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1 Di¤erences-in-di¤erences

1.1 Basics

The key strategy in regression was to estimate causal e¤ects by controlling
for confounding factors. A key variable in such a strategy is frequently the
outcome of interest in a period before the treatment took place. Di¤erences-
in-di¤erences is a strategy to model the role of pre-treatment outcomes in a
particular fashion.

For example, say you are interested in the e¤ect of the minimum wage
on employment. A number of studies have exploited changes in minimum
wages at the state level, and we will use the example of Card and Krueger
(1994) here, who studied the increase in the minimum wage in New Jersey
from 4.25 to 5.05. This change took e¤ect on April 1, 1992. Card and
Krueger collected data on employment at fast food restaurants in New Jersey
in February and in November 1992. They also collected similar data on
restaurants in eastern Pennsylvania, the neighboring state, for the same
period. The minimum wage in Pennsylvania remained at 4.25 throughout
this period.

Formally, the assumptions underlying di¤erences-in-di¤erences estima-
tion are as follows. Let

y1 = fast food employment for high minimum wage

y0 = fast food employment for low minimum wage

be the counterfactual outcomes. Recall that conditioning means that we are
willing to assume that E(y0jD;X) = E(y0jX). Here, we are assuming a
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particular functional form for E(y0jX), namely

E(y0jX) = E(y0js; t) = s + �t

where s denotes the state (New Jersey or Pennsylvania) and t denotes the
period (February, before the minimum wage increase or November, after the
increase). This says that in the absence of a minimum wage change employ-
ment is given by state e¤ect, and a time e¤ect, which is the same in both
states. The treatment, a higher minimum wage, changes the employment
level conditional on s and t:

E(y1js; t) = E(y0js; t) + � = s + �t + �

So we can write observed employment in restaurant i as

yi = s + �t + �Dst + "i (1)

where Dst is a dummy for the treatment, a high minimum wage, which was
in place in New Jersey in November.

Notice that

E(yijs = PA; t = Nov)� E(yijs = PA; t = Feb) = �Nov � �Feb

and

E(yijs = NJ; t = Nov)� E(yijs = NJ; t = Feb) = �Nov � �Feb + �:

Hence, the di¤erence-in-di¤erence

[E(yijs = PA; t = Nov)� E(yijs = PA; t = Feb)]

� [E(yijs = NJ; t = Nov)� E(yijs = NJ; t = Feb)] = �

estimates the treatment e¤ect �.
Table 3 in Card and Krueger (1994), rows 1. to 3. and columns (i)

to (iii) display estimates of employment in the four cells (PA versus NJ,
before versus after), as well as the state di¤erences, the changes over time,
and the di¤erence-in-di¤erence. Employment in PA restaurants is some-
what higher than in NJ in Februrary and falls by November. Employment
in NJ, in contrast, increases slightly. This results in a positive estimate
for the di¤erence-in-di¤erence. This is the opposite result from what we
might expect if restaurants were moving up their labor demand curve as the
minimum wage increases.
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Figure 1: Identi�cation in the di¤erence-in-di¤erence model

What is the key identifying assumption of the di¤erence-in-di¤erence
estimator? The assumption is that employment trends would have been the
same in both states in the absence of the treatment. Hence, the employment
trend in the treatment state has the same slope as in the control state,
but is displaced to account for the di¤erent employment levels before the
treatment, as in �gure 1.

Depending on the context, there may be various forms of this identifying
assumption, which are reasonable. Card and Krueger (1994) assume that
it is the levels of employment which evolve in the same way in PA and NJ.
If employment levels were somewhat di¤erent ex ante, an equally reasonable
assumption might be that the log of employment evolves in the same way
absent minimum wage changes, or

log yi = s + �t + �Dts + "i:

This speci�cation is di¤erent from (1), and involves a di¤erent assumption
about the counterfactual trends. If one assumption is true, the other one
must be necessarily false. Since the assumption is about an unobserved
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counterfactual, it is not testable with the data we have examined so far.

1.2 Group Speci�c Trends

Much of the recent discussion of di¤erences-in-di¤erences models has been
about ascertaining, whether the underlying assumption of equal trends in
the absence of treatment is a reasonable one. One possible way to look at
this issue is if there are data available on multiple periods. For a later
update of their study, Card and Krueger (2000) obtained time series of
administrative payroll data for restaurants in New Jersey and Pennsylvania.
This data are plotted in Figure 2 in their paper. The vertical lines indicate
the dates when their original surveys were conducted. The administrative
data also show a slight decline in employment from February to November
1992 in Pennsylvania, and little change in New Jersey. However, the data
also reveal a large amount of ups and downs in employment in the two states.
The employment trends in periods when the minimum wage was constant
are often not the same in the two states. In particular, employment in New
Jersey and Pennsylvania was rather similar at the end of 1991. Relative
employment in Pennsylvania declined over the next three years (at least
using the larger set of 14 PA counties), with much of this trend occuring
at periods unrelated to the 1992 minimum wage change. Hence, eastern
Pennsylvania restaurants may not be a perfect control group for New Jersey
restaurants, because employment trends di¤er somewhat in periods with no
treatment.

A more positive example is the paper by Hastings (2004). She studies
the e¤ect of the competitive environment in the retail gasoline market on
gasoline prices. She uses the takeover of a large number of previously inde-
pendent Thrifty gas stations in southern California in September 1997 by
ARCO, a large, vertically integrated gasoline retailer. Gas stations belong-
ing to a vertically integrated retailer typically sell gasoline at a higher price
than independent stations. The hypothesis is that the presence of more in-
dependent gas stations in a local market increases cometition and therefore
lowers the market price of competitors as well. Hastings investigates this
hypothesis by looking at the prices of other gas stations before and after the
ARCO purchase of the Thrifty stations. The treatment group in her setup
are gas stations which are located near a Thrifty station, while the control
group are gas stations with no Thrifty station nearby.

Figures 1a and 1b in her paper tell the story. These �gures plot gasoline
prices for Thrifty competitors and other stations during 1997. Prices move
in parallel throughout the period, except between June and October, the
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period of the ARCO purchase. Prices at Thrifty competitors increase by
more during this period than at comparison stations. The graphs are highly
compelling that the comparison stations provide a good control group for
the Thrifty competitors. Being able to produce pictures like these should
be the goal of any di¤erences-in-di¤erences analysis.

1.3 Di¤erence-in-di¤erences in Regression Format, Multiple
Contrasts, and Robustness

It is easy to see that (1) is a regression equation. If there are only two groups
and two periods, then

yi = s + �t + �Dst + "i

= �+ 1(s = NJ) + �1(t = Nov) + �1(s = NJ) � 1(t = Nov) + "i

where 1(�) is the indicator function. Taking conditional expectations for
di¤erent states and periods, and subtracting easily yields

� = E(yijs = PA; t = Feb)
 = E(yijs = NJ; t = Feb)� E(yijs = PA; t = Feb)
� = E(yijs = PA; t = Nov)� E(yijs = PA; t = Feb)
� = [E(yijs = PA; t = Nov)� E(yijs = PA; t = Feb)]

� [E(yijs = NJ; t = Nov)� E(yijs = NJ; t = Feb)]

The regression formulation of the di¤erence-in-di¤erence model is useful
for multiple reasons. First of all, it is a convenient way of estimating the
di¤erence-in-di¤erence, and obtaining standard errors and t-statistics. Sec-
ond, it is easy to incorporate additional states or periods in the analysis now.
For example, instead of just comparing the impact of the change in the min-
imum wage in New Jersey in a particular period, we may want to look at
the impact comparing many state pairs, or comparing di¤erent periods. In
this case, the formulation of the model would simply be

yst = s + �t + �Dst + "st

where s and t may now take on more than two values, and yts is employment
in state s at time t. Dst now indicates whether state s has raised the
minimum wage by date t.

This immediately suggests a third advantage of the regression formula-
tion. In some cases, like in the minimum wage example, the treatment may
not be binary but continuous. Di¤erent states could have di¤erent levels
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of the minimum wage, or the same nominal minimum wage may have a
di¤erent impact depending on the distribution of wages in the state. The
regression formulation would now be

yst = s + �t + �Mst + "st (2)

where the variable Mst is a measure of the �bite� of the minimum wage
in state s at time t. Despite the continuous nature of the treatment, this
formulation still retains the basic features of the di¤erences-in-di¤erences
model.

An example of the model in (2) is the paper by Card (1992). He studies
the e¤ect of the federal increase in the minimum wage in April 1990 using
all the US states. The federal minimum wage was $3.35 before the increase,
and was raised to 3.80. Some states already had state minimum wages of
$3.80 or higher at the time of the federal increase. Moreover, the same
increase will have more of an e¤ect in a low wage state, where many workers
are subject to the minimum, than in a high wage state. Card�s measure of
the impact of the increase of the minimum wage is the fraction of workers,
who are paid less than $3.80 just before the increase of the minimum wage,
something he calls the �fraction of a¤ected workers.�

Since there are still only two time periods in the Card (1992) setup,
before and after the minimum wage increase, (2) can be di¤erenced over
time to obtain

�yst = �t � �t�1 + �Mst +�"st

= �+ �Mst +�"st:

The di¤erence in the time e¤ect simply becomes a constant term, so that
this is a standard bivariate relationship for the outcome and the treatment
variable. Figures 4 and 5 plot the change in the wage and in employment
against the fraction of workers a¤ected by the minimum wage change. Figure
4 reveals that wages increased more in states where the minimum wage
increase had more bite. On the other hand, �gure 5 shows that there is no
relationship with employment growth. Table 3 in the paper displays these
results in regression format in columns (1) and (4).

Given the multiple contrasts from using 51 state level changes, it is now
possible to introduce controls for other state speci�c factors. Since Mst is
one such variable, it is obvious that this cannot be done non-parametrically.
Nevertheless, it is possible to use parametric controls for trends at the state
level as in

�yst = �+ �Mst +Xst� +�"st:
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Card examines the wages and employment outcomes of teenagers, a group
typically strongly a¤ected by the minimum wage. He uses adult employment
trends as a control (the Xst). These trends are supposed to pick up di¤er-
ences in the business cycle in the various states. These results are shown
in columns (2), (3) and (5), (6) in his table. There is little change in the
minimum wage coe¢ cients, which is a comforting result.

Return to our model in levels. Frequently, there will be multiple periods
as well as multiple treatment and control groups. In addition, outcomes are
often measured at the individual level, while treatment takes place at the
state level, e.g. because of a policy change. The model is now

yist = s + �t + �Mst +Xist� + "ist:

Variables in Xist could now be individual level variables or time varying
variables at the state level. Including individual level variables may not
only help to control for confouning trends, but may also reduce the variance
of "ist, which may reduce the standard errors of the estimate of �.

In a model with multiple treatment groups (states) and multiple peri-
ods, it becomes more di¢ cult to provide a simple visual inspection for the
evolution of state speci�c trends in the periods when there is no treatment,
as in Card and Krueger (2000) and Hastings (2004). Of course, identical
counterfactual trends in treatment and control states is still the identify-
ing assumption. One way to test this assumption is to allow for leads and
lags of the treatment. In order to see how this works, return to the model
with a binary treatment. Let k be the time at which the treatment is being
switched on in state s: Then our model is

yist = s + �t +

qX
j=�m

�jDst(t = k + j) +Xist� + "ist:

Instead of a single treatment e¤ect, we have now also included m �leads�
and q �lags�of the treatment e¤ect. �j is the coe¢ cient on the jth lead or
lag. A test of the di¤erences in di¤erences assumption is �j = 0 8j < 0,
i.e. the coe¢ cients on all leads of the treatment should be zero. Moreover,
the �j ; j � 0 may not be identical. For example, the e¤ect of the treatment
could accumulate over time, so that �j increases in j.

An example of this approach is the paper by Autor (2003). He inves-
tigates the e¤ect of employment protection on outsourcing by �rms. To
this end, he relates the employment of temporary help workers in a state
to indicators whether the state courts had a adopted more stringent excep-
tions to the employment at will doctrine. Figure 3 in his paper plots the �j
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coe¢ cients. These coe¢ cients are zero in the two years before the courts
adopted the new rule, increasing in the �rst few years after the adoption, and
then �at. This indicates that the di¤erences-in-di¤erences strategy seems
successful in this context.

An alternative way to probe the robustness of the di¤erences-in-di¤erences
identi�cation is to include state speci�c parametric time trends among the
regressors in Xist. Of course, this is only possible with multiple periods
again. This is done, for example, in the paper by Besley and Burgess
(2004). They examine the e¤ect of labor regulation on the performance of
�rms in Indian states. Di¤erent states change the regulatory regime at dif-
ferent times, giving rise to a di¤erences-in-di¤erences design. Table IV in
their paper shows the key results. Column (1) shows that labor regulation
leads to lower output per capita. In columns (2) and (3) they include state
speci�c-time varying regressors like development expenditures per capita.
This is a similar strategy to using the adult employment rate in Card (1992)
above. This a¤ects the estimates little. However, when they include linear
state speci�c trends in column (4) the coe¢ cient on labor regulation drops
to zero. This suggests that the introduction of additional labor regulation
correlates with other trends in state level output, and it is not possible to
disentangle the causal e¤ect of the regulation from these underlying trends.
E¤ectively, after including a parametric trend, the identi�cation hinges on
there being a sharp change in the outcome at the date of the treatment, as
in Autor (2003). If the treatment e¤ect grows gradually, this may be much
more di¢ cult to pick up with state speci�c trends.

Controlling for state speci�c trends only works well, when there is a
su¢ cient sample period available before the treatment starts. This is par-
ticularly true when there is a dynamic response to the treatment, so that
looking at trends after the treatment is not particularly informative. In-
cluding state speci�c trends with the best intention can actually back�re,
as Wolfers (2003) illustrates. He discusses the impact of unilateral divorce
laws on divorce in the US. Before the 1970s, a divorce was only possible
if both spouses agreed. In the 1970s, states introduced unilateral divorce
laws, which allow a divorce if one spouse wants the divorce. An in�uen-
tial paper by Friedberg (1998) estimated the e¤ect of the introduction of
unilateral divorce on divorce rates, and found a sizeable and lasting e¤ect.

Wolfers (2003) reanalyzes the data, and points that much of the result
hinges on Friedberg�s treatment of state speci�c trends. Figure 5 in his
paper illustrates the problem for one state: California. Friedberg�s sample
starts only one year before California introduced unilateral divorce. Her
estimate of the California speci�c trend therefore relies almost completely
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on the post-law trend in the state. Wolfers, using a sample going back to
the late 1950s demonstrates that California�s pre-exisiting trend was very
di¤erent. Extrapolating this pre-existing trend results in a very di¤erent
estimate of the divorce e¤ect. As is true in many applications, this suggests
both the power of large samples, and of plotting the data.

1.4 Picking a Good Control Group

In the discussion above, we have labeled the two dimensions s and t in the
di¤erences-in-di¤erences setup �states� and �time.�While there are many
applications were the treatment or policy is time varying at the regional
level, the identi�cation strategy is not at all limited to these dimensions.
s and t can be any two dimensions, so that treatment only takes place for
particular combinations of s and t. While contrasts simply across s or t may
not plausibly identify the treatment e¤ect, this may be more likely for the
di¤erences-in-di¤erences estimator. Insteat of states, s may denote di¤erent
demographic groups, some of which are a¤ected by a policy and others are
not. For example, unemployment bene�ts may be changed di¤erentially for
various age groups. Anti-discrimination or job protection legislation may
not apply to �rms below a particular size cuto¤ but could be extended
to additional �rms. Welfare bene�ts may only be payable to low income
families with a single parent, but not other demographic groups. The ex-
cluded groups may or may not be appropriate comparison groups. It is often
the main challenge for the researcher to identify a particularly appropriate
comparison group, which sati�es the necessary identifying assumption, that
the treated groups s would behave similarly as t is varied as the untreated
groups.

One potential pitfall in de�ning treatment and control groups in a di¤erences-
in-di¤erences setup is that s or t maybe directly a¤ected by the treatment.
For example, if s is a state as before, we may be concerned that the policy
induces some inter-state migration. Hence, the population resident in the
treatment state before and after the policy becomes e¤ective may not be
identical. Say state s = 1 lowers wefare bene�ts, and this leads some poor
families to move to another state s = 0, which forms the control group.
We are interested in estimating how the lower bene�ts a¤ect the fraction of
the population on welfare. Also suppose, that in the absence of the policy
change, welfare receipt would not have changed over time. In this case, the
change of welfare receipt over time in the control state does not provide a
valid counterfactual anymore: in the absence of the policy, welfare receipt
in state s = 1 would have been unchanged. Instead, welfare receipt in state
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s = 0 increases because of the induced welfare migration. Hence, we are
overestimating the e¤ect of the policy.

Sometimes this problem can be overcome if we know where an individual
starts out. Say we know the state of residence in the period before treat-
ment, or we know the individual�s state of birth. This is immutable, i.e.
cannot be a¤ected by the treatment itself. If we assign individuals to the
treatment or control group on the basis of this immutable characteristic, we
can circumvent the problem outlined above. This introduces a new problem,
however, that the new dimension, say state of birth, is not really the correct
delineation for the treatment. I.e. some individuals �born� (or previously
residing) in the treatment state move, and we would now assign them to
the treatment group, even so they are not a¤ected by the policy after their
move. However, this divergence of treatment group assignment and actual
treatment can easily be addressed by using instrumental variables methods,
as we will discuss later.

The di¤erence-in-di¤erence design allows a comparison over time in the
treatment group, controlling for concurrent time trends by using a control
group. If there were no trends, no control group would be necessary, and a
simple before-and-after design using the treatment group would be su¢ cient.
In some circumstances, this might be quite plausible. Alternatively, it may
be reasonable to assume that the underlying trend is constant over time
in the treatment group, so that it is su¢ cient to extrapolate from di¤erent
pre-treatment periods within the treatment group only.

An example of this approach can be found in Davis and Weinstein (2002).
They study the growth of cities, in order to test models in economic geog-
raphy. Their natural experiment is the decline in population caused by the
bombing of Japanese cities in the second world war, and they are interested
in how growth in these cities compares to the growth that would have taken
place in the absence of bombing. Using a variety of pre-treatment years, it
seems plausible that city growth is roughly exponential with a city speci�c
growth rate. This means that extrapolating the growth of the log of popula-
tion from before the war should be a valid counterfactual for the no-bombing
case. Figure 2 in their paper shows the actual growth paths for Hiroshima
and Nagasaki, compared to their pre-war trends. Growth in both cities is
faster after the war, so that city size converges back to the pre-war growth
path.

Alternatively, rather than using single di¤erences, the treatment assign-
ment rule may sometimes suggest a triple or higher order di¤erences setup
for the estimation. An example, is the extension of Medicaid coverage in
the U.S., studied by Yelowitz (1992). Medicaid, health insurance for the
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poor, was traditionally tied to eligibility for AFDC, the cash welfare pro-
gram. In the late 1980s, various states introduced extensions of Medicaid
coverage for families with earnings high enough so they would not qualify for
AFDC anymore. These extensions happened at di¤erent times for di¤erent
states. This would give rise to a classical di¤erences-in-di¤erences design.
However, di¤erent states introduced these extensions for children in di¤erent
age groups. Hence, the age of the youngest child is a third dimension along
which the treatment varies. Hence, Yelowitz analyzes employment e¤ects of
these extensions using the model

yiast = st + �at + �as + �Dast +Xiast� + "iast:

There are now three dimensions, state (s), time (t), and age of the youngest
child (a). This allows the researcher to control non-parametrically for state
speci�c shocks st, i.e. each time period receives a separate dummy vari-
able in each state. In order to only exploit the triple di¤erences, it is also
necessary to include interactions of age and time e¤ects �at, and age and
state e¤ects �as. Sometimes it may not be possible to identify the e¤ect of
the treatment with such a rich set of controls, and some of the second level
interactions may have to be excluded. However, when the full set of controls
is feasible, triple di¤erences may allow for a more credible analysis.

An important challenge in evaluation design is to �nd a good control
group. We have seen that a good control group in a di¤erences-in-di¤erences
analysis should have similar pre-treatment trends to the treatment group,
say, as in the example of Hastings (2004). Sometimes the choice of treat-
ment group is obvious but sometimes it is not. For example, Abadie and
Gareazabal (2003) try to identify the cost in terms of lost output of terrorism
in the Basque country region of Spain. Basque terrorism in the 1970s was
largely con�ned to the Basque region itself, although other Spanish regions
were a¤ected to a minor degree. Abadie and Gareazabal therefore compare
growth in the Basque region to other regions in Spain. However, no single
other region in Spain is a good comparison group, since the Basque country
has relatively more manufacturing than the rest of the country. Abadie and
Gareazabal therefore devise a method of constructing a counterfactual for
the Basque region, using a weighted average of all other Spanish regions.
The weights are chosen so as to mimic the pre-terrorism growth trends of
the Basque country as closely as possible.1

Figure 1 in their paper plots GDP per capita for the Basque region
as well as for their synthetic counterfactual region. Not surprisingly, the

1For a detailed description of the method of constructing weights, see Abadie and
Gareazabal (2003).
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synthetic control region tracks growth in the Basque country well in the
1960s. There is a slowdown in Basque growth in the 1970s, and output
tracks the counterfactual again fairly well in the latter part of the sample
when terrorist activity subsides somewhat.

1.5 Fixed E¤ects

Suppose the model of interest is again

yist = s + �t + �Dst +Xist� + "ist

which is one of the models we analyzed above. One of the great advantages
of this setup is that the treatment happened at a well de�ned level of ag-
gregation, s. In order to estimate this model, all we need is to sample from
the population in the relevant groups s in various periods t. The samples
do not have to include the same individuals over time. This allows the use
of repeated cross-section samples, which are often large and available over
long periods of time. A typical example are labor force surveys, like the U.S.
Current Population Survey of the UK Labor Force Survey.

However, sometimes there is no natural unit s where treatment is as-
signed. Instead, some individuals get treated at a particular point in time,
and others do not. The treatment itself may not be randomly assigned. In-
dividuals with certain characteristics may be much more likely to be treated
than others, i.e. E(y0jDit = 1) 6= E(y0jDit = 0). Nevertheless, the same
principle as in di¤erences-in-di¤erences may still apply: if we know outcomes
for the individual before the treatment, and we observe other, untreated in-
dividuals, who experience the same trends over time, we can still estimate
the e¤ect of the treatment. The only additional requirement now is that
we will actually need data on the same individuals over time.

Our model now simply becomes

yit = �i + �t + �Dit +Xit� + "it (3)

where we have simply replaced the state e¤ect s with an individual e¤ect
�i. As long as E(y0j�i; Xit; Dit) = E(y0j�i; Xit) holds, this model will al-
low us to identify the treatment e¤ect. The identifying assumption says
that counterfactual outcomes in the absence of treatment are independent
of treatment, conditional on an individual e¤ect �i and covariates Xit. Al-
ternatively, it says that treatment is only determined by the �xed individual
e¤ect �i and covariates Xit. The model in equation (3) can be estimated as
a �xed e¤ects model, i.e. treating �i as a parameter to be estimated.
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In practice, with many individuals it is typically not feasible to estimate
the individual dummy variables in equation (3) directly. Instead, the model
is either estimated by di¤erencing out the �xed e¤ect

�yit = ��t + ��Dit +�Xit� +�"it

or by taking deviations from means. Note that taking means across individ-
uals yields

yi = �i + �+ �Di +Xi� + "i

so that

yit � yi = �t � �+ �
�
Dit �Di

�
+
�
Xit �Xi

�
� + "it � "i;

which also sweeps out the individual e¤ect. The two estimators are identical
if there are only two periods. For more periods, if "it is iid, then the di¤erence
estimator introduces serial correlation in the new error �"it. This would
have to be accounted for in calculating the covariance matrix. Regression
packages will typically implement the deviations from means estimator, with
an appropriate adjustment for the degrees of freedoms lost in estimating the
N individual level means. This estimator will often be referred to as the
within estimator, and the procedure as absorbing the �is. In Stata, this
estimator is implemented in the commands xtreg and areg.

In looking at model (3), this could also be considered a random e¤ects
model

yit = �t + �Dit +Xit� + uit

uit = �i + "it

where �i is now considered a random disturbance, not a parameter to be
estimated. Of course, we were originally worried about the fact that se-
lection, i.e. Dit, depends on �i. Hence, simply treating �i as part of the
error term and estimating the model, for example, by GLS does not solve
the problem, since the standard random e¤ects estimator still assumes that
the error term uit is uncorrelated with the regressors. This is because the
random e¤ects model still uses the cross sectional variation, and hence will
be contaminated by the correlation between Dit and �i.

However, the distinction between �xed and random e¤ects is not really
critical for the consistent estimation of �. Instead, important is whether
we treat �i as a correlated or uncorrelated random e¤ect. I.e. even in the
random e¤ects model it is possible to acknowledge the correlation between
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Dit and �i by modeling the relationship. See Chamberlain (1994) for details
on how this can be done.

A classic example for the �xed e¤ects model is the estimation of the
union wage di¤erential. Let yit equal log earnings, and Dit the individual�s
union status. We are interested in the causal e¤ect of union membership
(or coverage by a union contract) on earnings. However, we are concerned
that union �rms may hire di¤erent types of workers. For example, union
�rms may have workers who are more productive on average. As long as
the productivity di¤erence is con�ned to the individual e¤ect �i, the �xed
e¤ects model (3) will allow consistent estimation of the union wage e¤ect �.

Freeman (1984) analyzes this case. Table 6 displays estimates for the
union wage e¤ects from four data sets, using both the cross section and the
�xed e¤ects estimator (the �xed e¤ects estimates are the ones for the group
labeled (NU - UN)/2 ). The cross section estimates are typically higher (in
the range of 0.15 to 0.25) than the �xed e¤ects estimates (in the range 0.10
to 0.20). This may indicate positive selection of union workers.

One problem with �xed e¤ects estimation is that it tends to accentuate
measurement error problems. Freeman presents an example in table 1. In
the example there are 100 workers, 75 unionized and 25 not unionized, the
true union wage premium is 30 percent, and there is no selection among
union workers. Suppose we use the cross section only, and there are two
union members and two non-union members each who are misclassi�ed. This
would result in an estimated union wage e¤ect of 0.268. The measurement
error leads to some attenuation.

Now consider a two period panel. Of the 75 union members 10 leave the
union after the �rst period, and 10 non-union members join. In each period,
there are still two of each type of workers misclassi�ed. The �xed e¤ects
estimator only uses the wage variation for the workers who join or leave the
union. There are 12 observed joiners and 12 observed leavers, but only 9
of each group represent a true transition. Because relatively few workers
change union status, a much larger fraction of the transitions is now due
to measurement error. The estimated union wage di¤erential among the
leavers and joiners is 0.225, substantially below the cross-sectional estimate.
Hence, measurement error may well be responsible for the lower �xed e¤ects
estimate of the union wage e¤ect.

The same problem arises with a continuous regressor Mit. Suppose in-
stead of Mit we observe the mismeasured variable fMit = Mit + vit, where
vit is a classical measurement error, uncorrelated with any other variable.
Consider the model

yit = �i + �Mit + "it:
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In the bivariate cross-sectional regression

b�CS = cov(yit;fMit)

var(fMit)

and hence

plimb�CS = cov(�i + �Mit + "it;fMit)

var(fMit)
= �

var(Mit)

var(Mit) + var(vit)

assuming that �i is uncorrelated with the regressor Mit. The estimate of b�
is attenuated by the factor var(Mit)=[var(Mit) + var(vit)].

Now consider the di¤ereced estimator of the same model

�yit = ��Mit +�"it:

Hence b�FE = cov(�yit;�fMit)

var(�fMit)

and

plimb�FE = cov(��Mit +�"it;�Mit +�vit)

var(�Mit +�vit)
= �

var(�Mit)

var(�Mit) + var(�vit)
:

Let �x denote the autocorrelation coe¢ cient in variable xit. Then we have

plimb�FE = �
var(Mit)(1� �M )

var(Mit)(1� �M ) + var(vit)(1� �v)

= �
var(Mit)

var(Mit) + var(vit)
(1��v)
(1��M )

:

In many applications, �M will tend to be high, because many economic
variables are rather persistent. In the other hand, �v may be small. Mea-
surement error is likely to have a large transitory component. This implies
(1� �v)=(1� �M ) will be larger than one, and hence the attenuation bias in
the �xed e¤ects estimator will be larger than in the cross-section estimator.
If the di¤erence in �M and �v is large, the di¤erence in the bias can also be
large. For example, if �M = 0:9 and �v = 0, then the variance component
var(vit) gets a weight 10 times as large as in the cross-section case.

The insights from the analysis of measurement error are more general.
Taking out �xed e¤ects may remove a lot of the variance in the treatment
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e¤ect Dit or Mit. Our assumption is that this variance is harmful in our
exercise because (part of) it is correlated with the individual �xed e¤ect.
However, as we have seen in the measurement error case, it is quite possi-
ble that taking out �xed e¤ects removes both �good�and �bad�variation.
This is particularly troubling if the �xed e¤ects strategy is imperfect, and
some �bad�variation is left in the �xed e¤ects estimates. Because much of
the �good� variation has been �ltered out, the consequences of the �bad�
variation also get accentuated. Hence, it easy to throw out the baby with
the bathwater.

An example for this type of concern is related to twin based estimates of
returns to schooling. Ashenfelter and Krueger (1994) and Ashenfelter and
Rouse (1998) present estimates of the returns to schooling among twins,
controlling for twin pair �xed e¤ects. Hence, these estimates compare the
di¤erence in earnings across twins to di¤erences in schooling. The idea that
ability is related to either genetics, family background or school environment,
which are all captured by the twin �xed e¤ect. Any remaining di¤erence in
schooling should therefore be unrelated to ability.

But how do di¤erences in schooling come about between individuals who
otherwise so much alike? Bound and Solon (1999) point out that there are
small di¤erences between twins, with �rst borns typically having higher
birthweight but also higher IQ scores. While these twin di¤erences are
not large, neither is the di¤erence in schooling. Hence, a small amount
of remaining selection among twins in terms of their schooling attainment
could be responsible for a large amount of bias in the resulting estimates.
The challenge of good evaluation work is always to remove �bad�variation
and to leave as much �good�variation intact as possible.

1.6 Selection on Past Outcomes

A further question arises when the researcher has panel data available. One
assumption is that selection depends on the �xed e¤ect E(y0j�i; Xit; Dit) =
E(y0j�i; Xit). But an alternative assumption would be E(y0jyit�h; Xit; Dit) =
E(y0jyit�h; Xit), i.e. that selection depends on some value of the lagged out-
come. In this case, the correct model to estimate would be

yit = �+ �yit�h + �t + �Dit +Xit� + "it: (4)

But now assume that model (3) is correct and the researcher estimates (4)
instead. Ignoring other covariates, i.e. the �t and Xit� terms, we have

b� = var(yit�h)cov(yit; Dit)� cov(yit�h; Dit)cov(yit; yit�h)
var(Dit)var(yit�h)� cov(yit�h; Dit)2

:
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If Dit�h = 0 and E(Dit) = p, then we get

plimb� =
(�2� + �

2
") [cov(�i; Dit) + �p(1� p)]� cov(�i; Dit)(�2� + �2")

p(1� p)(�2� + �2")� cov(�i; Dit)2

=
(�2� + �

2
") [cov(�i; Dit) + �p(1� p)� cov(�i; Dit)]
p(1� p)(�2� + �2")� cov(�i; Dit)2

= �
p(1� p)(�2� + �2")

p(1� p)(�2� + �2")� cov(�i; Dit)2
:

Similarly, the treatment e¤ect will not be consistently estimated if (4) is cor-
rect and the researcher estimates (3) instead. Ignoring the other covariates
again

b� =
cov(�yit;�Dit)

var(�Dit)

plimb� = � +
�cov(�yit�1;�Dit)

var(�Dit)
:

The second term will not be equal to zero because selection (and hence Dit)
depends on yit�1.

One possible solution to this would be to be agnostic about the correct
model and estimate

yit = �i + �yit�h + �t + �Dit +Xit� + "it

which allows for both a �xed e¤ect and a lagged dependenent variable. One
problem with this model is that the standard �xed e¤ects estimators are no
longer consistent with a once lagged dependent variable. Set h = 1, and
consider, for example, di¤erencing of the equation, which yields

�yit = ��yit�1 +��t + ��Dit +�Xit� +�"it:

This still removes the �xed e¤ect but the "it�1, which is part of the error
term, is correlated with yit�1. Hence, this equation cannot be estimated
consistently directly. This problem was �rst pointed out by Nickell (1981).
There are various potential solutions to this problem, typically involving
instrumenting �yit�1 with further lags of the dependent or independent
variables, which are uncorrelated with �"it.

An example where treatment assignment may depend on past realiza-
tions of yit is in active labor market programs. For example, workers may
be selected for a government training program because their earnings are

17



below a certain threshold. Ashenfelter and Card (1985) analyze the earn-
ings of workers who participated in the CETA (Comprehensive Education
and Training Act) training program in 1976-77. Data on trainees are from
their social security records. Data on a control group are drawn from indi-
viduals from the March 1976 Current Population Survey, who were eligible
for the program but did not participate. Social security earnigns data for
the control group are also available. In their table 1, Ashenfelter and Card
�nd that trainees look worse in terms of pre-training earnings than controls.

Assume that training for trainees takes place in year k. Hence we de�ne

Dit = 1 if t > k and i is a trainee

so that we identify the treatment with the period when the individual is
trained.

Suppose the selection rule into training is

Dik+1 = 1 if �i < y:

Standard di¤erences-in-di¤erences or �xed e¤ects estimates produce a valid
estimate of � in this case.

E(yik+1 � yik�j jDik+1 = 1)� E(yik+1 � yik�j jDik+1 = 0) = �

Since selection does not depend on "it this is true irrespective of the process
for "it.

Now suppose instead that the selection rule is

Dik+1 = 1 if yik�h < y

) �i + �k�h + "ik�h < y

i.e. selection is based on actual earnings h years before the training. Di¤erences-
in-di¤erences produces now

E(yik+1 � yik�j jDik+1 = 1)� E(yik+1 � yik�j jDik+1 = 0)
= � + E("ik+1 � "ik�j jDik+1 = 1)� E("ik+1 � "ik�j jDik+1 = 0):

The di¤erences-in-di¤erences estimator will yield an estimate of � on if

� j > h,

� "it is serially uncorrelated.
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This implies that the estimates using di¤erent pre-treatment years should
be the same, as long as the above two assumptions are satis�ed. However,
Ashenfelter and Card (1985) �nd that using di¤erent pre-training years pro-
duces very di¤erent estimates of the training e¤ect. This is worrisome, and
may suggest that the assumption of uncorrelated earnings is not satis�ed.
In fact, they note that earnings for the trainees in 1975, just before the
training, are particularly low. Hence, higher earnings for the trainees af-
ter training may simply re�ect mean reversion: the fact that earnings are
rebounding from a temporary drop in 1975. The temporarily low earnings
in right before the advent of training are often referred to as �Ashenfelter�s
dip.�

Ashenfelter and Card implement a solution to this problem �rst sug-
gested by James Heckman: to take symmetric di¤erences-in-di¤erences around
the year of selection. This estimator should produce consistent estimates of
the training e¤ect, as long as "it is covariance stationary. The intution for
this simple: covariance stationarity implies that the rebound in earnings
from a temporary low going forward by h years is just as strong as is the
rebound going back h years. Without a training e¤ect, earnings at these
two points in time are expected to be equal.

Formally, this can be seen as follows. Note, if (x1; x2) � jointly normal
then

E(x1jx2) = E(x1) +
cov(x1; x2)

var(x2)
[x2 � E(x2)] :

Assume for the moment that � = 0. Using the result above we have

E(yik+1jyik�h < y) = E(yik+1)+
cov(yik+1; yik�h)

var(yik�h)
[E(yik�hjyik�h < y)� E(yik�h)]

and similarly, h+ 1 years before training

E(yik�h�(h+1)jyik�h < y) = E(yik�h�(h+1))

+
cov(yik�h�(h+1); yik�h)

var(yik�h)
[E(yik�hjyik�h < y)� E(yik�h)] :

Now by covariance stationarity of yt, cov(yik+1; yik�h) = cov(yik�h�(h+1); yik�h).
This implies that

E(yik+1jyik�h < y)�E(yik�h�(h+1)jyik�h < y) = E(yik+1)�E(yik�h�(h+1))

and hence the symmetric di¤erence-in-di¤erence is independent of the se-
lection into training. Returning to the case where � 6= 0 again, we therfore
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have:

E(yik+1 � yik�h�(h+1)jDik+1 = 1)� E(yik+1 � yik�h�(h+1)jDik+1 = 0) = �:
For the CETA trainees, who �nish with training in 1976, there are two

post-training years, 1977 and 1978, so we can construct two such estimates.
Both estimates should be similar, and this in fact provides an overidenti�-
cation test for the underlying model. If the year of selection is 1975, then
the two comparisons would be 1977 with 1973 or 1978 with 1972. Both of
these yield an estimate of the training e¤ect of around -$800. If the year
of selection is 1976 instead, the two comparisons would be 1977 with 1975
or 1978 with 1974. The estimates in these cases are about $400 and $0
(Ashenfelter and Card, 1985, table 2). Hence, if we do not know the year of
selection, we cannot ascertain what the correct estimate is and whether the
model �ts the data.

1.7 Inference in Panel Data and Di¤erences-in-Di¤erences
Models

The discussion so far has concentrated on identi�cation of the e¤ect of in-
terest. Obviously, this always should be the main concern. However, there
are also a number of important inference issues which arise in the use of
panel data and di¤erences-in-di¤erences models. All these problems have to
do with correlation of the errors across the units of observation. Start by
considering the simple model

yit = �+ �xt + "it (5)

where the outcome is observed at the individual level but the regressor of
interest, xt, varies only at a higher level of aggregation. If xt is as good
as randomly assigned, then the OLS estimator is unbiased and consistent
but OLS standard errors will not be consistent if the error term has group
structure

"it = vt + �it:

This problem of correlation in the errors is, of course, well known in econo-
metrics. Moulton (1986), however, pointed out how important it can be in
the grouped regressor case.

In order to analyze the problem, let

yt =

26664
y1t
y2t
...
yntt

37775 "t =

26664
"1t
"2t
...
"ntt

37775
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and

y =

26664
y1
y2
...
yT

37775 x =

26664
�1x1
�2x2
...

�TxT

37775 " =

26664
"1
"2
...
"T

37775
where �t is a column vector of nt ones. Notice that

E(""0) = �2"G = �
2
"

266664
G1 0 � � � 0

0 G2
...

...
. . . 0

0 � � � 0 GT

377775

Gt =

266664
1 � � � � �

� 1
...

...
. . . �

� � � � � 1

377775 = (1� �)I + ��t�0t
� =

�2v
�2v + �

2
�

:

Now

X 0X =
X
t

ntxtx
0
t

X 0GX =
X
t

xt�
0
tGt�tx

0
t:

But

xt�
0
tGt�tx

0
t = xt�

0
t

2664
1 + (nt � 1)�
1 + (nt � 1)�

� � �
1 + (nt � 1)�

3775x0t
= nt [1 + (nt � 1)�]xtx0t:

Denote � t = 1 + (nt � 1)�, so we get

xt�
0
tGt�tx

0
t = nt� txtx

0
t

X 0GX =
X
t

nt� txtx
0
t:
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With this at hand, we can compute the covariance matrix of the OLS
estimator, which is

var(b�OLS) = �2"
�
X 0X

��1
X 0GX

�
X 0X

��1
= �2"

 X
t

ntxtx
0
t

!�1X
t

nt� txtx
0
t

 X
t

ntxtx
0
t

!�1
:

We want to compare this with the standard OLS covariance estimator

var�(b�OLS) = �2"
 X

t

ntxtx
0
t

!�1
:

In the case of equal group sizes, i.e. nt = n, we have � = 1 + (n� 1)� and

var(b�OLS)
var�(b�OLS) = � = 1 + (n� 1)�: (6)

Notice that the OLS standard error formula will be worse if n is large
and if � is large. To see the intuition, consider the case where � ! 1. In
this case, all the errors within a group are the same. This is just like taking
a data set and making n identical copies. The covariance matrix of the
replicated data set is going to be 1=n times the original covariance matrix,
although no information has been added. Hence, � = n.

In order to see how this problem is related to the group structure in the
regressor x, consider the generalization of (6):

var(b�OLS)
var�(b�OLS) = 1 +

�
var(nt)

n
+ n� 1

�
�x�

�x =

P
t

P
i6=k (xit � x) (xkt � x)

var(xit)
P
t nt(nt � 1)

:

�x is the within group correlation of xit. What the formula says is that the
bias in the OLS formula is much worse when �x is large but vanishes when
�x = 0: If the xit�s are uncorrelated within groups, the error structure does
not matter for the estimation of the standard errors.

The magnitude of the problem can be assessed by returning to the case
�x = 1 and nt = n:

�
n 0.05 0.20 0.50
10 1.20 1.67 2.35
50 1.86 3.29 5.05
500 5.09 10.04 15.83
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It is easy to see that either a moderate � or a moderate n is enough to
lead to seriously misleading inference from OLS standard errors. With large
micro data sets and a limited number of groups, and hence very large n,
even a very small � is su¢ cient for misleading inference.

There are various solutions to this problem:

1. Obtain an estimate of � and calculate the standard errors using the
correct formula given by Moulton. The only non-standard part is
the estimate of the intraclass correlation �x, but this can typically
be implemented with the programming tools in standard regression
packages.

2. Clustered standard errors: A non-parametric correction for the stan-
dard errors is given by the following estimate of the covariance matrix

var(b�OLS) =

 X
t

ntxtx
0
t

!�1X
t

ntxt�
0
t
bGt�tx0t

 X
t

ntxtx
0
t

!�1

bGt =

266664
b"21t b"1tb"2t � � � b"1tb"nttb"1tb"2t b"22t ...
...

. . . b"(nt�1)tb"nttb"1tb"ntt � � � b"(nt�1)tb"ntt b"2ntt

377775 :
This is implemented in Stata as the cluster option, and works well with
a reasonable number of groups (as few as 10 in many applications).

3. Aggregation to the group level: Calculate yt �rst and then run a
weigthed least squares regression

yt = �+ �xt + "t

with the number of observations in the group as weights (or the inverse
of the sampling variance of yt). The error term at this aggregated level
is "t = vt + �t, and the error component vt is therefore considered in
the usual second step standard errors. If there are other micro level
regressors in the model, as in

yit = �t + �Mt +Xit� + "it;

we can do the aggregation by running the regression

yit =
X
�

ey�1(t = �) +Xit� + "it:
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The coe¢ cients on these dummies are our time means, purged of the
e¤ect of the individual level variables in Xit.

4. Block bootstrap: Bootstrapping means to draw random samples from
the empirical distribution of the data. Since the best representation
of the empirical distribution of the data is the data itself, this means
in practice for a sample of size n, to draw another sample of size n
with replacement from the original data set. This can be done many
times, and the estimate is computed for all the bootstrap samples.
The standard error of the estimate is the standard deviation of the
estimates across all the bootstrap samples. In block bootstrapping, the
bootstrap draws will not be a tuple fyit; xitg, but instead a whole block
as de�ned by the groups t is drawn together. Hence, any correlation
across the errors within the block will be kept intact with the block
bootstrap sampling, and should therefore be re�ected in the standard
error estimate.

5. Estimate a random e¤ects GLS or ML model of equation (5). This
has not been particularly popular in the recent applied microeconomics
literature compared to adjusting the OLS standard errors.

Now suppose that there are only two groups, i.e. the regressor of interest
is a dummy variable again:

yit = �+ �Dt + vt + �it: (7)

The Moulton problem does not arise in this case, because OLS �ts the regres-
sion line perfectly through the two points de�ned by the dummy variable.
However, it really �ts the line through the two points de�ned by both Dt and
vt. In practice this means that the estimate of � will be unbiased but not
consistent, as pointed out by Donald and Lang (2001). In every new sample,
there will be a new draw of vt. So the regression line will be somewhat o¤,
and the estimate will not exactly equal �. However, on average, there will
be no bias: sometimes � will be overestimated, sometimes underestimated.
Now suppose we take a single sample and let n!1, while T = 2 remains
constant. The bias that exists in any particular sample will not go to zero,
because vt is just as imporant in the big sample as in the small sample. Only
the sampling variation due to �it will vanish, not the sampling variation due
to vt.

This problem also arises in the standard 2x2 di¤erence-in-di¤erence model
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if there is a state-time speci�c component to the error term

yist = s + �t + �Dst + vst + �ist:

Because the model is saturated (the maximum number of dummies of s and
t have been included) this is really equivalent to the model (7) if there are
two states and two periods. By simply taking n ! 1, the error compo-
nent vst does not vanish. Moreover, there is really no way to get consistent
standard errors which acknowledge this problem because �Dst+ vst is com-
pletely collinear. So no separate estimate of � and vst possible. This means
that 2x2 di¤erence-in-di¤erences, like the original New Jersey-Pennsylvania
comparison of the employment e¤ects of the minimum wage are not really
very informative.

The solution is to have either multiple time periods on two states, as
in the Card and Krueger (2000) reanalysis of the New Jersey-Pennsylvania
experiment with a longer time series of payroll data , or multiple contrasts
for two time periods, like in Card (1992). If vst is iid, adjusting the standard
errors is relatively straightforward. Donald and Lang (2001) give formulas
for consistent standard errors based on estimation �2vst. The alternatives are
similarly to the ones discussed above, i.e. to cluster the standard errors by
s � t, i.e. at the state-time level or to aggregate the data to the state-time
level.2

Bertrand, Du�o, and Mullainathan (2004) point out a further problem.
Many of the economic outcome variables of interest tend to be correlated
over time. This means, vst is most likely serially correlated. Hence, the
solutions which treat vst as iid are not su¢ cient. They investigate a variety
of remedies, like clustering at the state level, block bootstrap methods at
the state level, ignoring the time series information by aggregating the data
into two periods, or parametric modeling of the serial correlation. They
conclude that most of the non-parametric methods perform well but only
when there is a su¢ ciently large number of states available.

The conclusion from this discussion is that correlated errors are likely to
be a problem in many applications. This means that adjusting the standard
errors for this correlation is important. Unfortunately, consistent estimators
for the covariance matrix are not available when the number of groups is
small. Really the only way out is to have a design that allows for many
contrasts.

2See Conley and Taber (2004) for another approach to this problem.
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