease of exposition, we impose conditional homoskedasticity of emi
given si and xm

i here and leave the more general case to Appendix A.2.3.

The standard error for b�m in the limit is

se (b�m) =
1p
n

p
V ar (emi )p
V ar (exm

i )

=
1p
n

s
�2✓�2

u + �2
e

�2
u + �2

m

=
1p
n

p
1� ✓

s

✓�2 +
�2
e

�2
u

,

while

se (b�) = 1p
n

s
�2
e

�2
u

.
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se(b�m) involves two terms: the first term is an attenuated version of se(b�)
from the corresponding regression with the correctly measured xi, while the

second term depends on the value of �. The parameters in the two terms

are not directly related, so se (b�m) ? se (b�). Measurement error does not

necessarily inflate the standard error here.

The two terms have a simple, intuitive interpretation. Measurement error

attenuates the parameter �m towards zero, the attenuation factor is 1 �
✓. The standard error is attenuated in the same direction; this is reflected

in the
p
1� ✓ factor, which multiplies the remainder of the standard error

calculation. The second influence from measurement error comes from the

term ✓�2, which results from the fact that the residual variance V ar (emi )

is larger when there is measurement error. The increase in the variance is

related to the true �, which enters the residual.

The t-statistic for testing whether �m = 0 is

t�m =
b�m

bse (b�m)

and it follows that

1p
n
t�m

p!
p
1� ✓

�q
✓�2 + �2

e
�2
u

<
�q
�2
e

�2
u

p 1p
n
t�.

As in the case of b�m from the balancing regression, the t-statistic for b�m

is smaller than t� for the error free case. But in contrast to the balancing

test statistic t�m , measurement error reduces t�m relatively more, namely due

to the term ✓�2 in the denominator, in addition to the attenuation factor
p
1� ✓. This is due to the fact that measurement error in a regressor both

attenuates the relevant coe�cient towards zero and introduces additional

variance into the residual. Though interestingly, ✓�2 captures the additional

residual variance while the factor
p
1� ✓ now captures the attenuation of �m.

In the balancing test statistic,
p
1� ✓ accounted for the residual variance.

The upshot from this discussion is that classical measurement error makes
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the assessment of whether � = 0 comparatively more di�cult compared to

the assessment whether � = 0. As we will see, this is the source of the greater

power of the balancing test statistic.

Finally, consider the quantity �s � �m, which enters the coe�cient com-

parison test. To form a test statistic for this quantity we need the expression

for the asymptotic variance of b�s� b�m, which we derive through an applica-

tion of the delta method to the omitted variables bias formula

b�s � b�m = b�mb�m.

Specifically, we can relate V ar(b�s � b�m) to the asymptotic variances of b�m

and b�m and their asymptotic covariance:

V ar
⇣
b�s � b�m

⌘
= �2 (1� ✓)2 V ar

⇣
b�m
⌘
+ �2V ar (b�m)

+ 2�� (1� ✓)Cov
⇣
b�m, b�m

⌘
. (13)

Using V ar
⇣
b�m
⌘
and V ar (b�m), which we derived above, and the fact that

Cov
⇣
b�m, b�m

⌘
= 0, which we show in the Appendix, we get

V ar
⇣
b�s � b�m

⌘
=

1

n
(1� ✓)

✓
�2�

2
u

�2
s

+ ✓�2�2 + �2
�2
e

�2
u

◆
.

It is easy to see that, like V ar (b�m), V ar
⇣
b�s � b�m

⌘
has both an attenuation

factor as well as an additional positive term compared to the case where

✓ = 0, i.e. V ar
⇣
b�s � b�

⌘
. Measurement error may therefore raise or lower

the sampling variance for the coe�cient comparison test.

Before we proceed to discuss the power of the coe�cient comparison test,

we note that the covariance term in

V ar
⇣
b�s � b�m

⌘
= V ar

⇣
b�s
⌘
+ V ar

⇣
b�m
⌘
� 2Cov

⇣
b�s, b�m

⌘

reduces the sampling variance of b�s � b�m. In fact, this covariance term is

positive, and it is generally sizable compared to V ar
⇣
b�s
⌘

and V ar
⇣
b�m
⌘
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since the regression residuals esi and emi are highly correlated. Because

2Cov
⇣
b�s, b�m

⌘
gets subtracted, looking at the standard errors of b�s and

b�m alone can potentially mislead the researcher into concluding that the two

coe�cients are not significantly di↵erent from each other when in fact they

are.

The coe�cient comparison test itself can be formulated as a t-test as well,

since we are interested in the movement in a single parameter. Define

t(�s��m) ⌘
b�s � b�m

bse(b�s � b�m)

where bse(b�s � b�m) is a consistent standard error estimator. Since

�s � �m = ��m = �� (1� ✓)

we have

1p
n
t(�s��m)

p! �� (1� ✓)r
(1� ✓)

⇣
�2 �

2
u

�2
s
+ ✓�2�2 + �2 �2

e
�2
u

⌘

=
p
1� ✓

��q
�2 �

2
u

�2
s
+ ✓�2�2 + �2 �2

e
�2
u

. (14)

Under the alternative hypothesis (� 6= 0) and the maintained assumption

� 6= 0, the limits for the other two test statistics can be written as

1p
n
t�m

p!
p
1� ✓

��q
�2 �

2
u

�2
s

1p
n
t�m

p!
p
1� ✓

��q
✓�2�2 + �2 �2

e
�2
u

.

Hence, using (14), it is apparent that under these conditions the three tests

are asymptotically related in the following way:

plim

 
1

1p
nt(�s��m)

!2

= plim

 
1

1p
nt�m

!2

+ plim

 
1

1p
nt�m

!2

(15)
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These results highlight a number of things. First of all, under the main-

tained hypothesis � 6= 0, the balancing test alone is more powerful. This is

not surprising at all, since the balancing test only involves estimating the

parameter � while the coe�cient comparison test involves estimating both �

and �. Imposing � 6= 0 in the coe�cient comparison test is akin to t�m !1,

and this would restore the equivalence of the balancing and coe�cient com-

parison tests. Note that the power advantage from imposing � 6= 0 exists

regardless of the presence of measurement error.

The second insight is that measurement error a↵ects the coe�cient com-

parison test in two ways. The test statistic is subject to both the attenuation

factor
p
1� ✓ and the term ✓�2�2 in the variance, which is inherited from the

t-statistic for b�m. Importantly, however, all these terms interact in the coef-

ficient comparison test. In our numerical exercises below, it turns out that

the way in which measurement error attenuates �m compared to � is a ma-

jor source of the power disadvantage of the coe�cient comparison test. Our

simulations demonstrate that the di↵erences in power between the coe�cient

comparison and balancing tests can be substantial when there is considerable

measurement error in xm
i . Before we turn to these results, we briefly note how

the coe�cient comparison test can be implemented in practice.

4.1 Implementing the Coe�cient Comparison Test

The balancing test is a straightforward t-test, which regression software calcu-

lates routinely. We noted that the coe�cient comparison test is a generalized

Hausman test. Regression software will typically calculate this as well if it

allows for seemingly unrelated regression estimation (SURE). SURE takes

Cov (esi , e
m
i ) into account and therefore facilitates the test. In Stata, this is

implemented via the suest command. Generically, the test would take the

following form:

reg y s
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est store reg1

reg y s x

est store reg2

suest reg1 reg2

test[reg1 mean]s=[reg2 mean]s

The test easily accommodates covariates or can be carried out with the

variables y, s, and x being residuals from a previous regression (hence fa-

cilitating large numbers of fixed e↵ects though degrees of freedom may have

to be adjusted in this case).

As far as we can tell, the Stata suest or 3reg commands don’t work

for the type of IV regressions we might be interested in here. An alternative,

which also works for IV, is to take the regressions (1) and (2) and stack them:


yi
yi

�
=


1 0
0 1

� 
↵s

↵

�
+


si 0
0 si

� 
�s

�

�
+


0 0
0 xi

� 
0
�

�
+


esi
ei

�
.

Testing �s�� = 0 is akin to a Chow test across the two specifications (1) and

(2). Of course, the data here are not two subsamples but rather duplicates

of the original data set. To take account of this and allow for the correlation

in the residuals across duplicates, it is crucial to cluster standard errors on

the observation identifier i.

5 Power Comparisons

5.1 Asymptotic and Monte Carlo Results with Classi-
cal Measurement Error

The ability of a test to reject when the null hypothesis is false is described by

the power function of the test. The power functions here are functions of d,

the values the parameter � might take on under the alternative hypothesis.

Because the joint distribution between the coe�cient and standard error
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estimators is di�cult to characterize, especially in the case of the coe�cient

comparison test, we abstract away from the sampling variation in estimating

the standard errors in the theoretical derivations of this section. The resulting

t-statistic for the null hypothesis that the coe�cient � is zero in the balancing

test is

t�m =
b�m

se(b�m)
=

p
n · b�mp
�2
u+�2

m

�s

=

p
n · b�m
�u

�s
p
1�✓

.

Similarly, we use

t(�s��m)(d; �) =
b�s � b�m

se(b�s � b�m)
=

p
n(b�s � b�m)p
V� (d; �)

where

V� (d; �) = (1� ✓)

✓
�2�2

u

�2
s

+ ✓d2�2 +
d2�2

e

�2
u

◆

in the derivation of the power function for the coe�cient comparison test.

As shown in Appendix A, the power function for a 5% critical value of

the balancing test is

Powert�m (d) = 1� �

✓
1.96� d

p
n�s

p
1� ✓

�u

◆

+ �

✓
�1.96� d

p
n�s

p
1� ✓

�u

◆
, (16)

where � (·) is the standard normal cumulative distribution function. The

power function for the coe�cient comparison test is

Powert(�s��m)
(d; �) = 1� �

 
1.96� d

p
n� (1� ✓)p
V� (d; �)

!

+ �

 
�1.96� d

p
n� (1� ✓)p
V� (d; �)

!
. (17)

Note that the power function for the balancing test does not involve the
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parameter �. Using our results above, for 0 < � <1 it can be written as

Powert�m (d) = 1� �

 
1.96� d

p
n� (1� ✓)p
V� (d; �)

!

+ �

 
�1.96� d

p
n� (1� ✓)p
V� (d; �)

!
. (18)

where

V� (d; �) = (1� ✓)
�2�2

u

�2
s

.

It is hence apparent that V� (d; �) > V� (d; �), i.e. the coe�cient comparison

test has a larger variance. As a result, when d 6= 07

Powert�m (d) > Powert(�s��m)
(d; �) . (19)

In practice, this result may or may not be important. In addition, when

the standard error is estimated, the powers of the two tests may di↵er from

the theoretical results above. Therefore, we carry out a number of Monte

Carlo simulations to assess the performance of the two tests. Table 1 displays

the parameter values we use as well as the implied values of the population

R2 of regression (9). The values were chosen so that for intermediate amounts

of measurement error in xm
i the R2s are reflective of regressions fairly typical

of those in applied microeconomics, for example, a wage regression. Note

that the amounts of measurement error we consider are comparatively large.

In our empirical application we use mother’s education and the presence of a

library card in the household as measures of family background. We suspect

that these variables pick up at most a minor part of the true variation of

7To see this, define f(t) = 1 � �(1.96 � t) + �(�1.96 � t) and denote the probability
density function of a standard normal distribution by �. The f notation allows us to
rewrite the expressions for the power functions Powert�m (d) and Powert(�s��m)

(d; �) in
equations (17) and (18) simply as f(t1) and f(t2). When d 6= 0, V� (d; �) > V� (d; �)
implies that |t1| > |t2| > 0. Since f

0(t) = �(1.96� t)� �(1.96 + t) is positive for all t > 0
and negative for all t < 0, f(t1) > f(t2) given |t1| > |t2| > 0, and equation (19) follows.
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family background, even in the presence of other covariates, so that values

of ✓ = 0.7 or ✓ = 0.85 for the measurement error are not unreasonable.

In Figure 1, we plot the power functions for both tests for three di↵erent

magnitudes of the measurement error.8 The black/thin lines show the power

functions with no measurement error. The power functions can be seen to

increase quickly with d, and both tests reject with virtual certainty once d

exceeds values of 1. The balancing test is slightly more powerful but this

di↵erence is small, and only visible in the figure for a small range of d.

The blue/medium thick lines correspond to ✓ = 0.7, i.e. 70% of the

variance of xm
i is measurement error after partialling out si. Measurement

error of that magnitude visibly a↵ects the power of both tests. The balancing

test still rejects with certainty for d > 1.5, while the coe�cient comparison

test does not reject with certainty for the parameter values considered in

the figure. This discrepancy becomes even more pronounced when we set

✓ = 0.85 (red/thick lines). The power of the coe�cient comparison test does

not rise above 0.65 in this case, while the balancing test still rejects with

probability 1 when d is around 2.

The results in Figure 1 highlight that there are parameter combinations

where the balancing test has substantially more power than the coe�cient

comparison test. In other regions of the parameter space, the two tests have

more similar power, for example, when d < 0.5.

Before going on to simulations of more complicated cases, we contrast the

theoretical power functions in Figure 1, based on asymptotic approximations,

to simulated rejection rates of the same tests in Monte Carlo samples. Figure

2 shows the power functions for the two tests without measurement error (✓ =

8The power function for the balancing test in equation (16) is written using the normal
distribution, but we actually calculate it using the t-distribution with n � 2 degrees of
freedom. This is consistent with how Stata version 14 performs the balancing test following
the command reg x s or reg x s, r, even though this distribution choice makes little
di↵erence given our sample size (n = 100).
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0) and with (✓ = 0.85), as well as their simulated counterparts.9 Without

measurement error, the theoretical power functions are closely aligned with

the empirical rejection rates (black lines). Adding measurement error, this

is also true for the balancing test (solid red and blue/thick lines) but not for

the coe�cient comparison test (broken red and blue/thick lines).

Figure 2 reveals that the empirical rejection rates of the coe�cient com-

parison test in the presence of measurement error deviate substantially from

the power function calculation based on the asymptotic approximation. This

discrepancy is almost completely explained by the fact that we use the asymp-

totic values of standard errors in the calculations but estimated standard

errors in the simulations. The empirical test is severely distorted under the

null; it barely rejects more than 1% of the time for a nominal size of 5%.

While this problem leads to too few rejections under the null, it is important

to note that the same issue arises for positive values of d until about d < 1.5.

For larger values of d the relationship reverses. In other words, for moderate

values of d the coe�cient comparison test statistic is biased downwards un-

der the alternative, and the test has too little power. This highlights another

advantage of the balancing test—a standard t-test where no such problem

arises. We note that this is a small sample problem, which goes away when

we increase the sample size (in unreported simulations). We suspect that this

problem is related to the way in which the coe�cient comparison test e↵ec-

tively combines the simple t�m and t�m test statistics in a non-linear fashion,

as can be seen in equation (15), and the fact that t�m sometimes is close to

0 in small samples despite the fact that we fix � substantially above 0.

9We did 25,000 replications in these simulations, and each repeated sample contains
100 observations.
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5.2 Monte Carlo Results beyond the Benchmark Model

The homoskedastic case with classical measurement error might be highly

stylized and not correspond well to the situations typically encountered in

empirical practice. We therefore explore some other scenarios using simula-

tions in this Section. Figure 3 shows the original theoretical power functions

for the case with no measurement error from Figure 1. It adds empirical re-

jection rates from simulations with heteroskedastic errors ui and ei of the

form

�2
u,i =

✓
e|si|

1 + e|si|

◆2

�2
0u

�2
e,i =

✓
e|si|

1 + e|si|

◆2

�2
0e.

We set the baseline variances �2
0u and �2

0e so that �2
u = 3 and �2

e = 30

match the variances in Figure 1. The test statistics used in the simulations

employ robust standard errors. We plot the rejection rates for data with no

measurement error and for the more severe measurement error scenario given

by ✓ = 0.85. As can be seen in Figure 3, both the balancing and the coe�cient

comparison tests lose some power when the residuals are heteroskedastic

compared to the homoskedastic baseline (black/thin lines). Otherwise, the

main findings look very similar to those in Figure 1. Heteroskedasticity does

not seem to alter the basic conclusions appreciatively.

Next, we explore mean reverting measurement error (Bound, Brown,

Duncan, and Rodgers, 1994). We generate measurement error as

mi = xi + µi

where  is a parameter and Cov (xi, µi) = 0, so that xi captures the error

related to xi and µi the unrelated part. When �1 <  < 0, the error is mean

reverting, i.e. the xi-part of the error reduces the variance in xm
i compared
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to xi. Notice that xm
i can now be written as

xm
i = (1 + ) �0 + (1 + ) �si + (1 + ) ui + µi,

so this parameterization directly a↵ects the coe�cient in the balancing re-

gression, which will be smaller than � for a negative .

The case of mean reverting measurement error captures a variety of ideas,

including the one that we may observe only part of a particular confounder

made up of multiple components. Imagine we would like to include in our

regression a variable xi = w1i + w2i, where w1i and w2i are two orthogonal

variables. We observe xm
i = w1i. For example, xi may be family background,

w1i is mother’s education and other parts of family background correlated

with it, and w2i are all relevant parts of family background which are un-

correlated with mother’s education. As long as selection bias due to w1i and

w2i is the same, this amounts to the mean reverting measurement error for-

mulation above. Note that � = V ar (xi) /V ar (xm
i ) > 1 in this case, so the

mismeasured xm
i has a lower variance than the true xi. This scenario is also

isomorphic to the model studied by Oster (forthcoming). See Appendix B for

details.

For the simulations we set  = �0.5, so the error is mean reverting. We

also fix �2
µ in the simulations. However, it is important to note that the

nature of the measurement error will change as we change the value of d

under the alternative hypotheses. xi depends on � and the correlated part of

the measurement error depends in turn on xi. We show results for two cases

with �2
µ = 0.75 and �2

µ = 2.25. Under the null, these two parameter values

correspond to � = 2 and � = 1, respectively. The case � = 2 corresponds

to the Oster (forthcoming) model just described with V ar (w1i) = V ar (w2i).

These models exhibit relatively large amounts of mean reversion. Figure 4

demonstrates that the balancing test again dominates. The gap is small for

the �2
µ = 0.75 case but grows with �2

µ, the classical portion of the measure-

ment error. This finding is not surprising as mean-reverting measurement
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error does less damage in terms of biasing the estimate of �.

A particular case of mean reverting measurement error is the one where

xi is a dummy variable, so we provide some simulation results for this case.

In this case, the balancing equation is a binary choice model, and hence

inherently non-linear. While we assume that the researcher continues to

estimate (3) as a linear probability model, we generate xi as follows:

Pr (xi = 1) = � (�si) , (20)

where � (·) is the normal distribution function as before. Measurement error

takes the form of misclassification, and we assume the misclassification rate

to be symmetric:

Pr (xm
i = 1|xi = 0) = Pr (xm

i = 0|xi = 1) = ⌧.

Compared to the baseline parameters in Table 1, we set �2
s = 0.25, and

⌧ = 0.1 in our simulations. The model remains the same in all other respects.

We use robust standard errors in estimating (9) and (11).

Various issues arise from the nonlinear nature of (20). One is the fact

that plim
⇣
�̂
⌘
from estimating (11) is not going to equal the � we generated

in equation (20). The relationship between plim
⇣
�̂
⌘
and � is concave. In

Figure 5, we plot rejection rates against �, although the quantity plim
⇣
�̂
⌘

is probably more comparable to the values of d we have used in the linear

models in the previous simulations. We note that results look qualitatively

very similar when we plot rejection rates against the empirical averages of �̂

from our simulations.

Another issue is that measurement error in xi will now lead to a biased

estimate of � in estimating (11). This is true even if we were to use a probit

and estimated a model like (20). The bias takes the form of attenuation, just

as in the case of a binary regressor with measurement error (see Hausman,

Abrevaya, and Scott-Morton, 1998). Hence, measurement error will now
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also reduce the power of the balancing test. Of course, we know from the

relationship (15) between the test statistics that the coe�cient comparison

test will also su↵er from the same power loss.

The blue/thin lines in Figure 5 reveal a sizable power advantage for the

balancing test even without any misclassification. This result is in stark

contrast to the linear models we have analyzed, where a large power loss for

the coe�cient comparison test only resulted once we introduced measurement

error. In fact, it is possible to think of the binary nature of xi itself as a form

of mismeasurement. Equation (20) defines Pr (xi = 1) as a latent index, but

the outcome regression (2) uses a coarse version of this variable in the form

of the binary xi.

In our parameterization, the coe�cient comparison test never reaches a

rejection rate of 1, and the power function levels o↵ at a far lower level. As d

increases, the power of the balancing test goes to 1. In the linear model, the

rejection rate of t� is independent of d. Because of the nonlinear nature of

(20) this is no longer true here, and the average value of t� across repeated

samples actually falls for higher values of d. Drawing on (15), the power

of the coe�cient comparison test will equal the power of t� when t� ! 1.

This is not a specific feature of the binary case but is generally true for the

relationship between the three test statistics. However, in the binary case

this implies that the power of the coe�cient comparison test may decline

with d.10

Adding measurement error to the binary regressor xi makes things worse

as is visible from the red/thick lines in Figure 5. The power loss of the

10The reason for the decline of t� with d in our parameterization is as follows: the
standard error of �̂ depends on the residual variance of the long regression, which is
independent of d, and on the variance of the residual from regressing xi on si (because si

is partialled out in the long regression). When d = 0, this latter residual is just equal to xi

itself, which is binary. But si is continuous, so as d increases, partialling out si transforms
the binary xi into a continuous variable, which has less variance than in the d = 0 case.
As the e↵ective variance in this regressor falls, the standard error of �̂ goes up and t� goes
down.
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balancing test is comparatively minor for the relatively low misclassification

rate of ⌧ = 0.1 we are using. Much of the loss for the balancing test results

from the binary nature of the xi variable in the first place. The coe�cient

comparison test is a↵ected by misclassification error to a much higher degree

because t� is a↵ected, the Hausman, Abrevaya, and Scott-Morton (1998)

result notwithstanding.

5.3 Simulations with Actual Data

Starting with a simple linear model with homoskedastic errors, we have ex-

plored simulations of a few leading scenarios which we believe are of empirical

relevance. Throughout these cases we have found an important power ad-

vantage for the balancing test in the presence of measurement error in the

candidate control variable. There are of course many other possibilities and

settings, and we have presented just a few parameterizations. But simulated

data rarely capture the complexities of many of the variables we encounter

in real data. Before turning to results from an empirical example, we briefly

present a simulation not based on draws of random numbers but instead

based on drawing observations from an actual data set.

For this exercise, we pooled data from the 2010 - 2014 American Com-

munity Surveys (ACS). Our data set consists of white and African American

individuals aged 21 to 64 with non-missing annual earnings. This data set

has 5,644,865 observations. Our outcome equation is a wage regression of

the form

ln (earningsi) = ↵ + �blacki + �xi + other regressors+ ei.

The parameter of interest is the coe�cient on a dummy for whether the

respondent is African American and the added candidate control xi is years

of schooling. We chose years of schooling as the added regressor because

the distribution of schooling is discrete, its support is wide, but a lot of
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mass is concentrated at 12 and 16 years. It therefore does not resemble any

particularly “nice” looking distribution. We also control for sex, age, age

squared, a dummy for living in a metro area, and Census region and year

dummies in all regressions.

We treat the ACS data as our e↵ective population. For our simulations

we draw samples of 1,000 observations with replacement from this universe.

Introducing measurement error into the bounded schooling variable is tricky,

so we use a fairly simple form of mismeasurement. We start with the orig-

inal data and then replace a successively larger percentage of the schooling

observations with random draws from the empirical distribution of schooling

in the data. This means

xm
i =

(
xi with probability 1� p

x̌ with probability p

where x̌ is the schooling level of a randomly sampled observation from the

ACS data.

African Americans have lower levels of schooling than whites, so � and �

are both nonzero in this exercise. � = �0.236 and �s = �0.333 in the full

ACS data. Figure 6 shows the rejection rates across 25,000 random draws

from the ACS for the balancing and coe�cient comparison tests. With the

true schooling variable, both tests reject about 80 percent of the time in our

samples. As p increases from 0 to 1, rejection rates fall but they decrease

more precipitously for the coe�cient comparison test. In fact, when p = 1,

the balancing test rejects 5 percent of the time while rejection rates for the

coe�cient comparison test actually go to zero. This reflects the small sample

bias in the coe�cient comparison test again, which we have discussed above

in the context of Figure 2. The power advantage of the balancing test is not

as large in this case as in the simulations above, but it is noticeable.
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5.4 Extension: Multiple Controls

So far we have concentrated on the case of a single added regressor xi. Often

in empirical practice we may want to add a set of additional covariates at

once. It is straightforward to extend our framework to that setting, at least in

principle. In this section, we describe this multivariate extension, and provide

some simulation results. These results turn out to be more speculative than

those in the rest of our paper.

Suppose there are k added regressors, i.e. xi is a k ⇥ 1 vector, and

yi = ↵ + �si + x0
i� + ei

xi = �0 + �si + ui (21)

�s � � = � 0�

where �, �0, � and ui are k ⇥ 1 vector analogs of their scalar counterparts

in Section 2. Lee and Lemieux (2010) suggest a balancing test for multiple

covariates in the context of evaluating regression discontinuity designs. Let

x(j) denote the n ⇥ 1 vector of all the observations on the j-th x-variable.

We can stack all the x-variables to obtain the regression
2
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where ◆ is an n ⇥ 1 vector of ones, s = [s1, s2, ..., sn]0, and u(j) the vector

or residuals corresponding to covariate x(j). We can then perform an F -test

for the joint significance of the � coe�cients. This is similar to the way

we implemented the coe�cient comparison test above in section 4.1. An

equivalent alternative is to estimate the k balancing equations jointly by

SURE.

How does the balancing test perform with multiple covariates? Figure 7

shows simulations using a similar design as in Table 1 for all k balancing
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equations. However, with multiple covariates there are di↵erent ways of

specifying the alternative hypotheses now. The null may fail for one, various,

or all of the k covariates now. We show rejection rates under two polar

versions of the alternative hypothesis: first for the case where all covariates

are unbalanced, i.e. �1 = �2 = . . . = �k = d and then for the case where

only the first covariate is unbalanced while the others remain balanced, i.e.

�1 = d, �2 = . . . = �k = 0. We generate homoskedastic errors and impose

homoskedasticity when performing the joint test of the �j’s. There are four

panels in Figure 7: the top row has 4 added covariates, and the bottom row

8; the left hand column shows the case where all covariates are unbalanced

while the right hand column displays the case where only the first covariate

is unbalanced.

Figure 7 highlights a number of results. When all covariates are unbal-

anced, the Hausman test turns out to be an e�cient test in combining the

k separate hypotheses into one single test-statistic, generated from the esti-

mates of only two parameters, the long and short �’s. The balancing test,

on the other hand has to rely on the estimation of k equations, and combine

the results from these.11 Without measurement error, the rejection rates for

the coe�cient comparison test (blue/thin broken lines) therefore lie above

the ones for the balancing test (blue/thin solid lines), as can be seen in the

left-hand panels.

When only one covariate is unbalanced, as in the right hand panels, both

tests are obviously less powerful. However, the coe�cient comparison test

now loses power much more quickly. This is particularly pronounced in

the case with measurement error in the covariates (red/thick lines). We

suspect that the empirically relevant case is most likely to lie in between

these extremes. Researchers may be faced with a set of potential controls

11The analyses in Hausman (1978), Hausman and Taylor (1980), Holly (1982), and
MacKinnon (1992) section II.9, which compare the power of the coe�cient comparison
test to the F -test for � = 0, highlight a similar result.
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to investigate, some of which may be unbalanced with the treatment while

others are not. Figure 7 demonstrates that the balancing test suggested by

Lee and Lemieux (2010) can play an important role in such an exercise, while

the coe�cient comparison test will also be valuable.

The simulations reveal a number of further issues. With measurement

error, the small sample issue of the coe�cient comparison test which we

highlighted in Figure 2, arises again. On top of this, another bias is visi-

ble in these figures. The balancing test has a size distortion under the null

hypothesis and rejects too often. This distortion tends to get worse when

more covariates are added. Note that this problem arises for a conventional

covariance matrix, and hence is distinct from the small sample bias in the ro-

bust covariance matrix discussed by Chesher and Jewitt (1987). However, we

also found in unreported simulations that using a robust covariance matrix

makes the problem worse, and this also interacts with the number of co-

variates. Applied researcher will be most interested in the testing strategies

discussed here when k is large (so that a series of single variable balancing

tests is unattractive), and will want to rely on a robust covariance matrix.

The bias problem in the balancing test lessens its usefulness. Research on

remedies for these problems is therefore particularly important.12

The upshot is that it is straightforward to extend the balancing test to

multiple covariates, at least in principle. Yet, at this point implementation

issues may hamper our ability to confidently carry out a balancing test for

multiple covariates. Moreover, sometimes we are interested in the robustness

of the original results when the number of added regressors is very large. An

example would be a di↵erences-in-di↵erences analysis in a state-year panel,

where the researcher is interested in checking whether the results are robust

12There is an active literature on how to deal with the small sample bias of the robust
or clustered covariance estimator. Young (2016) is a recent contribution. However, we
suspect that these remedies may not be su�cient for solving the size distortion of the
stacked F -test when the sample size is small relative to the number of covariates.
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to the inclusion of state specific trends. The balancing test does not seem to

be the right framework to deal with this situation. The coe�cient comparison

may have an important role to play in tackling this problem.

6 Empirical Analysis

We illustrate the theoretical results in the context of estimating the returns

to schooling using data from the National Longitudinal Survey of Young Men

(NLS). This is a panel study of about 5,000 male respondents interviewed

from 1966 to 1981. The data set has featured in many prominent analyses of

the returns to education, including Griliches (1977) and Card (1995). We use

the NLS extract posted by David Card and augment it with the variable on

body height measured in the 1973 survey. We estimate regressions similar

to equation (2). The variable yi is the log hourly wage in 1976 and si is

the number of years of schooling reported by the respondent in 1976. Our

samples are restricted to observations without missing values in any of the

variables used in a particular table or set of tables.

We start in Table 2 by presenting simple OLS regressions controlling

for experience, race, and past and present residence. The estimated return

to schooling is 0.075. This estimate may not reflect the causal e↵ect of

education on income because important confounders, such as ability or family

background, are not controlled for.

In columns (2) to (5) we include variables which might proxy for the re-

spondent’s family background. In column (2) we include mother’s education,

in column (3) whether the household had a library card when the respondent

was 14, and in column (4) we add body height measured in inches. Each of

these variables is correlated with earnings, and the coe�cient on education

moves moderately when these controls are included. Mother’s education cap-

tures an important component of a respondent’s family background. The

library card measure has been used by researchers to proxy for important
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parental attitudes (e.g. Farber and Gibbons, 1996). Body height is a vari-

able determined by parents’ genes and by nutrition and disease environment

during childhood. It is unlikely a particularly powerful control variable but

it is predetermined and correlated with family background, self-esteem, and

ability (e.g. Persico, Postlewaite, and Silverman, 2004; Case and Paxson,

2008). The return to education falls by 0.1 to 0.2 log points when these con-

trols are added. In column (5) we enter all three variables simultaneously.

The coe�cients on the controls are somewhat attenuated, and the return to

education falls slightly further to 0.071.

It might be tempting to conclude from the relatively small change in the

estimated returns to schooling that this estimate should be given a causal

interpretation. We provide a variety of evidence that this conclusion is un-

likely to be a sound one. Below the estimates in columns (2) to (5), we

display the p-values from the coe�cient comparison test, comparing each of

the estimated returns to education to the one from column (1). Although

the coe�cient movements are small, the tests all reject at the 5% level, and

in columns (4) and (5) they reject at the 1% level. These results might not

be expected from the size of the coe�cient movements and the individual

standard errors on the years of education coe�cients alone, highlighting the

importance for the formal coe�cient comparison test.

The results in columns (6) to (8), where we regress maternal education,

the library card, and body height on education, further magnify the concern.

The education coe�cient is positive and strongly significant in all three re-

gressions, with t-values ranging from 4.4 to 13.1, and a joint balancing test

rejects the hypothesis that all three controls are balanced with a p-value of

virtually zero. The magnitudes of the coe�cients are substantively impor-

tant. It is di�cult to think of these results as causal e↵ects: the respondent’s

education should not a↵ect predetermined proxies of family background. In-

stead, these estimates reflect selection bias. Individuals with more education

have significantly better educated mothers, were more likely to grow up in
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a household with a library card, and experienced more body growth when

young. Measurement error leads to attenuation bias when these variables

are used on the right-hand side which renders them fairly useless as controls.

The measurement error matters less for the estimates in columns (6) to (8),

and these are informative about the role of selection. Comparing the p-values

at the bottom of the table to the corresponding ones for the coe�cient com-

parison test in columns (2) to (4) demonstrates the superior power of the

balancing test.

The following tables have the same general layout. In Table 3 we repeat

the regressions including a direct measure for ability, the respondent’s score

on the Knowledge of the World of Work test (KWW), a variable used by

Griliches (1977) as a proxy for ability. The sample size is reduced due to the

exclusion of missing IQ values in the test score for consistency with a sub-

sequent table. Estimated returns without the KWW score in this restricted

sample (unreported) are very similar to those in Table 2. Adding the KWW

score reduces the coe�cient on education by almost 20%, from 0.075 to 0.061.

Adding maternal education, the library card, and body height does very lit-

tle to the estimated returns to education now. The coe�cient comparison

test indicates that none of the small changes in the returns to education are

statistically significant. Controlling for the KWW scores has largely knocked

out the library card e↵ect but done little to the coe�cients on maternal ed-

ucation and body height. The relatively small and insignificant coe�cient

movements in columns (2) to (5) suggest that the specification controlling

for the KWW score might solve the ability bias problem.

Columns (6) to (8), however, show that the regressions with the controls

on the left hand side still mostly result in significant education coe�cients

even when the KWW score is in the regression. This raises the possibility

that the estimated returns in columns (1) to (5) might remain biased by

selection. The estimated coe�cients on education for the three controls are

on the order of half their value from Table 2, and the body height measure is
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now only significant at the 10% level. But the relationship between mother’s

and own education is still sizable, so that this measure continues to indicate

the possibility of important selection. Balance in library card ownership is

rejected despite the fact that a comparison of the coe�cients in columns (1)

and (3) indicates no role for this variable at all. A joint balancing test with

all three controls strongly rejects the hypothesis that they are balanced. The

results in this table illustrate the message of our paper in a powerful fashion.

While the KWW score might be a potent control, it is likely also mea-

sured with substantial error. Griliches (1977) proposes to instrument this

measure with an IQ test score variable, which is also contained in the NLS

data, to eliminate at least some of the consequences of this measurement er-

ror. In Table 4 we repeat the schooling regressions with IQ as instrument for

the KWW score. The coe�cient on the KWW score almost triples, in line

with the idea that an individual test score is a very noisy measure of ability.

The education coe�cient now falls to only about half its previous value from

0.061 to 0.034. This might be due to positive omitted variable bias present

in the previous regressions which is eliminated by IQ-instrumented KWW

(although there may be other possible explanations for the change as well,

like measurement error in schooling). Both the coe�cient comparison tests

and the balancing tests (individual and joint) indicate no evidence of selec-

tion any more. This is due to a combination of lower point estimates and

larger standard errors. The contrast between Tables 3 and 4 highlights the

usefulness of the balancing test: it warns about the Table 3 results, while the

coe�cient comparison test delivers insignificant di↵erences in either case.

Finding an instrumental variable for education is an alternative to control

strategies, such as using test scores. In Table 5 we follow Card’s (1995) anal-

ysis and instrument education using distance to the nearest college, while

dropping the KWW score. We use the same sample as in Table 2, which
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di↵ers from Card’s sample.13 Our IV estimates of the return to education are

slightly higher than in Table 2 but a lot lower than in Card (1995) at around

8%. The IV returns estimates are noisy, never quite reaching a t-statistic

of 2. Columns 1-5 of Table 5 show that the IV estimate on education, while

bouncing around a bit, does not change significantly when maternal edu-

cation, the library card, or body height is included. In particular, if these

three controls are included at the same time in column (5), the point esti-

mate is indistinguishable from the unconditional estimate in column (1) both

substantively and statistically.

IV regressions with pre-determined variables on the left hand side can be

thought of as a test for random assignment of the instruments. Unfortunately,

in this case the selection regressions in columns (6)-(8) are also much less

precise and as a result less informative. The coe�cients in the regressions

for mother’s education and body height have the wrong sign but confidence

intervals cover anything ranging from zero selection to large positive amounts.

Only the library card measure is large, positive, and significant around the

6% level, possibly indicative of some remaining potential for selection even in

the IV regressions. However, with a p-value of 0.29, the joint balancing test

fails to reject the null hypothesis that all three controls are balanced. While

the data do not speak clearly in this particular case this does not render the

methodology per se any less useful.

7 Conclusion

Using predetermined characteristics as dependent variables o↵ers a useful

specification check for a variety of identification strategies popular in empir-

13Unlike Card, who uses two dummies for proximity to a two- and a four-year college,
we use a single dummy variable for whether there is a four-year college in the county as
instrument, and we instrument experience and experience squared by age and age squared.
We restrict Card’s sample to non-missing values in maternal education, the library card,
and body height.

36



ical economics. We argue that this is the case even for variables which might

be poorly measured and are of little value as control variables. Such vari-

ables should be available in many data sets, and we encourage researchers to

perform such balancing tests more frequently. We show that this is generally

a more powerful strategy than adding the same variables on the right hand

side of the regression as controls and looking for movement in the coe�cient

of interest.

We have illustrated our theoretical results with an application to the

returns to education. Taking our assessment from this exercise at face value,

a reader might conclude that the results in Table 4, returns around 3.5%, can

safely be regarded as causal estimates. Of course, this is not the conclusion

reached in the literature, where much higher IV estimates like those in Table

5 are generally preferred (see e.g. Card, 2001 or Angrist and Pischke, 2015,

chapter 6). This serves as a reminder that the discussion here is focused on

sharpening one particular tool in the kit of applied economists. Successfully

passing the balancing test should be a necessary condition for a successful

research design but it is not su�cient.

The balancing test and other statistics we discuss here are useful for

gauging selection bias due to observed confounders, even when they are po-

tentially measured poorly. It does not address any other issues which may

also haunt a successful empirical investigation of causal e↵ects. One possible

issue is measurement error in the variable of interest, which is also exac-

erbated as more potent controls are added. Griliches (1977) shows that a

modest amount of measurement error in schooling may be responsible for

the patterns of returns we have displayed in Tables 2 to 4. Another issue,

also discussed by Griliches, is that controls like test scores might themselves

be influenced by schooling, which would make them bad controls. For all

these reasons, IV estimates of the returns may be preferable.
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Figure 1: Theoretical Rejection Rates
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Figure 2: Theoretical and Simulated Rejection Rates
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Note: Comparison of asymptotic rejection rates with rejection
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Figure 3: Simulated Rejection Rates with Heteroskedasticity
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Figure 4: Simulated Rejection Rates with Mean Reverting Measurement
Error
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error and robust standard errors.
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Figure 5: Simulated Rejection Rates with Binary Control and Misclassifica-
tion
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Note: Rejection rates for a binary control variable that is mis-
classified (i.e. its binary value is flipped) with probability ⌧ .
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Figure 6: Rejection Rates in Actual Data from the ACS
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Note: Rejection rates based on drawing random samples of size
1,000 from the American Community Surveys. Measurement er-
ror is generated by replacing di↵erent percentages of the schooling
observations with random draws from the empirical distribution
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Figure 7: Simulated Rejection Rates with Multiple Controls
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Table 1: Parameters for Power Calculations and Implied R2s

𝜎𝜎𝑠𝑠2 = 1  β = 1  
𝜎𝜎𝑢𝑢2 = 3  γ = 3  
𝜎𝜎𝑒𝑒2 = 30  n = 100  

 
d 

R2 
θ = 0 θ = 0.7 θ = 0.85 

0 0.48 0.16 0.09 
0.5 0.53 0.23 0.16 
1.0 0.59 0.33 0.27 
1.5 0.66 0.44 0.39 
2.0 0.72 0.54 0.50 

 
Note: The implied population R2’s do not depend on n, but the
subsequent power calculations do.
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Appendix

A Power Functions

A.1 The Balancing Test

The desired balancing regression is

xi = �0 + �si + ui,

but xi is measured with error

xm
i = xi +mi.

E↵ectively, we run the balancing regression

xm
i = �m0 + �msi + ui +mi.

As mentioned in Section 5.1, in the theoretical derivation of the power

functions we abstract away from the sampling variation in estimating the

standard errors by treating �u, �m and �s as known constants. In this case,

the asymptotic variance of b�m can be directly calculated, and the resulting

test statistic for the null hypothesis that the balancing coe�cient � is zero is

t�m =
b�m

se
⇣
b�m
⌘ =

b�m

1p
n

p
�2
u+�2

m

�s

.

Define

✓ =
�2
m

�2
u + �2

m

) �2
u + �2

m =
�2
u

1� ✓

Hence

t�m = b�m
p
n�s

p
1� ✓

�u
.
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The rejection probability when � = d and when using critical value C is

Pr (|t�m | > C) = Pr (t�m > C) + Pr (t�m < �C)

= Pr

0

@
b�m

se
⇣
b�m
⌘ > C

1

A+ Pr

0

@
b�m

se
⇣
b�m
⌘ < �C

1

A

= Pr

0

@
b�m � d

se
⇣
b�m
⌘ > C � d

p
n�s

p
1� ✓

�u

1

A

+Pr

0

@
b�m � d

se
⇣
b�m
⌘ < �C � d

p
n�s

p
1� ✓

�u

1

A

⇡ 1� �

✓
C � d

p
n�s

p
1� ✓

�u

◆
+ �

✓
�C � d

p
n�s

p
1� ✓

�u

◆

when n is large. This is the power function of the balancing test

Powert� (d) = 1��
✓
1.96� d

p
n�s

p
1� ✓

�u

◆
+�

✓
�1.96� d

p
n�s

p
1� ✓

�u

◆
.

A.2 The Coe�cient Comparison Test

The short and long regressions are

yi = ↵s + �ssi + esi

yi = ↵ + �si + �xi + ei,

and

xi = �0 + �si + ui.

Adding measurement error in xi:

xm
i = xi +mi,

we have

yi = ↵s + �ssi + esi

yi = ↵m + �msi + �mxm
i + emi

xm
i = �0 + �si + ui +mi.
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Treat si, ui, ei, and mi as the underlying random variables which deter-

mine xi, yi, esi and emi . We normalize si to a mean zero variable. For the

derivations in the remainder of this section, we make the following assump-

tions:

Assumption A1: si, ui, ei and mi are mutually independent;

Assumption A2: E[u3
i ] = 0.

Note that Assumptions A1 and A2 are satisfied in the DGP’s we adopt

for the Monte Carlo simulations underlying Figure 2, that is, when si, ui, ei,

mi follow a joint normal distribution with the first two moments specified

according to
si
ui

ei
mi

⇠

0

BB@

2

664

0
0
0
0

3

775 ,

2

664

�2
s 0 0 0
0 �2

u 0 0
0 0 �2

e 0
0 0 0 �2

m

3

775

1

CCA . (A1)

A.2.1 Population Parameters

In this subsection, we derive the expressions of population regression coe�-

cients �m and �m in terms of the model parameters, as discussed in Section

3. Performing an anatomy to the multiple regression (9), we have

�m =
Cov(yi, ui +mi)

V ar(ui +mi)
= �

�2
u

�2
u + �2

m

, (A2)

where ui + mi is the residual from the population regression of xm
i on si.

Using ✓ as defined above, equation (A2) becomes

�m = �(1� ✓). (A3)

By the omitted variable bias formula, we have

�s = � + ��

�s = �m + �m�,
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and therefore

�m = � + ��✓. (A4)

As mentioned in the main text, an alternative representation of ✓ is

✓ =
1� �

1�R2
, (A5)

where

� =
V ar (xi)

V ar (xm
i )

is the reliability of xm
i , and R2 is the population R2 of the regression of xm

i

on si. To see why (A5) holds, notice that

V ar(xi) = �2�2
s + �2

u

V ar(xm
i ) = �2�2

s + �2
u + �2

m

R2 = 1� �2
u + �2

m

�2�2
s + �2

u + �2
m

,

from which equation (A5) mechanically follows.

A.2.2 Asymptotic Variance in the Coe�cient Comparison Test
under Homoskedasticity

For the coe�cient comparison test �s � �m = 0, the test statistic is

t�s��m =
b�s � b�m

q
V ar(b�s � b�m)

,

which is asymptotically standard normal. As mentioned in section 4, we rely

on the delta method equation (13) to derive V ar(b�s� b�m). We have already

shown in the previous subsection that

V ar(b�m) = 1

n

�2
u

(1� ✓)�2
s

, (A6)

and we derive V ar (b�m) and Cov
⇣
b�m, b�m

⌘
in the remainder of this subsec-

tion. For simplicity of exposition, we make an additional assumption:
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Assumption A3: V ar(emi |si, xm
i ) is constant.

Like Assumptions A1 and A2, Assumption A3 is also satisfied in the

DGP’s underlying Figure 2. In the subsection below, we also derive the

general expression of V ar(b�s � b�m) when Assumption A3 is relaxed.

In order to derive V ar(b�m), first note that

V ar (b�m) =
1

n

V ar (emi )

V ar (ui +mi)
, (A7)

where, as mentioned above, ui +mi is the residual from the population re-

gression of xm
i on si. Since V ar (ui +mi) = �2

u + �2
m, the missing piece in

equation (A7) is V ar (emi ). Plugging (A3) and (A4) into (9), we get

yi = ↵m + �msi + �mxm
i + emi

= ↵m + (� + ��✓) si + � (1� ✓) xm
i + emi

= (↵m + � (1� ✓) �0) + (� + ��) si + � (1� ✓) (ui +mi) + emi

Since

yi = ↵ + �si + � (�0 + �si + ui) + ei

= (↵ + ��0) + (� + ��) si + �ui + ei,

matching residuals yields

�ui + ei = � (1� ✓) (ui +mi) + emi

emi = �✓ui � � (1� ✓)mi + ei

V ar (emi ) = �2✓2�2
u + �2 (1� ✓)2 �2

m + �2
e

= �2

 ✓
�2
m

�2
u + �2

m

◆2

�2
u +

✓
�2
u

�2
u + �2

m

◆2

�2
m

!
+ �2

e

= �2✓�2
u + �2

e .

So

V ar (b�m) =
1

n

�2✓�2
u + �2

e

�2
u + �2

m

=
1� ✓

n

✓
�2✓ +

�2
e

�2
u

◆
. (A8)
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As for Cov(b�m, b�m), first note that

b�m � � =

P
i(ui +mi)(si � s̄)P

i(si � s̄)2
(A9)

b�m � �m =

P
emi (exm

i � ēx
m
)

P�
exm
i � ēx

m�2 (A10)

where s̄ and ēxm
are the sample averages of si and exm

i with exm
i = xm

i �b�0�b�msi
being the residual from regressing xm

i on si. By Assumption A1 along with

the fact that �̂0
p! �0 and �̂m

p! �, the asymptotic joint distribution of the

numerators in equations (A9) and (A10) is

1p
n

 P
i(ui +mi)(si � s̄)P

i e
m
i (exm

i � ēx
m
)

�

d�!N

✓
0,


(�2

u + �2
m) �

2
s E[si(ui +mi)2emi ]

E[si(ui +mi)2emi ] E[(ui +mi)2(emi )
2]

�◆
.

By Assumptions A1 and A2,

E[si(ui +mi)
2emi ] = E[si(ui +mi)

2(�✓ui � � (1� ✓)mi + ei)]

= 0.

Since the denominators of equations (A9) and (A10) converge in probability

to positive constants,

Cov(b�m, b�m) = 0. (A11)

Plugging equations (A6), (A8) and (A11) into (13) yields

V ar(b�s � b�m) ⌘ 1

n
V� (d; �)

=
1

n
(1� ✓)

✓
�2�2

u

�2
s

+ ✓�2�2 +
�2�2

e

�2
u

◆
. (A12)

Recall that

�s � �m = ��m = �� (1� ✓) ,

so the power function of the coe�cient comparison test is

Powert� (d; �) = 1��
 
1.96� d

p
n� (1� ✓)p
V� (d; �)

!
+�

 
�1.96� d

p
n� (1� ✓)p
V� (d; �)

!
.

58



A.2.3 Relaxing Assumption A3

In this subsection, we provide the expression for V ar(b�s� b�m) while relaxing

the conditional homoskedasticity of emi , i.e. Assumption A3. Our derivation

of this asymptotic variance expression still relies on equation (13). Since

equations (A6) and (A11) are not a↵ected by Assumption A3, we will only

need the general expression for V ar (b�m).

Representing model (9) in matrix form,

yi = W0
i�+ emi ,

where Wi = (1, si, xm
i )

0 and � = (↵m, �m, �m)0. The asymptotic variance-

covariance matrix of the regression estimator b� is

1

n
E[WiW

0
i]
�1E[WiW

0
i(e

m
i )

2]E[WiW
0
i]
�1.

ExpressingE[WiW0
i] in terms of the fundamental model parameters is straight-

forward:

E[WiW
0
i] = E

2

4
1 si xm

i

si s2i six
m
i

xm
i six

m
i (xm

i )
2

3

5

=

2

4
1 0 �0
0 �2

s ��2
s

�0 ��2
s �20 + �2�2

s + �2
u + �2

m

3

5 .

As before, we set E[si] = 0, which sacrifices no generality since the mean

does not enter the variance calculation in any case.

Writing out the entries in the matrix E[WiW0
i(e

m
i )

2]:

E[WiW
0
i(e

m
i )

2]

= E

2

66666664

(emi )
2

| {z }
(i)

si(e
m
i )

2

| {z }
(ii)

xm
i (e

m
i )

2

| {z }
(iii)

si(emi )
2 s2i (e

m
i )

2

| {z }
(iv)

six
m
i (e

m
i )

2

| {z }
(v)

xm
i (e

m
i )

2 six
m
i (e

m
i )

2 (xm
i )

2(emi )
2

| {z }
(vi)

3

77777775

.
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Below we express quantities (i) to (vi) in terms of the fundamental model

parameters. Letting m = E[m4
i ] and u = E[u4

i ] and utilizing Assumptions

1 and 2, we have the expressions for (i) to (vi):

E[(emi )
2] = E[(�✓ui � �(1� ✓)mi + ei)

2]

= �2✓2�2
u + �2(1� ✓)2�2

m + �2
e , (i)

E[si(e
m
i )

2] = E[si(�✓ui � �(1� ✓)mi + ei)
2]

= 0, (ii)

E[xm
i (e

m
i )

2] = E[(�0 + �si + ui +mi)(e
m
i )

2]

= �0E[(emi )
2] + �E[si(e

m
i )

2]

= �0(�
2✓2�2

u + �2(1� ✓)2�2
m + �2

e), (iii)

E[s2i (e
m
i )

2] = E[s2i (�✓ui � �(1� ✓)mi + ei)
2]

= �2
s(�

2✓2�2
u + �2(1� ✓)2�2

m + �2
e), (iv)

and

E[six
m
i (e

m
i )

2] = E[si(�0 + �si + ui +mi) · (emi )2]

= �0E[si(e
m
i )

2] + �E[s2i (e
m
i )

2]

+ E[siui(�✓ui � �(1� ✓)mi + ei)
2]

+ E[simi(�✓ui � �(1� ✓)mi + ei)
2]

= ��2
s(�

2✓2�2
u + �2(1� ✓)2�2

m + �2
e). (v)
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Finally, for the expression of (vi)

E[(xm
i )

2(emi )
2] = E[(�0 + �si + ui +mi)

2(emi )
2]

= �20E[(emi )
2] + �2E[s2i (e

m
i )

2]

+E[u2
i (�✓ui � �(1� ✓)mi + ei)

2]

+E[m2
i (�✓ui � �(1� ✓)mi + ei)

2]

+2�0�E[si(e
m
i )

2] + 2�0E[ui(e
m
i )

2]

+2�0E[mi(e
m
i )

2] + 2�E[siui(e
m
i )

2]

+2�E[simi(e
m
i )

2] + 2E[uimi(e
m
i )

2].

Note that

E[si(e
m
i )

2] = 0

E[ui(e
m
i )

2] = E[mi(e
m
i )

2] = 0

E[siui(e
m
i )

2] = E[simi(e
m
i )

2] = 0,

and we only need to find the expressions for

E[u2
i (�✓ui � �(1� ✓)mi + ei)

2]

= E[u2
i {�2✓2u2

i + �2(1� ✓)2m2
i + e2i

�2�2✓(1� ✓)uimi + 2�✓uiei � 2�(1� ✓)miei}]

= �2✓2E[u4
i ] + �2(1� ✓)2�2

u�
2
m + �2

u�
2
e

= �2✓2u + �2(1� ✓)2�2
u�

2
m + �2

u�
2
e ,

E[m2
i (�✓ui � �(1� ✓)mi + ei)

2]

= E[m2
i {�2✓2u2

i + �2(1� ✓)2m2
i + e2i

�2�2✓(1� ✓)uimi + 2�✓uiei � 2�(1� ✓)miei}]

= �2✓2�2
u�

2
m + �2(1� ✓)2m + �2

m�
2
e ,
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and

E[uimi(e
m
i )

2] = E[uimi(�✓ui � �(1� ✓)mi + ei)
2]

= E[uimi{�2✓2u2
i + �2(1� ✓)2m2

i + e2i

�2�2✓(1� ✓)uimi + 2�✓uiei � 2�(1� ✓)miei}]

= �2�2✓(1� ✓)�2
u�

2
m.

Putting these terms together,

E[(xm
i )

2(emi )
2] = �20E[(emi )

2] + �2E[s2i (e
m
i )

2]

+ E[u2
i (�✓ui � �(1� ✓)mi + ei)

2]

+ E[m2
i (�✓ui � �(1� ✓)mi + ei)

2]

+ 2E[uimi(e
m
i )

2]

= �20{�2✓2�2
u + �2(1� ✓)2�2

m + �2
e}

+ �2�2
s(�

2✓2�2
u + �2(1� ✓)2�2

m + �2
e)

+ {�2✓2u + �2(1� ✓)2�2
u�

2
m + �2

u�
2
e}

+ {�2✓2�2
u�

2
m + �2(1� ✓)2m + �2

m�
2
e}

� {4�2✓(1� ✓)�2
u�

2
m}. (vi)

Now that we have the expression for both E[WiW0
i] and E[WiW0

i(e
m
i )

2], we

can compute the asymptotic variance of b�m

V ar (b�m) =
1

n

⇢
(1� ✓)

✓
�2✓ +

�2
e

�2
u

◆

+ �2


(u � 3�4

u)✓
2

(�2
m + �2

u)
2

+
(m � 3�4

m)(1� ✓)2

(�2
m + �2

u)
2

�

| {z }
(a)

9
>>>=

>>>;
.

Compared to its expression under homoskedasticity (A8), we have an extra

term (a) that accounts for the excess kurtosis of the u and m distributions.
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It follows that

1

n
V� (d; �) = V ar

⇣
b�s � b�m

⌘

=
1

n

⇢
(1� ✓)

✓
�2�2

u

�2
s

+ ✓�2�2 +
�2�2

e

�2
u

◆

+�2�2

(u � 3�4

u)✓
2

(�2
m + �2

u)
2

+
(m � 3�4

m)(1� ✓)2

(�2
m + �2

u)
2

��
.

Note that when ui and mi are normal, u � 3�4
u = 0 and m � 3�4

m =

0, and the variance expression above simplifies to that of equation (A12).

Since V ar
⇣
b�s � b�m

⌘
increases in u and m and that the balancing test

is una↵ected by the heteroskedasticity of em, the power advantage of the

balancing test is larger when ui and mi have thicker tails than a normal

distribution.

B Comparison with Oster (forthcoming)

The Oster (forthcoming) formulation of the causal regression takes the form

yi = ↵ + �si + ⇢w1i + w2i + ei,

where w1i is an observed covariate and w2i is an unobserved covariate, uncor-

related with w1i. To map this into our setup, think of the true xi as capturing

both w1i and w2i, i.e. xi = ⇢w1i +w2i. Furthermore, there is equal selection,

i.e.
Cov(si, ⇢w1i)

⇢2�2
1

=
Cov(si, w2i)

�2
2

,

where �2
1 and �2

2 are the variances of w1i and w2i, respectively. Then, Oster’s

(forthcoming) regression can be written as

yi = ↵ + �si + xi + ei,

which is our regression with � = 1 (the scaling of xi is arbitrary of course; it

could be xi = w1i + w2i/⇢ instead and � = ⇢ or anything else).
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Our observed xm
i = ⇢w1i, so measurement errormi = �w2i. Measurement

error here is mean reverting, i.e.

mi = xi + µi (A13)

with  < 0. Notice that

Cov (mi, xi) = ��2
2,

and hence

 =
��2

2

⇢2�2
1 + �2

2

(A14)

and

µi = �w2i �  (⇢w1i + w2i)

= �⇢w1i � (1 + )w2i

=
�2
2

⇢2�2
1 + �2

2

⇢w1i �
⇢2�2

1

⇢2�2
1 + �2

2

w2i.

It turns out that µi implicitly defined in (A13) and  given by (A14) imply

Cov(xi, µi) = 0 and Cov(si, µi) = 0. Hence, these two equations represent

mean reverting measurement error as defined in the body of the manuscript.

However, note that Cov(si, µi) = 0 depends on the equal selection assump-

tion. With proportional selection, i.e.

�
Cov(si, ⇢w1i)

⇢2�2
1

=
Cov(si, w2i)

�2
2

,

and � 6= 1 we would have Cov(si, µi) 6= 0.
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