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Abstract

Researchers frequently test identifying assumptions in regression
based research designs (which include instrumental variables or difference-
in-differences models) by adding additional control variables on the
right hand side of the regression. If such additions do not affect the
coefficient of interest (much) a study is presumed to be reliable. We
caution that such invariance may result from the fact that the observed
variables used in such robustness checks are often poor measures of the
potential underlying confounders. In this case, a more powerful test of
the identifying assumption is to put the variable on the left hand side
of the candidate regression. We provide derivations for the estimators
and test statistics involved, as well as power calculations, which can
help applied researchers interpret their findings. We illustrate these
results in the context of various strategies which have been suggested
to identify the returns to schooling.
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1 Introduction

Research on causal effects depends on implicit identifying assumptions, which
typically form the core of a debate about the quality and credibility of a par-
ticular research design. In regression based strategies, this is the claim that
variation in the regressor of interest is as good as random after conditioning
on a sufficient set of control variables. In instrumental variables models it in-
volves the assumption that the instrument is as good as randomly assigned.
In panel or differences-in-differences designs it is the parallel trends assump-
tion, possibly after suitable conditioning. The credibility of a design can be
enhanced when researchers can show explicitly that potentially remaining
sources of selection bias have been eliminated. This is often done through
some form of balancing tests or robustness checks.

The research designs mentioned above can all be thought of as variants of
regression strategies. If the researcher has access to a variable for a potentially
remaining confounder, tests for the identifying assumption take two canonical
forms. The variable can be added as a control on the right hand side of
the regression. The identifying assumption is confirmed if the estimated
causal effect of interest is insensitive to this variable addition—we call this
the coefficient comparison test. Alternatively, the variable can be placed on
the left hand side of the regression instead of the outcome variable. A zero
coefficient on the causal variable of interest then confirms the identifying
assumption. This is the balancing test which is typically carried out using
baseline characteristics or pre-treatment outcomes in a randomized trial or
in a regression discontinuity design.

Researchers often rely on one or the other of these tests. The main point
of our paper is to show that the balancing test, using the proxy for the
candidate confounder on the left hand side of the regression, is generally
more powerful. This is particularly the case when the available variable is

a noisy measure of the true underlying confounder. The attenuation due to



measurement error often implies that adding the candidate variable on the
right hand side as a regressor does little to eliminate any omitted variables
bias. The same measurement error does comparatively less damage when
putting this variable on the left hand side. Regression strategies work well in
finding small but relevant amounts of variation in noisy dependent variables.

These two testing strategies are intimately related through the omitted
variables bias formula. The omitted variables bias formula shows that the co-
efficient comparison test involves two regression parameters, the coefficient
from the balancing test and the coefficient from the added regressor in the
outcome equation. If the researcher has a strong prior that the added re-
gressor ought to matter for the outcome under study then the balancing
test will provide the remaining information necessary to assess the research
design. This maintained assumption is the ultimate source of the superior
power of the balancing test. However, we show that quantitatively meaning-
ful differences emerge particularly when there is some substantial amount of
measurement error in the added regressor. We derive the relevant parameters
in the presence of measurement error in Section 3.

Of course, sometimes researchers may be more agnostic about whether the
added regressor matters for the outcome. In case it does not matter, rejecting
balance for this variable is of no consequence for this particular research
design. In this view, only the coefficient comparison test is really relevant
while the balancing test provides no additional information. However, this
strikes us as a narrow view and not one shared by many in the experimental
community, where balancing tests are commonly used. Lack of balance is
seen as an indictment of the randomization in an experiment irrespective
of whether the variable in question affects the outcome. Lack of balance
with respect to one or more observed covariates raises the possibility that
there may also be lack of balance for other unobservables, and would lead a
prudent researcher to reassess the credibility of their research design. The

same should be true for quasi-experimental research based on observational



data.

A second point we are making is that the two strategies, coefficient com-
parison and balancing, both lead to explicit statistical tests. The balancing
test is a simple ¢-test used routinely by researchers. When adding a covariate
on the right hand side, comparing the coefficient of interest across the two
regressions can be done using a generalized Hausman test. In practice, we
have not seen this test carried out in applied papers, where researchers typ-
ically just eye-ball the results.? We provide the relevant test statistics and
discuss how they behave under measurement error in Section 4. We also
show how the coefficient comparison test is simple to implement for varying
identification strategies. We demonstrate the superior power of the balancing
test under a variety of scenarios in Section 5.

The principles underlying the points we are making are not new but the
consequences do not seem to be fully appreciated in much applied work.
Griliches (1977) is a classic reference for the issues arising when regression
controls are measured with error. A subsequent literature, for example Rosen-
baum and Rubin (1983) and Imbens (2003), has considered omitted variables
bias in non-linear models without measurement error. More closely related is
Battistin and Chesher (2014), as it discusses identification in the presence of
a mismeasured covariate in non-linear models. Like in the literature following
Rosenbaum and Rubin (1983), they discuss identification given assumptions
about a missing parameter, namely the degree of measurement error in the
covariate. We follow Griliches (1977) in framing our discussion around the
omitted variables bias arising in linear regressions, the general framework
used most widely in empirical studies. Unlike this literature, we are less in-
terested in point identification in the presence of missing information. We go
beyond the analysis in all of these papers in our explicit discussion of testing,

which forms the core of our study.

2An exception is Gelbach (2016), who discusses the Hausman test in this context.



Altonji, Elder, and Taber (2005) discuss an alternative but closely related
approach to the problem. As we noted above, applied researchers often argue
that relative stability of regression coefficients when adding additional con-
trols provides evidence for credible identification. Implicit in this argument is
the idea that other confounders not controlled for are similar to the controls
just added to the regression. The paper by Altonji, Elder, and Taber (2005)
formalizes this argument. In practice, adding controls will typically move the
coefficient of interest somewhat even if it is not by much. Altonji, Conley,
Elder, and Taber (2013) and Oster (forthcoming) extend the original Altonji,
Elder and Taber work by providing more precise conditions for bounds and
point identification in this case. The approach in these papers relies on an
assumption about how the omitted variables bias due to the observed re-
gressor is related to any remaining omitted variables bias due to unobserved
confounders.

The remaining unobserved confounders in this previous work can be
thought of as the source of measurement error in the covariate which is added
to the regression in our analysis. For example, in our empirical example be-
low, we use mother’s education as a measure for family background but this
variable may only capture a small part of all the relevant family background
information, a lot of which may be orthogonal to mother’s education. In fact,
we show that our formulation and Oster’s (forthcoming) are isomorphic. This
means that our framework is a useful starting point for researchers who are
willing to make the type of assumptions in Altonji, Elder, and Taber (2005)
and follow-up papers as well.

Another related strand of work is by Belloni, Chernozhukov, and Hansen
(2014a, b), who tackle the opposite problem from Altonji, Elder, and Taber
(2005), namely choosing the best controls when the researcher has a poten-
tially bigger set of candidate controls available than is necessary. This large
dimensional set comes from the fact that they consider possible nonlineari-

ties and interactions among regressors. Belloni, Chernozhukov, and Hansen
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(2014b) use Lasso to select regressors which are highly correlated with either
the treatment or the outcome conditional on other covariates. They then es-
timate an outcome equation including as controls all the regressors selected
in this preliminary step. In a sense, this is more closely related to our setup
than the Altonji, Elder and Taber approach as Belloni, Chernozhukov, and
Hansen (2014b) also postulate that identification can be achieved when using
a subset of the available covariates as controls. Their variable selection prob-
lem is related to the two testing strategies we discuss in this paper. However,
like Altonji, Conley, Elder, and Taber (2013) and Oster (forthcoming), their
ultimate interest is in point identification and inference for the treatment
effects parameter, not in testing whether a particular specification is subject
to remaining confounders. Their setup is also not specifically geared towards
dealing with control variables which are subject to error, which is our focus.

An older literature by Hausman (1978), Hausman and Taylor (1980),
and Holly (1982) (see also the summary in MacKinnon, 1992, section I1.9)
considers the relative power of the Hausman test compared to alternatives,
in particular an F-test for the added covariates in the outcome equation
when potentially multiple covariates are added. This comparison effectively
maintains that there is a lack of balance, and instead tests whether the added
regressors matter for explaining the outcome. While this is a different exercise
from ours, this literature highlights the potential power of the Hausman
test when it succinctly transforms a test with multiple restrictions (like the
F-test for the added covariates) into a test with a single restriction (the
coefficient comparison test). We briefly discuss how to extend our framework
to multiple added controls in Section 5.4. We also reach the conclusion that
the Hausman test may be useful when the goal is to summarize a large
number of restrictions.

Griliches (1977) uses estimates of the returns to schooling as example for
the methodological points he makes. Such estimates have formed a staple of

labor economics ever since. We use Griliches’ data from the National Lon-



gitudinal Survey of Young Men to illustrate our power results in Section 6.
In addition to Griliches (1977), this data set has been used in a well known
study by Card (1995). It is well suited for our purposes because the data
contain various test score measures which can be used as controls in a regres-
sion strategy (as investigated by Griliches, 1977), a candidate instrument for
college attendance (investigated by Card, 1995), as well as a myriad of other
useful variables on individual and family background. The empirical results

support and illustrate our theoretical claims.

2 A Simple Framework

Consider the following simple framework starting with a population regres-
sion equation

Yy =o'+ [%s; + €} (1)

where y; is an outcome like log wages, s; is the causal variable of interest, like
years of schooling, and €7 is the regression residual. The researcher proposes
this short regression model to be causal. This might be the case because the
data come from a randomized experiment, so the simple bivariate regression
is all we need. More likely, the researcher has a particular research design
applied to observational data. For example, in the case of a regression strategy
controlling for confounders, y; and s; would be residuals from regressions of
the original outcome and treatment variables on the chosen controls. In the
case of panel data or differences-in-differences designs the controls are sets of
fixed effects. In the case of instrumental variables, s; would be the predicted
value from a first stage regression. In practice, (1) encompasses a wide variety
of empirical approaches, and should be thought of as a short-hand for these.?

Now consider the possibility that the population regression parameter 3°

from (1) may not actually capture a causal effect. There may be a candidate

30f course, all subsequent regression equations and results also inherit the structure of
the actual underlying research design.



confounder z;, so that the causal effect of s; on y; would only be obtained

conditional on z;, as in the long regression
Yi=a+Bsi+yzi+ e (2)

and the researcher would like to probe whether this is a concern. For example,
in the returns to schooling context, x; might be some remaining part of an
individual’s earnings capacity which is also related to schooling, like ability
or family background.

Researchers who find themselves in a situation where they start with
a proposed causal model (1) and a measure for a candidate confounder x;
typically do one of two things: They either regress x; on s; and check whether
s; is significant, or they include z; on the right hand side of the original
regression as in (2), and check whether the estimate of § changes materially
when z; is added to the regression of interest. The first strategy constitutes
a test for “balance,” a standard check for successful randomization in an
experiment. In principle, the second strategy has the advantage that it goes
beyond testing whether (1) qualifies as a causal regression. An appreciable
change in ( suggests that the original estimate [3° is biased. The results
obtained with z; as an additional control should be closer to the causal effect
we seek to uncover. In particular, if z; were the only relevant confounder and
if we measure it without error, the 5 parameter from the controlled regression
is the causal effect of interest. In practice, there is usually little reason to
believe that these two conditions are met, and hence a difference between 3
and (3° again only indicates a flawed research design.

The relationship between these two strategies is easy to see. Write the

regression of x; on s;, which we will call the balancing regression, as

The change in the coefficient 8 from adding x; to the regression (1) is given



by the omitted variables bias formula

B =B =no. (4)

The change in the coefficient of interest S from adding x; consists of two
components, the coefficient v on x; in the outcome equation (2) and the
coefficient ¢ from the balancing regression.

Here we consider the relationship between these two approaches: the bal-

ancing test, consisting of an investigation of the null hypothesis
Hy:6=0, (5)

compared to the inspection of the coefficient movement 5° — 3. The lat-
ter strategy of comparing ° and S is often done informally, but it can be

formalized as a statistical test of the null hypothesis
Hy:p° =B =0, (6)

which we will call the coefficient comparison (CC) test. From (4) it is clear
that (6) amounts to

Hy:8°—p=0&~y=00rd=0. (7)

This highlights that the two approaches formally test the same hypothesis
under the maintained assumption v # 0. We may often have a strong sense
that v # 0; i.e. we are dealing with a variable x; which we believe affects the
outcome, but we are unsure whether it is related to the regressor of interest
s;. In this case, both tests would seem equally suitable. Nevertheless, in
other cases v may be zero, or we may be unsure. In this case, the coefficient
comparison test seems to dominate because it directly addresses the question
we are after, namely whether the coefficient of interest 3 is affected by the

inclusion of z; in the regression.*

4Equations (4) and (7) highlight that a regressor ought to be included in the long
regression when both v # 0 and § # 0. This differs from the selection rule chosen by
Belloni, Chernozhukov, and Hansen (2014b), who include a regressor when either v # 0
or § # 0 is true.



Here we make the point that the balancing test adds valuable information
particularly when the true confounder is measured with error. In general,
x; may not be easy to measure. If the available measure for x; contains
classical measurement error, the estimator of v in (2) will be attenuated,
and the comparison 3° — § will be too small (in absolute value) as a result.
The estimator of § from the balancing regression is still consistent in the
presence of measurement error; this regression simply loses precision because
the mismeasured variable is on the left hand side. Under the maintained
assumption that 0 < 7 < oo, the balancing test is more powerful than the
coefficient comparison test. In order to make these statements precise, we
collect results for the relevant population parameters for the case of classical
measurement error in the following section, before moving on to the test

statistics.

3 Population Parameters in the Presence of
Measurement Error

The candidate variable x; is not observed. Instead, the researcher works with
the mismeasured variable

:L’;n =x; +m,;. (8>

Here we assume the measurement error m; is classical, i.e. FE (m;) = 0,
Cov (x;,m;) = 0. In section 5 below we also investigate the impact of non-
classical errors. As a result of the measurement error, the researcher com-

pares the regressions

yi = o +P%si+¢j
yi = o+ B"si +"a" + e (9)

Notice that the short regression does not involve the mismeasured x;, so

that 8° = 8 + 0 as before. However, the population regression coefficients



g™ and 4™ are now different from § and 7 from equation (2), and they are

related in the following way:

" 1—A
g = B—l—wél_RQ = [+ o0
A — R?
ot TR =7(1-90) (10)
where R? is the population R? of the regression of s; on 2" and
5= Var (z;)
- Var (z)

is the reliability of /.5 It measures the amount of measurement error present
as the fraction of the variance in the observed z]*, which is due to the signal
in the true z;. A is also the attenuation factor in a simple bivariate regression
on z!". In the multivariate model (9), an alternative way to parameterize the

amount of measurement error is

0 1—)\: o2

T 1R o2+ 02

where 02 denotes the variance of the random variable in the subscript. 1 — @
is the multivariate attenuation factor. Recall that w; is the residual from the
balancing regression (3).

With the mismeasured z]" the balancing regression becomes

which implies that
2 2 2
)\Zl_a—m 1_%*’—%:}32'
Var (z1) Var (z1)
As a result
1—X
— <1
0 < 1 R <
A — R?
— <\
0 < - R <

®Note R? is also the population R? of the regression of 27 on s;.
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0 is an alternative way to parameterize the degree of measurement error in
x; compared to A and R2. The § parameterization uses only the variation in
x" which is orthogonal to s;. This is the part of the variation in z}* relevant
to the estimate of 4™ in regression (9), which also has s; as a regressor. 6
turns out to be a useful parameter in many of the derivations that follow.

The population coefficient 5™ differs from 5 but less so than §°. In fact,
pf™ lies between [3° and 3, as can be seen from (10). The parameter ™
is attenuated compared to 7; the attenuation is bigger than in the case of
a bivariate regression of y; on z]" without the regressor s; if 2" and s; are
correlated (R? > 0).

These results highlight a number of issues. The gap 5% — ™ is too small
compared to the desired 3° — 3, directly affecting the coefficient comparison
test. In addition, 4™ is biased towards zero. Ceteris paribus, this is making
the assessment of the hypothesis v = 0 more difficult. Finally, the balancing
regression (11) with the mismeasured z!" involves measurement error in the
dependent variable and therefore no bias in the OLS estimator of 6™, i.e.
plim <gm> = 0" = ¢, but simply a loss of precision as compared to 5.

The results here are also useful for thinking about the identification of 3

and v in the presence of measurement error. Rearranging (10) yields

1R
m m L—=A
R (12

Since R? can be estimated from the data, these expressions only involve the
unknown parameter \. If we are willing to make an assumption about the
measurement error, we are able to point identify . Even if A is not known
precisely, (12) can be used to bound § for a range of plausible reliabilities.
Alternatively, (10) can be used to derive the value of A for which 8 = 0. These
calculations are similar in spirit to the ones suggested by Oster (forthcoming)

in a setting that is closely related.
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4 Inference

In this section, we consider how conventional standard errors and test statis-
tics for the quantities of interest are affected in the homoskedastic case.® We
present the theoretical power functions for the two alternative test statis-
tics; derivations are in Appendix A, which also shows that our results carry
over to robust standard errors. We extend the power results to the het-
eroskedastic case and non-classical measurement error in simulations. Our
basic conclusions are the same in all these different scenarios.

Start with the standard error of estimator 0™ from the balancing regres-

sion:

/A 02 + o2 1 o,
Vnse ((5’”) 2 L

o? - V1—460 o,
where we use Se(e) to denote the estimated standard error of a given esti-
mator. Let se(s) denote the asymptotic standard error of an estimator, i.e.,
se(s) = \/Lﬁplim{\/ﬁs?z(-)}. In the case of 6™,

i~ 1 1 o,
se (7)) = —=——2
Vny/1—46o;
Comparing the asymptotic standard error of 5™ to its counterpart in the
case with no measurement error,

w@:%%

we have R
= se <5)
se <5m) = —2
1—4
Since 0 < 6 < 1, the standard error is inflated compared to the case with no

measurement error.

6See Appendix A for the precise setup of the model. The primitive disturbances are s;,
u;, e;, and m;, which we assume to be uncorrelated with each other. Other variables are
determined by (3), (2), and (8).
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A test based on the t-statistic

remains consistent because m; is correctly accounted for in the residual of the
balancing regression (11), but the t-statistic is asymptotically smaller than

in the error free case: As n — oo
1

—tmﬁn/ﬂi<i&it
N ONON

This means the null hypothesis (5) is rejected less often. The test is less

SR

powerful than in the error free case; the power loss is captured by the term
V1-46.

We next turn to 4™, the estimator for the coefficient on the mismeasured
2™ in (9). The parameter v is of interest since it determines the coefficient
movement 3° — [ = 70 in conjunction with the result from the balancing
regression. Let " be the residual from the population regression of x!* on
s;. For ease of exposition, we impose conditional homoskedasticity of e]"
given s; and x" here and leave the more general case to Appendix A.2.3.
The standard error for 4™ in the limit is

) 1 /Var (e)

se (Y

while



~m

se(y™) involves two terms: the first term is an attenuated version of se(7)
from the corresponding regression with the correctly measured x;, while the
second term depends on the value of y. The parameters in the two terms
are not directly related, so se (3™) 2 se (7). Measurement error does not
necessarily inflate the standard error here.

The two terms have a simple, intuitive interpretation. Measurement error
attenuates the parameter ¥ towards zero, the attenuation factor is 1 —
0. The standard error is attenuated in the same direction; this is reflected
in the /1 — @ factor, which multiplies the remainder of the standard error
calculation. The second influence from measurement error comes from the
term 0+2, which results from the fact that the residual variance Var (e")
is larger when there is measurement error. The increase in the variance is
related to the true 7, which enters the residual.

The t-statistic for testing whether v™ = 0 is

and it follows that

1 P Y Y 1

—tym = V1—10 < & —t,.
O'2 0'2

\/ﬁ /0,}/2 + og Ug \/ﬁ

As in the case of 6™ from the balancing regression, the t¢-statistic for 4™

is smaller than ¢, for the error free case. But in contrast to the balancing
test statistic t5m, measurement error reduces t,m relatively more, namely due
to the term 642 in the denominator, in addition to the attenuation factor
v/1 — 6. This is due to the fact that measurement error in a regressor both
attenuates the relevant coefficient towards zero and introduces additional
variance into the residual. Though interestingly, 042 captures the additional
residual variance while the factor v/1 — @ now captures the attenuation of v
In the balancing test statistic, v/1 — @ accounted for the residual variance.

The upshot from this discussion is that classical measurement error makes
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the assessment of whether v = 0 comparatively more difficult compared to
the assessment whether 6 = 0. As we will see, this is the source of the greater
power of the balancing test statistic.

Finally, consider the quantity 5° — 8™, which enters the coefficient com-
parison test. To form a test statistic for this quantity we need the expression
for the asymptotic variance of B\S — Bm, which we derive through an applica-

tion of the delta method to the omitted variables bias formula
B =
Specifically, we can relate Var(gs — Bm) to the asymptotic variances of 5m
and 4™ and their asymptotic covariance:
Var (BS — B’") =~2(1-0)Var <3\m> + 8*Var (™)
+ 257 (1 — 0) Cov (Em, am) . (13)

Using Var (3’") and Var (3™), which we derived above, and the fact that
Cov (/5\’”, /v\m> = 0, which we show in the Appendix, we get

Ds _ am 1 20 2.2 20,
Var(ﬁ e ):—(1—9) ST N L

n o2 o2
It is easy to see that, like Var (™), Var (Es — Bm> has both an attenuation
factor as well as an additional positive term compared to the case where
0 =0,ie Var (B\S — B) Measurement error may therefore raise or lower

the sampling variance for the coefficient comparison test.

Before we proceed to discuss the power of the coefficient comparison test,

we note that the covariance term in
Var (B\s — Bm) = Var <ES> +Var (3’") —2Cov (33,3m>

reduces the sampling variance of 8° — ™. In fact, this covariance term is

positive, and it is generally sizable compared to Var <§s> and Var (B\m)

15



since the regression residuals e; and e]* are highly correlated. Because
2Cov <BS, Bm> gets subtracted, looking at the standard errors of B\S and

£™ alone can potentially mislead the researcher into concluding that the two
coefficients are not significantly different from each other when in fact they
are.
The coefficient comparison test itself can be formulated as a t-test as well,
since we are interested in the movement in a single parameter. Define
pr—=pm
se(Br — Bm)

where 5e(/5* — ™) is a consistent standard error estimator. Since

B =" =06y" =6y (1-0)

t(Bs_Bm) =

we have

=l s =
v \/(1 —0) (122 + 0022+ 025 )
= VI-0

<

il
V12D + 0002 + 25

(14)

Under the alternative hypothesis (§ # 0) and the maintained assumption
v # 0, the limits for the other two test statistics can be written as
1 )
o B V-
vn V2%

o3

1
L it
NZD /9(5272_1_(523_5

Hence, using (14), it is apparent that under these conditions the three tests

are asymptotically related in the following way:

2 2 2
1 1 1
plim [ 4——— | =plim | 5 + plim | (15)
Jat—pm) Ttom Tty

16




These results highlight a number of things. First of all, under the main-
tained hypothesis v # 0, the balancing test alone is more powerful. This is
not surprising at all, since the balancing test only involves estimating the
parameter 0 while the coefficient comparison test involves estimating both
and . Imposing v # 0 in the coefficient comparison test is akin to t,m — oo,
and this would restore the equivalence of the balancing and coefficient com-
parison tests. Note that the power advantage from imposing v # 0 exists
regardless of the presence of measurement error.

The second insight is that measurement error affects the coefficient com-
parison test in two ways. The test statistic is subject to both the attenuation
factor v/1 — @ and the term #5%v? in the variance, which is inherited from the
t-statistic for ™. Importantly, however, all these terms interact in the coef-
ficient comparison test. In our numerical exercises below, it turns out that
the way in which measurement error attenuates ™ compared to v is a ma-
jor source of the power disadvantage of the coefficient comparison test. Our
simulations demonstrate that the differences in power between the coefficient
comparison and balancing tests can be substantial when there is considerable
measurement error in z". Before we turn to these results, we briefly note how

the coefficient comparison test can be implemented in practice.

4.1 Implementing the Coefficient Comparison Test

The balancing test is a straightforward ¢-test, which regression software calcu-
lates routinely. We noted that the coefficient comparison test is a generalized
Hausman test. Regression software will typically calculate this as well if it
allows for seemingly unrelated regression estimation (SURE). SURE takes
Cov (€, e") into account and therefore facilitates the test. In Stata, this is

implemented via the suest command. Generically, the test would take the

following form:

reg y s
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est store regl

reg y s x

est store reg?2

suest regl reg2

test [regl mean] s=[reg2 mean]s

The test easily accommodates covariates or can be carried out with the
variables y, s, and x being residuals from a previous regression (hence fa-
cilitating large numbers of fixed effects though degrees of freedom may have
to be adjusted in this case).

As far as we can tell, the Stata suest or 3reg commands don’t work
for the type of IV regressions we might be interested in here. An alternative,

which also works for IV, is to take the regressions (1) and (2) and stack them:

HR IR R b R

Testing 5°— = 0 is akin to a Chow test across the two specifications (1) and
(2). Of course, the data here are not two subsamples but rather duplicates
of the original data set. To take account of this and allow for the correlation
in the residuals across duplicates, it is crucial to cluster standard errors on

the observation identifier 7.

5 Power Comparisons

5.1 Asymptotic and Monte Carlo Results with Classi-
cal Measurement Error

The ability of a test to reject when the null hypothesis is false is described by
the power function of the test. The power functions here are functions of d,
the values the parameter § might take on under the alternative hypothesis.

Because the joint distribution between the coefficient and standard error
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estimators is difficult to characterize, especially in the case of the coefficient
comparison test, we abstract away from the sampling variation in estimating
the standard errors in the theoretical derivations of this section. The resulting
t-statistic for the null hypothesis that the coefficient § is zero in the balancing
test is

tém — =
36(5m) ~ - 7 Titoh o‘S\U/q—G

Os

Similarly, we use

se(Bs — pm) Vi (d; )
where
205 d20§
Valdin) = (1-0) (L5t + o+ %)

in the derivation of the power function for the coefficient comparison test.
As shown in Appendix A, the power function for a 5% critical value of

the balancing test is

Powery,,, (d)=1—@ (1.96 - dw)

Ou
1 —
+ @ (—1.96—dﬁ“50— ”9> (16)

where ® (o) is the standard normal cumulative distribution function. The

power function for the coefficient comparison test is

1—
Powery ) (d;v)=1—® | 1.96 — dM
Vi (d; )

+ @ (—1.96—0[M>. (17)
Vi (d;v)

Note that the power function for the balancing test does not involve the
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parameter «. Using our results above, for 0 < v < oo it can be written as

Powery, (d)=1—@ <1.96 — dM)
Vs (d; )
+¢ <—1.96—dM>‘ (18)
Vs (d; )
where -
Vi (din) = (1-6) 2=,

S

It is hence apparent that Vg (d;v) > Vs (d;7), i.e. the coefficient comparison

test has a larger variance. As a result, when d # 07
Powery,,, (d) > Powery,, ., (d;7)- (19)

In practice, this result may or may not be important. In addition, when
the standard error is estimated, the powers of the two tests may differ from
the theoretical results above. Therefore, we carry out a number of Monte
Carlo simulations to assess the performance of the two tests. Table 1 displays
the parameter values we use as well as the implied values of the population
R? of regression (9). The values were chosen so that for intermediate amounts
of measurement error in 2" the R%s are reflective of regressions fairly typical
of those in applied microeconomics, for example, a wage regression. Note
that the amounts of measurement error we consider are comparatively large.
In our empirical application we use mother’s education and the presence of a
library card in the household as measures of family background. We suspect

that these variables pick up at most a minor part of the true variation of

"To see this, define f(t) = 1 — ®(1.96 — t) + ®(—1.96 — t) and denote the probability
density function of a standard normal distribution by ¢. The f notation allows us to
rewrite the expressions for the power functions Powery,,, (d) and Powery ;. ym, (d;7) in
equations (17) and (18) simply as f(¢1) and f(t2). When d # 0, Vz (d;7y) > V5 (d;7)
implies that [t1| > |t2| > 0. Since f'(t) = ¢(1.96 — t) — $(1.96 + t) is positive for all ¢ > 0
and negative for all ¢ < 0, f(t1) > f(t2) given |t1] > |t2] > 0, and equation (19) follows.
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family background, even in the presence of other covariates, so that values
of 8 = 0.7 or = 0.85 for the measurement error are not unreasonable.

In Figure 1, we plot the power functions for both tests for three different
magnitudes of the measurement error.® The black/thin lines show the power
functions with no measurement error. The power functions can be seen to
increase quickly with d, and both tests reject with virtual certainty once d
exceeds values of 1. The balancing test is slightly more powerful but this
difference is small, and only visible in the figure for a small range of d.

The blue/medium thick lines correspond to # = 0.7, i.e. 70% of the
variance of z" is measurement error after partialling out s;. Measurement
error of that magnitude visibly affects the power of both tests. The balancing
test still rejects with certainty for d > 1.5, while the coefficient comparison
test does not reject with certainty for the parameter values considered in
the figure. This discrepancy becomes even more pronounced when we set
6 = 0.85 (red/thick lines). The power of the coefficient comparison test does
not rise above 0.65 in this case, while the balancing test still rejects with
probability 1 when d is around 2.

The results in Figure 1 highlight that there are parameter combinations
where the balancing test has substantially more power than the coefficient
comparison test. In other regions of the parameter space, the two tests have
more similar power, for example, when d < 0.5.

Before going on to simulations of more complicated cases, we contrast the
theoretical power functions in Figure 1, based on asymptotic approximations,
to simulated rejection rates of the same tests in Monte Carlo samples. Figure

2 shows the power functions for the two tests without measurement error (6 =

8The power function for the balancing test in equation (16) is written using the normal
distribution, but we actually calculate it using the t-distribution with n — 2 degrees of
freedom. This is consistent with how Stata version 14 performs the balancing test following
the command reg x s or reg x s, r, even though this distribution choice makes little
difference given our sample size (n = 100).
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0) and with (6 = 0.85), as well as their simulated counterparts.® Without
measurement error, the theoretical power functions are closely aligned with
the empirical rejection rates (black lines). Adding measurement error, this
is also true for the balancing test (solid red and blue/thick lines) but not for
the coefficient comparison test (broken red and blue/thick lines).

Figure 2 reveals that the empirical rejection rates of the coefficient com-
parison test in the presence of measurement error deviate substantially from
the power function calculation based on the asymptotic approximation. This
discrepancy is almost completely explained by the fact that we use the asymp-
totic values of standard errors in the calculations but estimated standard
errors in the simulations. The empirical test is severely distorted under the
null; it barely rejects more than 1% of the time for a nominal size of 5%.
While this problem leads to too few rejections under the null, it is important
to note that the same issue arises for positive values of d until about d < 1.5.
For larger values of d the relationship reverses. In other words, for moderate
values of d the coefficient comparison test statistic is biased downwards un-
der the alternative, and the test has too little power. This highlights another
advantage of the balancing test—a standard t-test where no such problem
arises. We note that this is a small sample problem, which goes away when
we increase the sample size (in unreported simulations). We suspect that this
problem is related to the way in which the coefficient comparison test effec-
tively combines the simple ¢;» and ¢,= test statistics in a non-linear fashion,
as can be seen in equation (15), and the fact that ¢,m sometimes is close to

0 in small samples despite the fact that we fix v substantially above 0.

YWe did 25,000 replications in these simulations, and each repeated sample contains
100 observations.
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5.2 Monte Carlo Results beyond the Benchmark Model

The homoskedastic case with classical measurement error might be highly
stylized and not correspond well to the situations typically encountered in
empirical practice. We therefore explore some other scenarios using simula-
tions in this Section. Figure 3 shows the original theoretical power functions
for the case with no measurement error from Figure 1. It adds empirical re-

jection rates from simulations with heteroskedastic errors u; and e; of the

2 el \? 2
g, . — 0,
U, 1+ 6|5i| Ou

2 el ’ 2
o,, — PE—— J0e-
e, 1 4 6|Si| Oe

We set the baseline variances o2, and o2, so that o2 = 3 and 7> = 30

form

match the variances in Figure 1. The test statistics used in the simulations
employ robust standard errors. We plot the rejection rates for data with no
measurement error and for the more severe measurement error scenario given
by 8 = 0.85. As can be seen in Figure 3, both the balancing and the coefficient
comparison tests lose some power when the residuals are heteroskedastic
compared to the homoskedastic baseline (black/thin lines). Otherwise, the
main findings look very similar to those in Figure 1. Heteroskedasticity does
not seem to alter the basic conclusions appreciatively.

Next, we explore mean reverting measurement error (Bound, Brown,

Duncan, and Rodgers, 1994). We generate measurement error as
m; = KTi + [

where k is a parameter and Cov (z;, 11;) = 0, so that kx; captures the error
related to x; and p; the unrelated part. When —1 < k < 0, the error is mean

reverting, i.e. the kz;-part of the error reduces the variance in 2" compared
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to z;. Notice that 2" can now be written as
' =(14k)d+ (14 rK)ds; + (1 + K) u; + p,

so this parameterization directly affects the coefficient in the balancing re-
gression, which will be smaller than ¢ for a negative k.

The case of mean reverting measurement error captures a variety of ideas,
including the one that we may observe only part of a particular confounder
made up of multiple components. Imagine we would like to include in our
regression a variable x; = wy; + wy;, Where wy; and wo; are two orthogonal
variables. We observe z]" = wy;. For example, x; may be family background,
wy; is mother’s education and other parts of family background correlated
with it, and wy; are all relevant parts of family background which are un-
correlated with mother’s education. As long as selection bias due to wq; and
wy; is the same, this amounts to the mean reverting measurement error for-
mulation above. Note that A = Var (x;) /Var (2") > 1 in this case, so the
mismeasured z;" has a lower variance than the true z;. This scenario is also
isomorphic to the model studied by Oster (forthcoming). See Appendix B for
details.

For the simulations we set kK = —0.5, so the error is mean reverting. We
also fix ai in the simulations. However, it is important to note that the
nature of the measurement error will change as we change the value of d
under the alternative hypotheses. x; depends on § and the correlated part of
the measurement error depends in turn on x;. We show results for two cases
with 0% = 0.75 and o7, = 2.25. Under the null, these two parameter values
correspond to A = 2 and A\ = 1, respectively. The case A = 2 corresponds
to the Oster (forthcoming) model just described with Var (wy;) = Var (ws;).
These models exhibit relatively large amounts of mean reversion. Figure 4
demonstrates that the balancing test again dominates. The gap is small for
the O’i = (.75 case but grows with oi, the classical portion of the measure-

ment error. This finding is not surprising as mean-reverting measurement
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error does less damage in terms of biasing the estimate of ~.

A particular case of mean reverting measurement error is the one where
x; is a dummy variable, so we provide some simulation results for this case.
In this case, the balancing equation is a binary choice model, and hence
inherently non-linear. While we assume that the researcher continues to

estimate (3) as a linear probability model, we generate z; as follows:
Pr(z;=1) = (Js;), (20)

where ® (o) is the normal distribution function as before. Measurement error
takes the form of misclassification, and we assume the misclassification rate

to be symmetric:
Pr(z]" =1|z; =0) =Pr(2]' =0lz; = 1) = .

Compared to the baseline parameters in Table 1, we set 02 = 0.25, and
7 = 0.1 in our simulations. The model remains the same in all other respects.
We use robust standard errors in estimating (9) and (11).

Various issues arise from the nonlinear nature of (20). One is the fact

that plim (3) from estimating (11) is not going to equal the § we generated
in equation (20). The relationship between plim (5) and ¢ is concave. In

Figure 5, we plot rejection rates against o, although the quantity plim (5)
is probably more comparable to the values of d we have used in the linear
models in the previous simulations. We note that results look qualitatively
very similar when we plot rejection rates against the empirical averages of B
from our simulations.

Another issue is that measurement error in x; will now lead to a biased
estimate of § in estimating (11). This is true even if we were to use a probit
and estimated a model like (20). The bias takes the form of attenuation, just
as in the case of a binary regressor with measurement error (see Hausman,

Abrevaya, and Scott-Morton, 1998). Hence, measurement error will now
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also reduce the power of the balancing test. Of course, we know from the
relationship (15) between the test statistics that the coefficient comparison
test will also suffer from the same power loss.

The blue/thin lines in Figure 5 reveal a sizable power advantage for the
balancing test even without any misclassification. This result is in stark
contrast to the linear models we have analyzed, where a large power loss for
the coefficient comparison test only resulted once we introduced measurement
error. In fact, it is possible to think of the binary nature of z; itself as a form
of mismeasurement. Equation (20) defines Pr (x; = 1) as a latent index, but
the outcome regression (2) uses a coarse version of this variable in the form
of the binary ;.

In our parameterization, the coefficient comparison test never reaches a
rejection rate of 1, and the power function levels off at a far lower level. As d
increases, the power of the balancing test goes to 1. In the linear model, the
rejection rate of ¢, is independent of d. Because of the nonlinear nature of
(20) this is no longer true here, and the average value of ¢, across repeated
samples actually falls for higher values of d. Drawing on (15), the power
of the coefficient comparison test will equal the power of ¢, when t5 — oo.
This is not a specific feature of the binary case but is generally true for the
relationship between the three test statistics. However, in the binary case
this implies that the power of the coefficient comparison test may decline
with d.10

Adding measurement error to the binary regressor x; makes things worse

as is visible from the red/thick lines in Figure 5. The power loss of the

10The reason for the decline of t, with d in our parameterization is as follows: the
standard error of 4 depends on the residual variance of the long regression, which is
independent of d, and on the variance of the residual from regressing x; on s; (because s;
is partialled out in the long regression). When d = 0, this latter residual is just equal to z;
itself, which is binary. But s; is continuous, so as d increases, partialling out s; transforms
the binary z; into a continuous variable, which has less variance than in the d = 0 case.
As the effective variance in this regressor falls, the standard error of 4 goes up and ¢, goes
down.
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balancing test is comparatively minor for the relatively low misclassification
rate of 7 = 0.1 we are using. Much of the loss for the balancing test results
from the binary nature of the x; variable in the first place. The coefficient
comparison test is affected by misclassification error to a much higher degree
because ¢, is affected, the Hausman, Abrevaya, and Scott-Morton (1998)

result notwithstanding.

5.3 Simulations with Actual Data

Starting with a simple linear model with homoskedastic errors, we have ex-
plored simulations of a few leading scenarios which we believe are of empirical
relevance. Throughout these cases we have found an important power ad-
vantage for the balancing test in the presence of measurement error in the
candidate control variable. There are of course many other possibilities and
settings, and we have presented just a few parameterizations. But simulated
data rarely capture the complexities of many of the variables we encounter
in real data. Before turning to results from an empirical example, we briefly
present a simulation not based on draws of random numbers but instead
based on drawing observations from an actual data set.

For this exercise, we pooled data from the 2010 - 2014 American Com-
munity Surveys (ACS). Our data set consists of white and African American
individuals aged 21 to 64 with non-missing annual earnings. This data set
has 5,644,865 observations. Our outcome equation is a wage regression of

the form
In (earnings;) = a + pblack; + yx; + other regressors + e;.

The parameter of interest is the coefficient on a dummy for whether the
respondent is African American and the added candidate control x; is years
of schooling. We chose years of schooling as the added regressor because

the distribution of schooling is discrete, its support is wide, but a lot of
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mass is concentrated at 12 and 16 years. It therefore does not resemble any
particularly “nice” looking distribution. We also control for sex, age, age
squared, a dummy for living in a metro area, and Census region and year
dummies in all regressions.

We treat the ACS data as our effective population. For our simulations
we draw samples of 1,000 observations with replacement from this universe.
Introducing measurement error into the bounded schooling variable is tricky,
so we use a fairly simple form of mismeasurement. We start with the orig-
inal data and then replace a successively larger percentage of the schooling
observations with random draws from the empirical distribution of schooling

in the data. This means

m x; with probability 1 —p
T  with probability p

where 1 is the schooling level of a randomly sampled observation from the
ACS data.

African Americans have lower levels of schooling than whites, so ¢ and ~
are both nonzero in this exercise. g = —0.236 and $° = —0.333 in the full
ACS data. Figure 6 shows the rejection rates across 25,000 random draws
from the ACS for the balancing and coefficient comparison tests. With the
true schooling variable, both tests reject about 80 percent of the time in our
samples. As p increases from 0 to 1, rejection rates fall but they decrease
more precipitously for the coefficient comparison test. In fact, when p =1,
the balancing test rejects 5 percent of the time while rejection rates for the
coefficient comparison test actually go to zero. This reflects the small sample
bias in the coefficient comparison test again, which we have discussed above
in the context of Figure 2. The power advantage of the balancing test is not

as large in this case as in the simulations above, but it is noticeable.
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5.4 Extension: Multiple Controls

So far we have concentrated on the case of a single added regressor x;. Often
in empirical practice we may want to add a set of additional covariates at
once. It is straightforward to extend our framework to that setting, at least in
principle. In this section, we describe this multivariate extension, and provide
some simulation results. These results turn out to be more speculative than
those in the rest of our paper.

Suppose there are k added regressors, i.e. x; is a k x 1 vector, and

yi = o+ Bsi+xy+e
X; = 50 + (581' +u; (21)
=B = 76

where 4, 89, 0 and u; are k x 1 vector analogs of their scalar counterparts
in Section 2. Lee and Lemieux (2010) suggest a balancing test for multiple
covariates in the context of evaluating regression discontinuity designs. Let
x(jy denote the n x 1 vector of all the observations on the j-th z-variable.

We can stack all the x-variables to obtain the regression

X(1) L(501 s 0 0 O 51 U(q)
X(2) . L502 0s 0O 52 U(2)
=l T loo Lol T
X(k) L50k 0 0 0 s 5k U(k)
where ¢ is an n x 1 vector of ones, s = [sq, 59, ..., 55", and ugj) the vector

or residuals corresponding to covariate x(;). We can then perform an F-test
for the joint significance of the § coefficients. This is similar to the way
we implemented the coefficient comparison test above in section 4.1. An
equivalent alternative is to estimate the k balancing equations jointly by
SURE.

How does the balancing test perform with multiple covariates? Figure 7

shows simulations using a similar design as in Table 1 for all £ balancing
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equations. However, with multiple covariates there are different ways of
specifying the alternative hypotheses now. The null may fail for one, various,
or all of the k covariates now. We show rejection rates under two polar
versions of the alternative hypothesis: first for the case where all covariates
are unbalanced, i.e. 61 = d3 = ... = 0, = d and then for the case where
only the first covariate is unbalanced while the others remain balanced, i.e.
01 =d, 0o = ... = 6 = 0. We generate homoskedastic errors and impose
homoskedasticity when performing the joint test of the d;’s. There are four
panels in Figure 7: the top row has 4 added covariates, and the bottom row
8; the left hand column shows the case where all covariates are unbalanced
while the right hand column displays the case where only the first covariate
is unbalanced.

Figure 7 highlights a number of results. When all covariates are unbal-
anced, the Hausman test turns out to be an efficient test in combining the
k separate hypotheses into one single test-statistic, generated from the esti-
mates of only two parameters, the long and short ’s. The balancing test,
on the other hand has to rely on the estimation of k equations, and combine
the results from these.!! Without measurement error, the rejection rates for
the coefficient comparison test (blue/thin broken lines) therefore lie above
the ones for the balancing test (blue/thin solid lines), as can be seen in the
left-hand panels.

When only one covariate is unbalanced, as in the right hand panels, both
tests are obviously less powerful. However, the coefficient comparison test
now loses power much more quickly. This is particularly pronounced in
the case with measurement error in the covariates (red/thick lines). We
suspect that the empirically relevant case is most likely to lie in between

these extremes. Researchers may be faced with a set of potential controls

UThe analyses in Hausman (1978), Hausman and Taylor (1980), Holly (1982), and
MacKinnon (1992) section I1.9, which compare the power of the coefficient comparison
test to the F-test for v = 0, highlight a similar result.
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to investigate, some of which may be unbalanced with the treatment while
others are not. Figure 7 demonstrates that the balancing test suggested by
Lee and Lemieux (2010) can play an important role in such an exercise, while
the coefficient comparison test will also be valuable.

The simulations reveal a number of further issues. With measurement
error, the small sample issue of the coefficient comparison test which we
highlighted in Figure 2, arises again. On top of this, another bias is visi-
ble in these figures. The balancing test has a size distortion under the null
hypothesis and rejects too often. This distortion tends to get worse when
more covariates are added. Note that this problem arises for a conventional
covariance matrix, and hence is distinct from the small sample bias in the ro-
bust covariance matrix discussed by Chesher and Jewitt (1987). However, we
also found in unreported simulations that using a robust covariance matrix
makes the problem worse, and this also interacts with the number of co-
variates. Applied researcher will be most interested in the testing strategies
discussed here when k is large (so that a series of single variable balancing
tests is unattractive), and will want to rely on a robust covariance matrix.
The bias problem in the balancing test lessens its usefulness. Research on
remedies for these problems is therefore particularly important.!?

The upshot is that it is straightforward to extend the balancing test to
multiple covariates, at least in principle. Yet, at this point implementation
issues may hamper our ability to confidently carry out a balancing test for
multiple covariates. Moreover, sometimes we are interested in the robustness
of the original results when the number of added regressors is very large. An
example would be a differences-in-differences analysis in a state-year panel,

where the researcher is interested in checking whether the results are robust

12There is an active literature on how to deal with the small sample bias of the robust
or clustered covariance estimator. Young (2016) is a recent contribution. However, we
suspect that these remedies may not be sufficient for solving the size distortion of the
stacked F-test when the sample size is small relative to the number of covariates.
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to the inclusion of state specific trends. The balancing test does not seem to
be the right framework to deal with this situation. The coefficient comparison

may have an important role to play in tackling this problem.

6 Empirical Analysis

We illustrate the theoretical results in the context of estimating the returns
to schooling using data from the National Longitudinal Survey of Young Men
(NLS). This is a panel study of about 5,000 male respondents interviewed
from 1966 to 1981. The data set has featured in many prominent analyses of
the returns to education, including Griliches (1977) and Card (1995). We use
the NLS extract posted by David Card and augment it with the variable on
body height measured in the 1973 survey. We estimate regressions similar
to equation (2). The variable y; is the log hourly wage in 1976 and s; is
the number of years of schooling reported by the respondent in 1976. Our
samples are restricted to observations without missing values in any of the
variables used in a particular table or set of tables.

We start in Table 2 by presenting simple OLS regressions controlling
for experience, race, and past and present residence. The estimated return
to schooling is 0.075. This estimate may not reflect the causal effect of
education on income because important confounders, such as ability or family
background, are not controlled for.

In columns (2) to (5) we include variables which might proxy for the re-
spondent’s family background. In column (2) we include mother’s education,
in column (3) whether the household had a library card when the respondent
was 14, and in column (4) we add body height measured in inches. Each of
these variables is correlated with earnings, and the coefficient on education
moves moderately when these controls are included. Mother’s education cap-
tures an important component of a respondent’s family background. The

library card measure has been used by researchers to proxy for important
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parental attitudes (e.g. Farber and Gibbons, 1996). Body height is a vari-
able determined by parents’ genes and by nutrition and disease environment
during childhood. It is unlikely a particularly powerful control variable but
it is predetermined and correlated with family background, self-esteem, and
ability (e.g. Persico, Postlewaite, and Silverman, 2004; Case and Paxson,
2008). The return to education falls by 0.1 to 0.2 log points when these con-
trols are added. In column (5) we enter all three variables simultaneously.
The coefficients on the controls are somewhat attenuated, and the return to
education falls slightly further to 0.071.

It might be tempting to conclude from the relatively small change in the
estimated returns to schooling that this estimate should be given a causal
interpretation. We provide a variety of evidence that this conclusion is un-
likely to be a sound one. Below the estimates in columns (2) to (5), we
display the p-values from the coefficient comparison test, comparing each of
the estimated returns to education to the one from column (1). Although
the coefficient movements are small, the tests all reject at the 5% level, and
in columns (4) and (5) they reject at the 1% level. These results might not
be expected from the size of the coefficient movements and the individual
standard errors on the years of education coefficients alone, highlighting the
importance for the formal coefficient comparison test.

The results in columns (6) to (8), where we regress maternal education,
the library card, and body height on education, further magnify the concern.
The education coefficient is positive and strongly significant in all three re-
gressions, with ¢-values ranging from 4.4 to 13.1, and a joint balancing test
rejects the hypothesis that all three controls are balanced with a p-value of
virtually zero. The magnitudes of the coefficients are substantively impor-
tant. It is difficult to think of these results as causal effects: the respondent’s
education should not affect predetermined proxies of family background. In-
stead, these estimates reflect selection bias. Individuals with more education

have significantly better educated mothers, were more likely to grow up in
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a household with a library card, and experienced more body growth when
young. Measurement error leads to attenuation bias when these variables
are used on the right-hand side which renders them fairly useless as controls.
The measurement error matters less for the estimates in columns (6) to (8),
and these are informative about the role of selection. Comparing the p-values
at the bottom of the table to the corresponding ones for the coefficient com-
parison test in columns (2) to (4) demonstrates the superior power of the
balancing test.

The following tables have the same general layout. In Table 3 we repeat
the regressions including a direct measure for ability, the respondent’s score
on the Knowledge of the World of Work test (KWW), a variable used by
Griliches (1977) as a proxy for ability. The sample size is reduced due to the
exclusion of missing IQ values in the test score for consistency with a sub-
sequent table. Estimated returns without the KWW score in this restricted
sample (unreported) are very similar to those in Table 2. Adding the KWW
score reduces the coefficient on education by almost 20%, from 0.075 to 0.061.
Adding maternal education, the library card, and body height does very lit-
tle to the estimated returns to education now. The coefficient comparison
test indicates that none of the small changes in the returns to education are
statistically significant. Controlling for the KWW scores has largely knocked
out the library card effect but done little to the coefficients on maternal ed-
ucation and body height. The relatively small and insignificant coefficient
movements in columns (2) to (5) suggest that the specification controlling
for the KWW score might solve the ability bias problem.

Columns (6) to (8), however, show that the regressions with the controls
on the left hand side still mostly result in significant education coefficients
even when the KWW score is in the regression. This raises the possibility
that the estimated returns in columns (1) to (5) might remain biased by
selection. The estimated coefficients on education for the three controls are

on the order of half their value from Table 2, and the body height measure is
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now only significant at the 10% level. But the relationship between mother’s
and own education is still sizable, so that this measure continues to indicate
the possibility of important selection. Balance in library card ownership is
rejected despite the fact that a comparison of the coefficients in columns (1)
and (3) indicates no role for this variable at all. A joint balancing test with
all three controls strongly rejects the hypothesis that they are balanced. The
results in this table illustrate the message of our paper in a powerful fashion.
While the KWW score might be a potent control, it is likely also mea-
sured with substantial error. Griliches (1977) proposes to instrument this
measure with an 1Q test score variable, which is also contained in the NLS
data, to eliminate at least some of the consequences of this measurement er-
ror. In Table 4 we repeat the schooling regressions with IQ as instrument for
the KWW score. The coefficient on the KWW score almost triples, in line
with the idea that an individual test score is a very noisy measure of ability.
The education coefficient now falls to only about half its previous value from
0.061 to 0.034. This might be due to positive omitted variable bias present
in the previous regressions which is eliminated by [Q-instrumented KWW
(although there may be other possible explanations for the change as well,
like measurement error in schooling). Both the coefficient comparison tests
and the balancing tests (individual and joint) indicate no evidence of selec-
tion any more. This is due to a combination of lower point estimates and
larger standard errors. The contrast between Tables 3 and 4 highlights the
usefulness of the balancing test: it warns about the Table 3 results, while the
coefficient comparison test delivers insignificant differences in either case.
Finding an instrumental variable for education is an alternative to control
strategies, such as using test scores. In Table 5 we follow Card’s (1995) anal-
ysis and instrument education using distance to the nearest college, while

dropping the KWW score. We use the same sample as in Table 2, which
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differs from Card’s sample.'® Our IV estimates of the return to education are
slightly higher than in Table 2 but a lot lower than in Card (1995) at around
8%. The IV returns estimates are noisy, never quite reaching a t-statistic
of 2. Columns 1-5 of Table 5 show that the IV estimate on education, while
bouncing around a bit, does not change significantly when maternal edu-
cation, the library card, or body height is included. In particular, if these
three controls are included at the same time in column (5), the point esti-
mate is indistinguishable from the unconditional estimate in column (1) both
substantively and statistically.

IV regressions with pre-determined variables on the left hand side can be
thought of as a test for random assignment of the instruments. Unfortunately,
in this case the selection regressions in columns (6)-(8) are also much less
precise and as a result less informative. The coefficients in the regressions
for mother’s education and body height have the wrong sign but confidence
intervals cover anything ranging from zero selection to large positive amounts.
Only the library card measure is large, positive, and significant around the
6% level, possibly indicative of some remaining potential for selection even in
the IV regressions. However, with a p-value of 0.29, the joint balancing test
fails to reject the null hypothesis that all three controls are balanced. While
the data do not speak clearly in this particular case this does not render the

methodology per se any less useful.

7 Conclusion

Using predetermined characteristics as dependent variables offers a useful

specification check for a variety of identification strategies popular in empir-

13Unlike Card, who uses two dummies for proximity to a two- and a four-year college,
we use a single dummy variable for whether there is a four-year college in the county as
instrument, and we instrument experience and experience squared by age and age squared.
We restrict Card’s sample to non-missing values in maternal education, the library card,
and body height.
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ical economics. We argue that this is the case even for variables which might
be poorly measured and are of little value as control variables. Such vari-
ables should be available in many data sets, and we encourage researchers to
perform such balancing tests more frequently. We show that this is generally
a more powerful strategy than adding the same variables on the right hand
side of the regression as controls and looking for movement in the coefficient
of interest.

We have illustrated our theoretical results with an application to the
returns to education. Taking our assessment from this exercise at face value,
a reader might conclude that the results in Table 4, returns around 3.5%, can
safely be regarded as causal estimates. Of course, this is not the conclusion
reached in the literature, where much higher IV estimates like those in Table
5 are generally preferred (see e.g. Card, 2001 or Angrist and Pischke, 2015,
chapter 6). This serves as a reminder that the discussion here is focused on
sharpening one particular tool in the kit of applied economists. Successfully
passing the balancing test should be a necessary condition for a successful
research design but it is not sufficient.

The balancing test and other statistics we discuss here are useful for
gauging selection bias due to observed confounders, even when they are po-
tentially measured poorly. It does not address any other issues which may
also haunt a successful empirical investigation of causal effects. One possible
issue is measurement error in the variable of interest, which is also exac-
erbated as more potent controls are added. Griliches (1977) shows that a
modest amount of measurement error in schooling may be responsible for
the patterns of returns we have displayed in Tables 2 to 4. Another issue,
also discussed by Griliches, is that controls like test scores might themselves
be influenced by schooling, which would make them bad controls. For all

these reasons, IV estimates of the returns may be preferable.
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Figure 1: Theoretical Rejection Rates
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Rejection probability
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Figure 2: Theoretical and Simulated Rejection Rates

1 T T T T T
0 5 1 1.5 2
d
— Balancing test, baseline —— CC test, baseline
— Balancing test, 6=0, simulated —— CC test, =0, simulated
— Balancing test, 6=.85, asymptotic = - - CC test, 6=.85, asymptotic
= Balancing test, 6=.85, simulated == CC test, 6=.85, simulated

Note: Comparison of asymptotic rejection rates with rejection
rates based on Monte Carlo simulations. Baseline refers to the
theoretical rejection rates without measurement error.
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Figure 3: Simulated Rejection Rates with Heteroskedasticity
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— Balancing test, baseline - - CC test, baseline
— Balancing test, 6=0, robust - - CC test, 6=0, robust
— Balancing test, 6=.85, robust == CC test, 6=.85, robust

Note: Comparison of baseline rejection rates (from Figure 1) with
simulated rejection rates based on heteroskedastic errors and ro-
bust standard errors.
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Figure 4: Simulated Rejection Rates with Mean Reverting Measurement
Error
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Note: Comparison of baseline rejection rates (from Figure 1) with
simulated rejection rates based on mean reverting measurement
error and robust standard errors.
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Figure 5: Simulated Rejection Rates with Binary Control and Misclassifica-
tion
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= Balancing test, t=0.1 == CC test, t=0.1

Note: Rejection rates for a binary control variable that is mis-
classified (i.e. its binary value is flipped) with probability 7.
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Rejection probability

Figure 6: Rejection Rates in Actual Data from the ACS
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Note: Rejection rates based on drawing random samples of size
1,000 from the American Community Surveys. Measurement er-
ror is generated by replacing different percentages of the schooling
observations with random draws from the empirical distribution
of schooling in the original data.
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Figure 7: Simulated Rejection Rates with Multiple Controls

(a) 4 covariates, x1-x4 not balanced (b) 4 covariates, only x1 not balanced

2 4 6 8 1
] ] ] ] ]

Rejection probability

0
]

1
| |

Rejection probability
0 2 4 6 38
|

— Balancing test, 6=0 —— CCtest, 6=0
=— Balancing test, 6=.85 == (CC test, 0=.85
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Table 1: Parameters for Power Calculations and Implied R?s

o2 =1 p=1
g2 =3 =3
o2 = 30 n =100
RZ
d 0=0 0=0.7 0 =0.85
0 0.48 0.16 0.09
0.5 0.53 0.23 0.16
1.0 0.59 0.33 0.27
1.5 0.66 0.44 0.39
2.0 0.72 0.54 0.50

Note: The implied population R?’s do not depend on n, but the

subsequent power calculations do.
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Appendix

A Power Functions

A.1 The Balancing Test

The desired balancing regression is
Ty = 0g +08; + uy,
but z; is measured with error
xt = x; + m,.
Effectively, we run the balancing regression
' =00+ 0"s + u; + m.

As mentioned in Section 5.1, in the theoretical derivation of the power
functions we abstract away from the sampling variation in estimating the
standard errors by treating o,, 0, and o, as known constants. In this case,
the asymptotic variance of 5™ can be directly calculated, and the resulting

test statistic for the null hypothesis that the balancing coefficient 9 is zero is

. om sm
gm = — — .
se (5’") 1 Vot
NG

Os

Define

Hence
Vnog/1—60

Oy

tgm - /5\m
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The rejection probability when 6 = d and when using critical value C' is

Pr(|tgn| > C) = Pr(tsm > C’) + Pr(tsm < —C)

~

m

)
= ( > + Pr W<—O
§m—d o=
W) T L

epr [ o gVroV1= 0

se (5m) o
~ 10 <C—dw) +¢<—C—dw)

Oy Oy

°ﬂ>

= Pr

when n is large. This is the power function of the balancing test

v1-— V1 —
Powery, (d) = 1—® (1.96 - dM> +@ (—1.96 - dM) .
o

u O—’LL

A.2 The Coefficient Comparison Test

The short and long regressions are
yi = o+ B%si+¢
yi = a+pBsi+yzi+e,
and
Ty = 0 + 08; + u;.

Adding measurement error in x;:
' = 1 + my,
we have
yi = o+ [%s;+e€]
yi = o+ ["s " + e
' = dg+0s; + u; +my.
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Treat s;, u;, €;, and m; as the underlying random variables which deter-
mine z;, y;, e and e]". We normalize s; to a mean zero variable. For the
derivations in the remainder of this section, we make the following assump-
tions:

Assumption A1l: s;, u;, ¢; and m; are mutually independent;

Assumption A2: E[u}] = 0.

Note that Assumptions A1 and A2 are satisfied in the DGP’s we adopt
for the Monte Carlo simulations underlying Figure 2, that is, when s;, u;, €;,
m; follow a joint normal distribution with the first two moments specified

according to

s; 0 o2 0 0 0
u; 0 0 o2 0 0
e |lol’]o0o 0 o 0 (A1)
m; 0 0O 0 0 an

A.2.1 Population Parameters

In this subsection, we derive the expressions of population regression coeffi-
cients /™ and 7™ in terms of the model parameters, as discussed in Section

3. Performing an anatomy to the multiple regression (9), we have

g . 2
_ Cov(ys, u; +m;) ol (A2)

Var(u; +m;) o2+ 02’

m

where u; + m; is the residual from the population regression of z" on s;.

Using 6 as defined above, equation (A2) becomes

7" =(1-0). (A3)

By the omitted variable bias formula, we have

p*=pB+n0
p*=pB"+A"4,
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and therefore
B = B+ ~00. (A4)
As mentioned in the main text, an alternative representation of 6 is

1—-A

where
Var (x;)
N=
Var (z)

m
7

is the reliability of =, and R? is the population R? of the regression of x!"

on s;. To see why (A5) holds, notice that

Var(z;) = 6%0% + o2
Var(z") = 6°02 + o2 + o2,
aﬁ + afn
6202 + 02 + 02,

R*=1-—

from which equation (A5) mechanically follows.

A.2.2 Asymptotic Variance in the Coefficient Comparison Test
under Homoskedasticity

For the coefficient comparison test 5% — ™ = 0, the test statistic is
B —pm
tﬁs,lgm == — — 5
VVar(3 - Bm)
which is asymptotically standard normal. As mentioned in section 4, we rely

on the delta method equation (13) to derive Var(3* — 3™). We have already

shown in the previous subsection that

Sy 1 on
VCLT((S ):Em, (A6>

and we derive Var (™) and Cov <;5\mﬁm> in the remainder of this subsec-

tion. For simplicity of exposition, we make an additional assumption:
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m
K3

Like Assumptions Al and A2, Assumption A3 is also satisfied in the

Assumption A3: Var(el"|s;, z}") is constant.

DGP’s underlying Figure 2. In the subsection below, we also derive the
general expression of Var(gs — B\m) when Assumption A3 is relaxed.
In order to derive Var(3™), first note that

oy 1 Var(ef)
Var (") = nVar (u; +m;)’

(A7)

where, as mentioned above, u; + m; is the residual from the population re-
gression of " on s;. Since Var (u; + m;) = o2 + o2, the missing piece in
equation (A7) is Var (e"). Plugging (A3) and (A4) into (9), we get
yi = o+ ["si+ " + e

= o+ (B+730)s;i +y(1—0)a" + e

= (@ +7 (L =0)d0) + (B+70)si +7(L—0) (wi +ms) + €
Since

yi = a+PBsi+v(6+dsi+ w)+e
= (a+760) + (B +70)si + yu; + e,

matching residuals yields

yui +e = (1 —86)(u; +my) + el

el = ~NOu;—~v(1—0)m; +e;

Var (e") = ~20%02 +~2 (1 —0)* 02, + o2
2 o ’ 2 o ’ 2 2
-7 (02—1—02) U“+(02+02> Tm | T

= %002 + o2,
So
R 1 26002 2
Var (™) = Lo, +oe

n o402
1-0 o?
= (720 + 0—1%) . (AB)
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~

As for Cov(6™,7™), first note that

S o 2o+ me)(si — 8)
S S P )
g _ @) A0

-~

where 5and 7 are the sample averages of s; and 7" with 77" = 21" —bg—0ms;
being the residual from regressing 7" on s;. By Assumption Al along with
the fact that &y = & and o™ 5 0, the asymptotic joint distribution of the

numerators in equations (A9) and (A10) is
L (u A+ m) (s — )
vl Xer@Er -7
d (02 + 02) o2 E[s;(u;i + m;)?el
e (O’ { Elsi(u; +mi)?el"] El(u; +mi)*(e")?] | )
By Assumptions A1l and A2,
Elsi(u; +m;)?el"] = Esi(u; +m;)*(v0u; — v (1 — 0) m; + ¢;)]
=0.
Since the denominators of equations (A9) and (A10) converge in probability

to positive constants,

Cov(8™,3™) = 0. (A11)
Plugging equations (A6), (A8) and (A11) into (13) yields
~ o~ 1
Var(3 — ") = Vs (d:
1 2 2 2 2
NI i S (A12)
n o? o2

Recall that
B =" =06y" =6y (1-0),

so the power function of the coefficient comparison test is

Powery, (d;y) = 1-® (1.96 — dM) +P (—1.96 — dM) '
Vs (d;7) Vs (d;7)
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A.2.3 Relaxing Assumption A3

In this subsection, we provide the expression for Var(as — B\m) while relaxing
the conditional homoskedasticity of e, i.e. Assumption A3. Our derivation
of this asymptotic variance expression still relies on equation (13). Since
equations (A6) and (All) are not affected by Assumption A3, we will only
need the general expression for Var (7).

Representing model (9) in matrix form,
yi = W.I' + e,

where W; = (1, s;,2") and T' = (o™, ™,~™)". The asymptotic variance-

covariance matrix of the regression estimator T is
1

—E[W;W{]" E[W,W/(e]")*| E[W; W] .

n

Expressing E[W,; W/] in terms of the fundamental model parameters is straight-

forward:
EWW]=FE| s s sa"

1 0 do
=10 o2 do?
do 602 62+ 6%+ 02+ 02,
As before, we set Els;] = 0, which sacrifices no generality since the mean
does not enter the variance calculation in any case.

Writing out the entries in the matrix E[W,W/(e")?]:

E[W,W;(e")?]

(") s af(e)? ]

) (ii) (iif)
siefr)’  si(e)? s (en)?

= F ——

(iv) v)
e (ef)? s (ef)® (4 (ef")’

V.
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Below we express quantities (i) to (vi) in terms of the fundamental model

parameters. Letting ,, = E[m{] and k, = F[u}] and utilizing Assumptions

1 and 2, we have the expressions for (i) to (vi):

E(e]")’] = El(v0ui = v(1 = 0)m; + €;)’]

=7"0%0, + (1= 0)°0,, + 0f,
Elsi(e")’] = Elsi(v0u; — (1 — 0)m; + €;)’]
pu— O’

= S E[(e]")’] + 0 Esi(e}")’]
= 0o(v*0%05 +7*(1 = 0)°0p, + 07),

Elsi(e]")’] = Els7(v0u; — v(1 = 0)m; + €;)?]

(2 2

= 0.(v*0%0; +~+*(1—0)%0%, + 07),
and
Elsia™(e]")?] = Elsi(do + 8s; +u; +m;) - ()]
= 50E[si(ezm)2] + 5E[s?(e;")2]

+ Elsiui(v0u; — (1 — 0)ym; + €;)?]
+ Elsymi(v0u; — (1 — 0)m; + €;)?]

= 002 (2002 + v (1 — 0)%02, + 72).
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Finally, for the expression of (vi)

Bl(«")(el")’] = Bl(do + dsi +ui +mi)*(e]")’]
= &EB[(e")!] + 6°E[s7(e]")]
+E[u? (v0u; — (1 — 0)m; + e;)?]
+E[mI (v0u; — (1 — 0)m; + €;)?]
+2000 Bs(e]")?] + 200 Eluy(e]")?]
+200E[m;(e")*] + 20 E[s;u;(e]")?]
+20 E[s;m;(el")?] + 2E[uym;(el*)?].

Note that

and we only need to find the expressions for

Elui(v0u; — (1 — 0)m; + e;)’]
= Blui{y*0°u} +*(1 - 0)*m} + ¢}

—2720(1 — O)uym; + 2v0uze; — 2(1 — O)mye;}]
= V0*E[ul] + 21 — 0)*c%02 + 020
= Y0k, + (1 —0)%0202 + 02072,

E[m; (y0u; — y(1 = 0)m; + ;)’]
= Emi{y*0*u} ++*(1 — 0)*m7 + €7

—2720(1 — O)uym; + 270uze; — 27(1 — O)mye; )]
= Y0020 +7*(1 - 0)’ky + 0200

m-e’
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and

Eluzm;(e™)?] = Eluimi(v0u; — (1 — 0)m; + €;)?]
= Elumi{y*0*u +7°(1 - 0)*m7 + ¢}
—2720(1 — O)uym; + 2v0uze; — 2(1 — O)mye;}]
= —29°0(1 - 0)olo?,.

Putting these terms together,

E(2")*(e")’] = % E[(e]")?] + 0° B[s7 (e]")]
+ Blui(v0u; — (1 — 0)m; + e;)?]
+ E[m?(v0u; — y(1 — 0)m; + ;)]
+ 2B [u;my(el)?]
= {7 0%y + (1 — 0)°0p, + 02}
+6°02 (V00 + (1 — 0)°0r, + o7)
+ {70k + 771 = 0)° 0Ly, + oh0
+ {000l + 72 (1 = )’k + 0500
— {4%0(1 — 6)0202 ). (vi)

Now that we have the expression for both E[W;W/] and E[W;W!(e")?], we

can compute the asymptotic variance of 4™

Oy

Var (™) = % {(1 ) (%9 4 "—z)

p o2 (s = 8006 (381 — 6
(02, 1 02)? (02, + 02)?

(a)

Compared to its expression under homoskedasticity (A8), we have an extra

term (a) that accounts for the excess kurtosis of the u and m distributions.
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It follows that
1 AS Am
~V (i) = Var (5" 5")
1 7203 6202
— E{(1—(9) (7+95272+?

S u

g [0 = 3007 (s~ 39801 0
(o2, +02)° (o7, +02)° '
Note that when wu; and m; are normal, k, — 30} = 0 and k,, — 30} =

0, and the variance expression above simplifies to that of equation (A12).
Since Var (B\s — §m> increases in k, and k,, and that the balancing test
is unaffected by the heteroskedasticity of €™, the power advantage of the
balancing test is larger when u; and m; have thicker tails than a normal

distribution.

B Comparison with Oster (forthcoming)

The Oster (forthcoming) formulation of the causal regression takes the form
Yi = a+ Bs; + pwi; + wa + €,

where wy; is an observed covariate and wo; is an unobserved covariate, uncor-
related with wy;. To map this into our setup, think of the true x; as capturing
both wy; and wy;, i.e. x; = pwy; + we;. Furthermore, there is equal selection,

i.e.
Cov(sy, pwy;) . Cov(s;, wy;)

2 2 2 ’
pP 07 03

where 0% and o2 are the variances of wy; and ws;, respectively. Then, Oster’s

(forthcoming) regression can be written as
Yi = a+ PBsi +xi + e,

which is our regression with v = 1 (the scaling of z; is arbitrary of course; it

could be x; = wy; + we;/p instead and v = p or anything else).
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Our observed z]* = pwy;, S0 measurement error m; = —ws;. Measurement

error here is mean reverting, i.e.

m; = kx; + [ (A13)
with £ < 0. Notice that
Cov (m;, x;) = —J%,
and hence
—% (A14)
K= —"—
pol + o3
and

Wi = —wy — kK (pwy; + way;)
= —rpwy — (1 + K) wy;

o2 p*o?

2
S 2, 2P T 55 5
pPoi + o3 proi + o3

Wa;.

It turns out that p; implicitly defined in (A13) and k given by (A14) imply
Cov(zi, ;) = 0 and Cov(s;, p;) = 0. Hence, these two equations represent
mean reverting measurement error as defined in the body of the manuscript.
However, note that Cov(s;, ;) = 0 depends on the equal selection assump-

tion. With proportional selection, i.e.

Cov(si, pwr;)  Cov(s;, wa)
¢ = 2 )

2,2
2T 92

and ¢ # 1 we would have Cov(s;, u1;) # 0.
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