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Lecture Notes on Measurement Error

These notes summarize a variety of simple results on measurement error
which I �nd useful. They also provide some references where more complete
results and applications can be found.

Classical Measurement Error We will start with the simplest regres-
sion models with one independent variable. For expositional ease we also
assume that both the dependent and the explanatory variable have mean
zero. Suppose we wish to estimate the population relationship

y = �x+ � (1)

Unfortunately, we only have data on

ex = x+ u (2)

ey = y + v (3)

i.e. our observed variables are measured with an additive error. Let�s make
the following simplifying assumptions

E(u) = 0 (4)

plim
1

n
(y0u) = 0 (5)

plim
1

n
(x0u) = 0 (6)

plim
1

n
(�0u) = 0 (7)

The measurement error in the explanatory variable has mean zero, is un-
correlated with the true dependent and independent variables and with the
equation error. Also we will start by assuming �2v = 0, i.e. there is only
measurement error in x. These assumptions de�ne the classical errors-in-
variables model.

Substitute (2) into (1):

y = �(ex� u) + � = yi = �ex+ (�� �u) (8)
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The measurement error in x becomes part of the error term in the regression
equation thus creating an endogeneity bias. Since ex and u are positively
correlated (from (2)) we can see that OLS estimation will lead to a negative
bias in b� if the true � is positive and a positive bias if � is negative.

To assess the size of the bias consider the OLS-estimator for �

b� = cov(ex; y)
var(ex) =

cov(x+ u; �x+ �)

var(x+ u)

and

plim b� = ��2x
�2x + �

2
u

= ��

where

� � �2x
�2x + �

2
u

The quantity � is referred to as reliability or signal-to-total variance ratio.
Since 0 < � < 1 the coe¢ cient b� will be biased towards zero. This bias is
therefore called attenuation bias and � is the attenuation factor in this case.

The bias is

plim b� � � = �� � � = �(1� �)� = � �2u
�2x + �

2
u

�

which again brings out the fact that the bias depends on the sign and size
of �.

In order to �gure out what happens to the estimated standard error
�rst consider estimating the residual variance from the regression

b� = y � b�ex = y � b�(x+ u)
Add and subtract the true error � = y � �x from this equation and collect
terms. b� = �� (y � �x) + y � b�x� b�u

= �+ (� � b�)x� b�u
You notice that the residual contains two additional sources of variation
compared to the true error. The �rst is due to the fact that b� is biased
towards zero. Unlike in the absence of measurement error the term b� � �
does not vanish asymptotically. The second term is due to the additional
variance introduced by the presence of measurement error in the regressor.
Note that by assumption the three random variables �, x, and u in this
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equation are uncorrelated. We therefore obtain for the estimated variance
of the equation error

plim c�2� = �2� + (1� �)2�2�2x + �2�2�2u
For the estimate of the variance of

p
n
�b� � ��, call it bs, we have

plim bs = plim c�2�c�2ex =
�2� + (1� �)2�2�2x + �2�2�2u

�2x + �
2
u

=
�2x

�2x + �
2
u

�
�2�
�2x

�
+

�2x
�2x + �

2
u

(1� �)2�2 + �2u
�2x + �

2
u

�2�2

= �
�2�
�2x
+ �(1� �)2�2 + �2(1� �)�2

= �s+ �(1� �)�2

The �rst term indicates that the true standard error is underestimated in
proportion to �. Since the second term is positive we cannot sign the overall
bias in the estimated standard error.

However, the t-statistic will be biased downwards. The t-ratio converges
to

plim tp
n

=
plim b�
plim

pbs = ��q
�s+ �(1� �)�2

=
p
�

�q
s+ (1� �)�2

which is smaller than �=
p
s.

Simple Extensions Next, consider measurement error in the dependent
variable y, i.e. let �2v > 0 while �

2
u = 0. Substitute (3) into (1):

ey = �x+ �+ v
Since v is uncorrelated with x we can estimate � consistently by OLS in this
case. Of course, the estimates will be less precise than with perfect data.

Return to the case where there is measurement error only in x. The fact
that measurement error in the dependent variable is more innocuous than
measurement error in the independent variable might suggest that we run
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the reverse regression of x on y thus avoiding the bias from measurement
error. Unfortunately, this does not solve the problem. Reverse (8) to obtain

ex = 1

�
y � 1

�
�+ u

u and y are uncorrelated by assumption but y is correlated with the equation
error � now. So we have cured the regression of errors-in-variables bias but
created an endogeneity problem instead. Note, however, that this regression
is still useful because � and y are negatively correlated so that d1=� is biased
downwards, implying an upward bias for b�r = 1=�d1=��. Thus the results
from the standard regression and from the reverse regression will bracket the
true coe¢ cient, i.e. plim b� < � < plim b�r. Implicitly, this bracketing result
uses the fact that we know that �2� and �

2
u have to be positive. The bounds

of this interval are obtained whenever one of the two variances is zero. This
implies that the interval tends to be large when these variances are large.
In practice the bracketing result is therefore often not very informative.
The bracketing result extends to multivariate regressions: in the case of
two regressors you can run the original as well as two reverse regressions.
The results will imply that the true (�1;�2) lies inside the triangular area
mapped out by these three regressions, and so forth for more regressors
[Klepper and Leamer (1984)].

Another useful fact to notice is that data transformations will typi-
cally magnify the measurement error problem. Assume you want to estimate
the relationship

y = �x+ 
x2 + �

Under normality the attenuation factor for b
 will be the square of the at-
tenuation factor for b� [Griliches (1986)].

So what can we do to get consistent estimates of �?

� If either �2x, �2u, or � is known we can make the appropriate adjustment
for the bias in �. Either one of these is su¢ cient as we can estimate
�2x+�

2
u (= plim var(ex)) consistently. Such information may come from

validation studies of our data. In grouped data estimation, i.e. regres-
sion on cell means, the sampling error introduced by the fact that the
means are calculated from a sample can be estimated [Deaton (1985)].
This only matters if cell sizes are small; grouped data estimation yields
consistent estimates with cell sizes going to in�nity (but not with the
number of cells going to in�nity at constant cell sizes).
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� Any instrument z correlated with x but uncorrelated with u will iden-
tify the true coe¢ cient since

b�IV = cov(y; z)

cov(ex; z) = cov(�x+ �; z)

cov(x+ u; z)

plim b�IV = ��xz
�xz

= �

In this case it is also possible to get a consistent estimate of the pop-
ulation R2 = �2�2x=�

2
y. The estimator

cR2 = b�IV cov(y; ex)var(y)
=
b�IVb�r

which is the product of the IV coe¢ cient and the OLS coe¢ cient from
the reverse regression, yields

plim cR2 = ���2x
�2y

= R2

� Get better data.

Panel Data Often we are interested in using panel data to eliminate �xed
e¤ects. How does measurement error a¤ect the �xed e¤ects estimator? Ex-
tend the one variable model in (1) to include a �xed e¤ect:

yit = �xit + �i + �it (9)

Di¤erence this to eliminate the �xed e¤ect �i.

yit � yit�1 = �(xit � xit�1) + �it � �it�1

As before we only observe exit = xit + uit. Using our results from above

plim b� = � �2�x
�2�x + �

2
�u

So we have to �gure out how the variance in the changes of x relates to the
variance in the levels.

�2�x = var(xt)� 2cov(xt; xt�1) + var(xt�1)
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If the process for xt is stationary this simpli�es to

�2�x = 2�
2
x � 2cov(xt; xt�1)

= 2�2x(1� �)

where � is the �rst order autocorrelation coe¢ cient in xt. Similarly, de�ne
r to be the autocorrelation coe¢ cient in ut so we can write

plim b� = � �2x(1� �)
�2x(1� �) + �2u(1� r)

= �
1

1 + �2u(1�r)
�2x(1��)

In the special case where both xt and ut are uncorrelated over time the
attenuation bias for the �xed e¤ects estimator simpli�es to the original �.
Fixed e¤ects estimation is particularly worrisome when r = 0, i.e. the
measurement error is just serially uncorrelated noise, while the signal is
highly correlated over time. In this case, di¤erencing doubles the variance
of the measurement error while it might reduce the variance of the signal.
In the e¤ort to eliminate the bias arising from the �xed e¤ect we have
introduced additional bias due to measurement error. Of course, di¤erencing
is highly desirable if the measurement error uit = ui is a �xed e¤ect itself.
In this case di¤erencing eliminates the measurement error completely. In
general, di¤erencing is desirable when r > �. For panel earnings data � � 2r
[Bound et.al. (1994)], [Bound and Krueger (1991)].

Sometimes it is reasonable to make speci�c assumptions about the be-
havior of the measurement error over time. For example, if we are willing
to assume that uit is i.i.d. while the x�s are correlated then it is possible
to identify the true � even in relatively short panels. The simplest way to
think about this is in a four period panel. Form di¤erences between the
third and second period and instrument these with di¤erences between the
fourth and the �rst period. Obviously

plim
1

n
(u4 � u1)0(u3 � u2) = 0

by the i.i.d. assumption for uit. The long and short di¤erences for xit will
be correlated, on the other hand, since the x�s are correlated over time. We
have constructed a valid instrument. This example makes much stronger as-
sumptions than are necessary. Alternatively, with four periods and the i.i.d.
assumption for uit we can come up with much more e¢ cient estimators since
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other valid instruments can be constructed [Griliches and Hausman (1986)].
They also point out that comparing the results from �rst di¤erence esti-
mates, long di¤erence estimates, and deviations from means estimates pro-
vides a useful test for measurement error if � 6= r since the attenuation bias
varies depending on the speci�c estimator chosen. But be aware that the
same happens if your model is misspeci�ed in some other way, for example
there are neglected true dynamics in your x�s, so your test only indicates
�some misspeci�cation.�

Multivariate Models Return to OLS estimation in a simple cross-section
and consider what happens to the bias as we add more variables to the model.
Consider the equation

y = �x+ 
w + � (10)

Even if only ex is subject to measurement error while w is measured correctly
both parameters will in general be biased now. b
 is unbiased when the two
regressors are uncorrelated. b� is still biased towards zero. We can also
determine how the bias in b� in the multivariate regression is related to
the attenuation bias in the bivariate regression (which may also su¤er from
omitted variable bias now). To �gure this out, consider the formula for b� in
the two variable case

b� = var(w)cov(y; ex)� cov(w; ex)cov(y; w)
var(ex)var(w)� cov(w; ex)2

Thus we obtain

plim b� = �2w(��
2
x + 
�xw)� �exw(
�2w + ��xw)
�2w(�

2
x + �

2
u)� (�exw)2

=
�
�
�2w�

2
x � �exw�xw�+ 
�2w(�xw � �exw)
�2w(�

2
x + �

2
u)� (�exw)2

This does not get us much further. However, in the special case where w is
only correlated with x but not with u, this can be simpli�ed because now
�xw = �exw so that

plim b� = �
�
�2w�

2
x � (�xw)2

�
�2w(�

2
x + �

2
u)� (�xw)2

= ��0 (11)

Notice that �2w�
2
x > (�xw)

2 which proves that b� is biased towards zero.
There are various ways to rewrite (11). I �nd it instructive to look at the
representation of the attenuation factor �0 in terms of the reliability ratio �
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and the R2 of a regression of ex on w. Since this is a one variable regression
the population R2 is just the square of the correlation coe¢ cient of the
variables

R2exw = (�xw)
2

�2w(�
2
x + �

2
u)

Dividing numerator and denominator in (11) by (�2x+�
2
u) yields the following

expression for the attenuation factor

�0 =
�2w�� �2wR2exw
�2w � �2wR2exw =

��R2exw
1�R2exw

This formula is quite intuitive. It says the following: if there is no omitted
variable bias from estimating (1) instead of (10) because the true 
 = 0,
then the attenuation bias will increase as additional regressors (correlated
with x) are added since the expression above is decreasing in R2exw. What
is going on is that the additional regressor w will now serve as a proxy for
part of the signal in x. Therefore, the partial correlation between y and ex
will be attenuated more, since some of the signal has been taken care of by
the w already. Notice that R2exw < � because w is only correlated with x but
not with u. Hence 0 < �0 < � < 1.

In the special case just discussed, and if x and w are positively correlated,
the bias in b
 will have the opposite sign of the bias in b�. In fact, with the
additional assumption that �2x = �

2
w we have

plim b
 � 
 = �xw �1� �0�� = ��xw �plim b� � ��
where �xw is the correlation coe¢ cient between x and w.

When 
 6= 0, comparisons between the bivariate regression of y on ex and
the multivariate model including w are harder to interpret because we have
to keep in mind that the bivariate regression is now also subject to omitted
variable bias. Some results are available for special cases. If � > 0; 
 > 0 and
x and w are positively correlated (but w is still uncorrelated with u) then
the probability limit of the estimated b� in the multivariate regression will
be lower than in the bivariate regression [Maddala (1977), p. 304-305]. This
follows because adding w to the regression purges it of the (positive) omitted
variable bias while introducing additional (negative) attenuation bias. This
example also makes it clear that no such statements will be possible if the
omitted variable bias is negative.
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Non-classical Measurement Error We will now start relaxing the clas-
sical assumptions. Return to the model (1) and (2) but drop assumption
(6) that x and u are uncorrelated. Recall that

b� = cov(x+ u; �x+ �)

var(x+ u)

so that we have in this case

plim b� = �(�2x + �xu)

�2x + �
2
u + 2�xu

=

�
1� (�2u + �xu)

�2x + �
2
u + 2�xu

�
� = (1� buex)� (12)

Notice that the numerator in buex is the covariance between ex and u. Thus,
buex is the regression coe¢ cient of a regression of u on ex. The classical case is
a special case of this where this regression coe¢ cient buex = 1��. The deriv-
ative of 1� buex with respect to �xu has the sign of �2u� �2x: Starting from a
situation where �xu = 0 (classical measurement error) increasing this covari-
ance increases the attenuation factor (decreases the bias) if more than half of
the variance in ex is measurement error and decreases it otherwise. In earn-
ings data this covariance tends to be negative [Bound and Krueger (1991),
they call this mean reverting measurement error ]. If ex consisted mostly of
measurement error then a more negative �xu implies a lower attenuation
factor and may even reverse the sign of the estimated �.

Measurement error in the dependent variable that is correlated with
the true y or with the x�s can be analyzed along similar lines. A general
framework for this is provided by [Bound et.al. (1994)]. Make X an n � k
matrix of covariates, � a k vector of coe¢ cients, etc. so that (1) becomes

y = X� + �

Then b� = ( eX 0 eX)�1fX 0ey = ( eX 0 eX)�1 eX 0( eX� � U� + v + �)
= � + ( eX 0 eX)�1 eX 0(�U� + v + �)

and
plim b� = � + plim( eX 0 eX)�1 eX 0(�U� + v)

Collecting the measurement errors in a matrix

W = [U j v]
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yields

plim b� = � + plim( eX 0 eX)�1 eX 0W

�
��
1

�
(13)

so that the biases in more general cases can always be thought of in terms
of regression coe¢ cients from regressing the measurement errors on the mis-
measured covariates. Special cases like (12) are easily obtained from (13).
These regression coe¢ cients of the measurement errors on the mismeasured
covariates are therefore what validation studies ought to focus on. Even
when the measurement errors are correlated with the true variable or with
other regressors or with the dependent variable we can get consistent esti-
mates by using instrumental variables as long as the instruments are only
correlated with true X�s but not with any of the measurement errors.

A Small Detour: Group Aggregates Occasionally, we run into the
following problem. We wish to estimate the standard regression model

yit = �xit + �it

but instead of xit we only observe the group or time average xt. For example,
we may wish to estimate a wage curve, where yit are individual level wages
over time and xt is the aggregate unemployment rate, or xit might be class
size in school, but you only know class size at the school level and not at the
individual level. Obviously, xt is an error ridden version of the true regressor
xit. Typically, xt will be the mean of xit, often from a larger sample or in
the population so that xit = xt+uit, and uit will be uncorrelated with xt. If
this is the case, the OLS estimator of � is consistent. It is easy to see that
this is true:

b� = cov(yit; xt)

var(xt)
=
cov(�xit + �it; xt)

var(xt)
=
cov(�(xt + uit) + �it; xt)

var(xt)

so that

plim b� = ��2xt
�2xt

= �

While this looks similar to a classical measurement error problem, it is
not. In the classical case the observed regressor xt equals the true regres-
sor plus noise that is uncorrelated with the truth. Here, the true regressor
xit equals the observed regressor plus noise that is uncorrelated with the
observed regressor. In terms of the notation we developed above, the co-
variance between the true x and the measurement error �xu = ��2u. The
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negative covariance of the measurement error with the true regressor just
cancels the e¤ect of the measurement error, or buex = 0 in (12). Therefore,
our estimates are consistent. Moreover, OLS using the group average will
yield correct standard errors. These will be larger, of course, than in the
case where the micro level regressor xit is available.

Measurement Error in Dummy Variables There is an interesting spe-
cial case of non-classical measurement error: that of a binary regressor.
Obviously, misclassi�cation of a dummy variable cannot lead to classical
measurement error. If the dummy is one, measurement error can only be
negative; if the dummy is zero, it can only be positive. So the measure-
ment error is negatively correlated with the true variable. This problem has
enough structure that it is worthwhile looking at it separately. Consider the
regression

yi = �+ �di + �i (14)

where di 2 f0; 1g. For concreteness, think of yi as wages, di = 1 as union
members and di = 0 as nonmembers so that � is the union wage di¤erential.
It is useful to note that the OLS estimate of � is the di¤erence between the
mean of yi as di = 1 and the mean as di = 0. Instead of d we observe a
variable ed that misclassi�es some observations. Take expectations of (14)
conditional on the observed value of di:

E(yi j edi = 1) = �+ �P (di = 1 j edi = 1)
E(yi j edi = 0) = �+ �P (di = 1 j edi = 0)

The regression coe¢ cient for the union wage di¤erential is the sample ana-
logue of the di¤erence between these two, so it satis�es

plim b� = � hP (di = 1 j edi = 1)� P (di = 1 j edi = 0)i (15)

Equation (15) says that � will be attenuated because some (high wage) union
members are classi�ed as nonmembers while some (low wage) nonmembers
are classi�ed as members.

We need some further notation. Let q1 be the probability that we observe
somebody to be a union member when he truly is, i.e. q1 � P (edi = 1 j di =
1), and similarly q0 � P (edi = 1 j di = 0). Thus 1 � q1 is the probability
that a member is misclassi�ed and q0 is the probability that a nonmember
is misclassi�ed. Furthermore, let � � P (di = 1) be the true membership
rate. Notice that the estimate of � given by b� = N�1P edi satis�es

plim b� = �q1 + (1� �)q0
11



Return to equation (15). By Bayes�Rule we can write the terms that
appear in this equation as

P (di = 1 j edi = 1) = P (edi = 1 j di = 1) � P (di = 1)
P (edi = 1) =

�q1
�q1 + (1� �)q0

and

P (di = 1 j edi = 0) = �(1� q1)
�(1� q1) + (1� �)(1� q0)

and substituting back into (15) yields

plim b� = � � �q1
�q1 + (1� �)q0

� �(1� q1)
�(1� q1) + (1� �)(1� q0)

�
(16)

Absent knowledge about q1 and q0 we cannot identify the true � and � from
our data, i.e. from the estimates b� and b�. In a multivariate regression, no
simple formula like (16) is available, although � and � can still be identi�ed
if q1 and q0 are known [Aigner (1973)].

If we have panel data available and we are willing to impose the restric-
tion that q1 and q0 do not change over time all coe¢ cients will be identi�ed.
In fact, even with just a two period panel there is already one overidentifying
restriction. To see this, notice that there are now not two states for union
status but four possible transitions (continuous union members, continuous
nonmembers, union entrants and union leavers). The key is that there have
to be some switchers in the data. Then we can observe separate changes in
y over time for each of the four transition groups. Furthermore, we observe
three independent transition probabilities. This makes a total of seven mo-
ments calculated from the data. From these we have to identify �; q1; q0,
and the three true transition probabilities, i.e. only six parameters. The
algebra is much messier [Card (1996)]. See [Krueger and Summers (1988)]
for results on measurement error in multinomial variables (e.g. industry
classi�cations).

Instrumental Variables Estimation of the Dummy Variable Model
Suppose we have another binary variable zi available, which has the same
properties as the mismeasured dummy variable edi. Can we use zi as an
instrument in the estimation of (14)? Instrumental variables estimation will
not yield a consistent estimate of � in this case. The reason for this is
simple. Recall that the measurement error can only be either -1 or 0 (when
di = 1), or 1 or 0 (when di = 0). This means that the measurement errors
in two mismeasured variables will be positively correlated.
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In order to study this case, de�ne h1 � P (zi = 1 j di = 1) and h0 �
P (zi = 1 j di = 0). The IV estimator in this case is simply the Wald
estimator so that

plim b�IV = E(yi j zi = 1)� E(yi j zi = 0)
E(edi j zi = 1)� E(edi j zi = 0) : (17)

The numerator has the same form as (15) with zi replacing edi. The terms
in the denominator can also easily be derived:

E(edi j zi = 1) = P (edi = 1 j zi = 1)
=

P (edi = 1; zi = 1)
P (zi = 1)

=
P (edi = 1; zi = 1 j di = 1)P (di = 1) + P (edi = 1; zi = 1 j di = 0)P (di = 0)

P (zi = 1 j di = 1)P (di = 1) + P (zi = 1 j di = 0)P (di = 0)

=
q1h1� + q0h0(1� �)
h1� + h0(1� �)

and similarly for E(edi j zi = 0). Substituting everything into (17) yields
plim b�IV = �

h
�h1

h1�+h0(1��) �
�(1�h1)

(1�h1)�+(1�h0)(1��)

i
q1h1�+q0h0(1��)
h1�+h0(1��) � q1(1�h1)�+q0(1�h0)(1��)

(1�h1)�+(1�h0)(1��)

:

With some elementary algebra this simpli�es to

plim b�IV = �

q1 � q0
:

The IV estimate of � is biased by a factor 1=(q1 � q0). This has some
interesting features. The bias only depends on the misclassi�cation rates
in the variable edi which is being used as the endogenous regressor. This is
because more misclassi�cation in the instrument will lead to a smaller �rst
stage coe¢ cient. Since generally 1 > q1 > q0 > 0, IV will be biased upwards.
Hence, OLS and IV estimation could be used to bound the true coe¢ cient.

However, the true coe¢ cient is actually identi�ed from the data, using an
idea analogous to the panel data case above [Kane, Rouse, and Staiger (1999)].
There are seven sample moments which can be computed from the data.
There are four cells de�ned by the cross-tabulation of ~di and zi. The mean
of yi can be computed for each of these cells. In addition, we have three
independent sampling fractions for the cross-tabulation. This makes a total
of seven empirical moments. From these moments we have to identify �, �,
�, q0, q1, h0, and h1, i.e. seven parameters. These parameters are indeed
just identi�ed and can be estimated by method of moments.
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