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Two solutions to the ability bias problem

Remember that we would like to run the long regression

Yi = α+ ρSi + γAi + ei .

The regression solution was to look for variables which can act as
proxies for ability Ai . The key to regression is that we need something
that captures all the variation in Ai , otherwise we are left with OVB.

The IV solution is to isolate variation in Si which is unrelated to Ai .
The variable which does the “isolating” is the instrumental variable.
The good thing is that we just need some of the variation in Si ; so
the requirements on the instrument seem weaker than those on the
regression control Ai . But IV comes with other possible
complications.
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Conditions for a valid instrument

Call the instrumental variable Zi . A valid instrument needs to satisfy three
conditions:

1 Zi is as good as randomly assigned.
2 Zi satisfies the exclusion restriction, i.e. it does not appear as a
separate regressor in the long regression we like to run.

3 Zi affects the endogenous regressor Si .

Of these only condition 3. can be tested. This is the strength of the first
stage. Conditions 1. and 2. have to be argued based on knowledge from
outside the data we have.
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Three causal effects

There are three causal effects we can think about:

1 The causal effect of Zi on Si .
2 The causal effect of Zi on Y .
3 The causal effect of Si on Yi .

The last one is the one we are ultimately interested in, the return to
schooling ρ.
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Some instrumental variables language

The instrumental variables language comes from old style simultaneous
equations models but we can think of it as related to the three causal
effects.

First stage: The regression of schooling on the instrument is called
the first stage (causal effect number 1)

Si = π10 + π11Zi + ξ1i

Reduced form: The regression of earnings on the instrument is called
the reduced form (causal effect number 2)

Yi = π20 + π21Zi + ξ2i .

Structural equation: The regression of earnings on schooling is called
the structural equation

Yi = α+ ρSi + ηi ,

where ηi = γAi + ei , i.e. it is a structural error term, not a regression
residual. This involves causal effect number 3.
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You get what you pay for

Conditions 1 and 3 on the instrument are enough to get causal effects
1 and 2. I.e. these conditions are suffi cient for the first stage and
reduced forms to have a causal interpretation. Often, the reduced
form coeffi cient may be interesting in its own right. For example, the
instrument might be a policy variable in which case it is the policy
effect.

To get causal effect 3, i.e. the structural parameter ρ, we also need
condition 2, the exclusion restriction. This condition is often the
most diffi cult requirement on an instrument. It is distinct from
random assignment, so having experimental variation does not
guarantee a valid IV interpretation of the estimates.
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Linking the three equations

The coeffi cients in the three equations are linked. Substitute the first
stage into the structural equation:

Yi = α+ ρSi + ηi
= α+ ρ [π10 + π11Zi + ξ1i ] + ηi
= (α+ ρπ10) + ρπ11Zi + (ρξ1i + ηi )

= π20 + π21Zi + ξ2i .

Hence, the reduced form coeffi cients are:

π20 = α+ ρπ10

π21 = ρπ11
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Indirect least squares

It is straightforward to see that

ρ =
π21
π11

,

i.e. the IV estimate is equal to the ratio of the reduced form coeffi cient on
the instrument to the first stage coeffi cient. This is called indirect least
squares.
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Just identified vs. over-identified models

Indirect least squares only works when there is one endogenous
regressor and one instrument. Such a model is just identified (there is
only one single solution to get ρ from the first stage and reduced form
coeffi cients).

If there are multiple instruments for a single endogenous regressor the
model is over-identified.

Si = π10 + π11Z1i + π12Z2i + ξ1i
Yi = π20 + π21Z1i + π22Z2i + ξ2i .

There is no unique way to get ρ from π11, π12, π21, and π22. Two
stage least squares (2SLS) is a particular average (it is the optimally
weighted GMM estimator for the homoskedastic model).
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So what’s a good instrument?

S

log y

log f(S)
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Angrist and Krueger (1991): US compulsory schooling and
school entry rules

US compulsory schooling laws are in terms of age, not number of
years of schooling completed. If compulsory schooling age is 16, you
can drop out on your 16th birthday (even if in the middle of the
school year).

School entry is once a year, and cutoffs are based on birthdays.

The combination of these two generates variation in schooling for
those who drop out as soon as they can. This variation depends on
birthday within the year.
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How compulsory schooling laws and school entry rules
interact
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Is this a good instrument?

Variation indeed comes from the cost/compulsion side of the schooling
problem. Let’s check the three conditions

1 Random assignment: Are birthdays random with respect to the
counterfactual earnings for different schooling levels?

There are small differences in average SES by birthday throughout the
year.

2 Do birthdays satisfy the exclusion restriction, or could birthdays affect
earnings for other reasons than through their effect on years of
schooling?

Birthday affects, e.g., age rank in class.

3 Do birthdays indeed affects schooling?

Check the first stage.
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Angrist and Krueger data

Data are from the 1980 US Census.

329,509 men born 1930 to 1939 (i.e. in their 40s when observed).

For these men we have year of birth, quarter of birth, years of
schooling, and earnings in 1979.
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First stage regressions of schooling on quarter of birth

Dependent variable: schooling
Regressor (1) (2) (3) (4)

quarter 2
0.057
(0.017)

0.057
(0.016)

quarter 3
0.117
(0.016)

0.113
(0.016)

quarter 4
0.092
(0.013)

0.151
(0.016)

0.091
(0.013)

0.148
(0.016)

9 year of birth
dummies

X X
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Reduced form regressions of log wages on quarter of birth

Dependent variable: log wages
Regressor (1) (2) (3) (4)

quarter 2
0.0045
(0.0034)

0.0046
(0.0034)

quarter 3
0.0149
(0.0033)

0.0150
(0.0033)

quarter 4
0.0068
(0.0027)

0.0135
(0.0034)

0.0068
(0.0027)

0.0135
(0.0034)

9 year of birth
dummies

X X
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IV regressions of log wages on schooling

Coeffi cient on schooling from an OLS regression: 0.071 (0.0004)

Dependent variable: log wages
Regressor (1) (2) (3) (4)

schooling
0.074
(0.028)

0.103
(0.020)

0.075
(0.028)

0.105
(0.020)

Instruments Quarter 4
4 quarter
dummies

Quarter 4
4 quarter
dummies

9 year of birth
dummies

X X
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IV with a dummy instrument: the Wald Estimator

A way to look at IV with a binary instrument, like the dummy for quarter
4, is the following. With Q4i a dummy instrument it turns out that

βIV =
cov (lnYi ,Q4i )
cov (Si ,Q4i )

=
E [lnYi |Q4i = 1]− E [lnYi |Q4i = 0]
E [Si |Q4i = 1]− E [Si |Q4i = 0]

.

This is called the Wald estimator (due to Abraham Wald, 1940).

Pischke (LSE) IV October 12, 2018 18 / 31



Constructing the Wald Estimator

The first stage and reduced form are

Si = π11 + π14Q4i + ξ1i ,

lnYi = π21 + π24Q4i + ξ2i .

Taking expectations conditionally on Q4i yields

E [lnYi |Q4i = 1] = π21 + π24

E [lnYi |Q4i = 0] = π21

Hence, the reduced form coeffi cients on Q4i are the differences in group
means with the instrument switched on and off:

π24 = E [lnYi |Q4i = 1]− E [lnYi |Q4i = 0]
π14 = E [Si |Q4i = 1]− E [Si |Q4i = 0]

The IV estimate is the ratio of the two.
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The Wald estimate of the return to schooling

born quarter 1, 2, 3 born quarter 4 Difference

log earnings 5.8983 5.9051
0.0068
(0.0027)

schooling 12.747 12.839
0.092
(0.013)

Wald estimate
0.074
(0.028)
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A plot of the Wald estimate of the return to schooling
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We can do this with all four quarter dummies
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Now the regression line doesn’t fit the four means exactly
anymore
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Grouping is IV

The analogy between IV and the Wald estimator can be extended to IV
with multiple dummy instruments. Suppose we have a variable Qi , for
quarter, which takes on four values 1 to 4. Then, using the structural
equation

lnYi = α+ βSi + ηi .

we get
E [lnYi |Qi ] = α+ βE [Si |Qi ] .

The sample analog of E [lnYi |Qi = j ] is lnY j , and similarly with
E [Si |Qi ]. Hence, the IV estimate of log earnings on schooling,
instrumenting with a set of mutually exlusive and exhaustive dummy
variables is the same as the regression using the group means

lnY j = α+ βS j + ηj

weighted by the size of the cells.
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So does it work in practice?
Here is 2SLS
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And here is grouped data
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A quick derivation

Consider a regression model in matrix notation:

y = xβ+ e

We have matrix of q exhaustive dummy variable instruments Z. Note that

Z =


ι1 0 · · · 0

0 ι2
...

...
. . . 0

0 · · · 0 ιq


where ιj is a column vector of nj ones.
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A quick derivation

The 2SLS estimator is

β2SLS =
[
x′Z

(
Z′Z

)−1 Z′x]−1 x′Z (Z′Z)−1 Z′y.
Given the definition of Z:

Z′x =


x1n1
x2n2
...

xqnq

 ,Z′y =

y1n1
y2n2
...

yqnq

 , (Z′Z)−1 =


1
n1

0 · · · 0

0 1
n2

...
...

. . . 0
0 · · · 0 1

nq


and hence

β2SLS =
∑q
j=1 y jx jnj

∑q
j=1 x

2
j nj
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Aside on grouped data
Discrete regressor: grouping is OLS

Consider a generic regression model

Yi = α+ βXi + ei

where Xi is a discrete regressor, taking on J different values. The
regression

Y j = α+ βXj + e j

weighted by the cell size is identical to OLS on the micro data (see MHE,
section 3.1.2).

Pischke (LSE) IV October 12, 2018 29 / 31



Aside on grouped data
Continuous regressor, discrete instrument: grouping is IV

If, on the other hand, Xi is continuous, and we have a discrete instrument,
Zi , which takes on J different values, the IV estimation of the micro data
model with J − 1 dummy instruments is the same as

Y j = α+ βX j + e j

weighted by the cell size.
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Aside on grouped data

Why are the two cases different?

Discrete regressor: the regressor defines the groups. The grouped
data regression is OLS because all the variation in Xi is only at the
group level. By aggregating Yi we are not changing anything about
Xi .

Continuous regressor, discrete instrument: now the instrument defines
the groups. The grouped data regression is IV because we are
changing the variation in Xi by aggregating.
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