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IV regression with weak instruments

Bound, Jaeger, and Baker (1995) pointed out that the quarter of birth
instruments explain only a tiny proportion of the variation in schooling.
This leads to two distinct problems:

The 2SLS estimator with weak instruments is biased in small samples.

Any inconsisency from a small violation of the exclusion restriction
gets magnified by weak instruments.
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The 2SLS bias

Start with the 2SLS small sample bias. To get an intuition for this
situation, look at the simplest formulation of the IV problem:

yi = βxi + ηi (structural equation)

xi = π1zi + ξ i (first stage)
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The small sample behavior with one instrument

If an instrument is basically irrelevant then π1 ≈ 0. Recall

βIV =
cov (yi , zi )
cov (xi , zi )

but
cov (xi , zi ) = cov (π1zi + ξ i , zi ) = π1σ

2
Z

So if π1 = 0,
cov (xi , zi ) = 0

and the IV estimator doesn’t exist.

Even when π1 is truely zero, in any finite sample the sample analogue
to cov (xi , zi ) will not be exactly zero. But this is of little comfort as
the sampling variation in cov (xi , zi ) is not helpful to estimate β.
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The 2SLS bias with many instruments

With multiple instruments the first stage is:

x = Zπ + ξ.

OLS estimates are biased because ηi is correlated with ξ i . The
instruments Zi are uncorrelated with ξ i by construction and uncorrelated
with ηi by assumption.
The 2SLS estimator is

β̂2SLS =
(
x ′PZ x

)−1 x ′PZ y = β+
(
x ′PZ x

)−1 x ′PZ η

where PZ = Z (Z ′Z )−1Z ′ is the projection matrix that produces fitted
values from a regression of x on Z . Substitute the first stage for x in
x ′PZ η to get

β̂2SLS − β =
(
x ′PZ x

)−1 (
π′Z ′ + ξ ′

)
PZ η

=
(
x ′PZ x

)−1
π′Z ′η +

(
x ′PZ x

)−1
ξ ′PZ η
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Group asymptotics

The expectation of this expression is hard to evaluate because the
expectation operator does not pass through the inverse (x ′PZ x)

−1, a
nonlinear function.

Trick: group asymptotics. Still use an asymptotic argument but let
the number of instruments grow at the same rate as the sample size.
This “keeps the instruments weak.”

Group asymptotics gives us something like an expectation, it
essentially says that we can take these expectations through
non-linear functions anyway:

E [β̂2SLS − β] ≈
(
E [x ′PZ x ]

)−1 E [π′Z ′η] + (E [x ′PZ x ])−1 E [ξ ′PZ η].

This approximation is much better than the usual first-order
asymptotic approximation invoked in large-sample theory, so it gives
us a good measure of the finite-sample behavior of the 2SLS
estimator.
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The 2SLS bias with many instruments

Remember the instruments Zi are uncorrelated with ξ i and ηi . Therefore
E [π′Z ′η] = 0, and we have

E [β̂2SLS − β] ≈
(
E [x ′PZ x ]

)−1 E [π′Z ′η] + (E [x ′PZ x ])−1 E [ξ ′PZ η]

=
(
E [x ′PZ x ]

)−1 E [ξ ′PZ η].

Substitute in the first stage again.

E [β̂2SLS − β] ≈
(
E [
(
π′Z ′ + ξ ′

)
PZ (Zπ + ξ)]

)−1 E [ξ ′PZ η].

Note that E [π′Z ′ξ] = 0, so we get no cross-terms:

E [β̂2SLS − β] ≈
[
E
(
π′Z ′Zπ

)
+ E (ξ ′PZ ξ)

]−1 E (ξ ′PZ η
)
.
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The 2SLS bias with many instruments

Matrix algebra trick: ξ ′PZ ξ is a scalar, therefore equal to its trace; the
trace is a linear operator which passes through expectations and is
invariant to cyclic permutations; finally, the trace of PZ , an idempotent
matrix, is equal to it’s rank, q. Using these facts

E
(
ξ ′PZ ξ

)
= E

[
tr
(
ξ ′PZ ξ

)]
= E

[
tr
(
PZ ξξ ′

)]
= tr

(
PZE

[
ξξ ′
])

= tr
(
PZ σ2ξ I

)
= σ2ξtr (PZ )

= σ2ξq,

where we have assumed that ξ i is homoskedastic. Similarly, applying the
trace trick to ξ ′PZ η shows that this term is equal to σηξq.
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The 2SLS bias with many instruments

Now we have

E [β̂2SLS − β] ≈ σηξq
[
E
(
π′Z ′Zπ

)
+ σ2ξq

]−1
=

σηξ

σ2ξ

[
E (π′Z ′Zπ) /q

σ2ξ
+ 1

]−1
.

Note that

F =
E (π′Z ′Zπ) /q

σ2ξ

is the population F -statistic for the joint significance of all regressors in
the first stage regression and hence

E [β̂2SLS − β] ≈
σηξ

σ2ξ

1
F + 1

.
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The 2SLS bias with a zero first stage

Suppose the first stage coeffi cients π are truely zero. Then F = 0.
Furthermore

σ2x = σ2ξ .

Hence
E [β̂2SLS − β] ≈

σηξ

σ2x

but this is just the bias in the OLS estimator, since

βOLS =
cov(yi , xi )
var(xi )

=
cov(βxi + ηi , xi )

var(xi )

= β+
cov(ηi , xi )
var(xi )

=
σηξ

σ2x

since cov(ηi , xi ) = σηξ if π = 0.
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2SLS is biased towards OLS with weak instruments

Where does this come from?

If π is truely zero, then any variation in x̂i in the sample just comes
from ξ i . So, the variation in x̂i is no different from the variation in xi ,
and hence OLS and 2SLS have to estimate the same quantity on
average.

If π is not truely zero but F is small, then 2SLS will be biased
towards OLS.

Pischke (LSE) Weak instruments October 14, 2016 11 / 25



What does the weak instrument bias depend on?

The weak instrument bias tends to get worse as we add more (weak)
instruments. To see this consider

F =
E (π′Z ′Zπ) /q

σ2ξ

Suppose you have some existing instruments, and you add new ones with
no additional exploratory power. I.e. the π coeffi cients on the additional
instruments will be zero.

π′Z ′Zπ will remain the same as before adding more instruments.

Since the first stage regression is unchanged by the additional
instruments, σ2ξ will also remain the same.

q will go up.

As a result, F will go down, and the 2SLS bias will get worse.
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Summing up on the bias

With weak instruments

2SLS is biased towards OLS.

The bias will tend to be worse when there are many overidentifying
restrictions (many instruments compared to endogenous regressors).

Just identified IV is approximately unbiased (or less biased) even with
weak instruments (although it is not possible to see this from the bias
formula).

Estimated standard errors of 2SLS and IV estimators may be too
small.
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LIML

There are alternative estimators, which have better small sample
properties than 2SLS with weak instruments. One such estimator is
LIML (limited information maximum likelihood).

LIML is a linear combination of the OLS and 2SLS estimate (with the
weights depending on the data), and the weights happen to be such
that they (approximately) eliminate the 2SLS bias.

Pischke (LSE) Weak instruments October 14, 2016 14 / 25



A Monte Carlo Experiment

Simulate data from the following model

yi = βxi + ηi

xi =
Q

∑
j=1

πjzij + ξ i

with β = 1, π1 = 0.1, πj = 0 for j = 2, ...,Q,(
ηi
ξ i

)∣∣∣∣Z ∼ N (( 0
0

)
,

(
1 0.8
0.8 1

))
,

where the zij are independent, normally distributed random variables with
mean zero and unit variance. The sample size is 1000.
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Monte Carlo Results
2SLS, LIML: 2 instruments, IV: one instrument
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Monte Carlo Results
20 instruments
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Monte Carlo Results
20 garbage instruments
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What should you do in practice?

Report the first stage and think about whether it makes sense. Are
the magnitude and sign as you would expect?

Report the F -statistic on the excluded instruments. The bigger this
is, the better. F s above 10 to 20 are considered relatively safe, lower
F s put you in the danger zone.

Pick your best single instrument and report just-identified estimates
using this one only. Just-identified IV is approximately
median-unbiased.

Check over-identified 2SLS estimates with LIML. If the LIML
estimates are very different, or standard errors are much bigger, worry.

Look at the coeffi cients, t-statistics, and F -statistics for excluded
instruments in the reduced-form regression of dependent variables on
instruments. The reduced-form estimates are just OLS, so they are
unbiased. If the relationship you expect is not in the reduced form,
it’s probably not there.
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Some alternative AK91 estimates
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Table 4.6.2
Alternative IV estimates of the economic returns to schooling

(1) (2) (3) (4) (5) (6)

2SLS .105 .435 .089 .076 .093 .091
(.020) (.450) (.016) (.029) (.009) (.011)

LIML .106 .539 .093 .081 .106 .110
(.020) (.627) (.018) (.041) (.012) (.015)

F-statistic 32.27 .42 4.91 1.61 2.58 1.97
(excluded instruments)

Controls
Year of birth � � � � � �
State of birth � �
Age, age squared � � �
Excluded instruments
Quarter-of-birth dummies � �
Quarter of birth*year of birth � � � �
Quarter of birth*state of birth � �
Number of excluded instruments 3 2 30 28 180 178

Notes: The table compares 2SLS and LIML estimates using alternative sets of instru-
ments and controls. The age and age squared variables measure age in quarters. The OLS
estimate corresponding to the models reported in columns 1–4 is .071; the OLS estimate
corresponding to the models reported in columns 5 and 6 is .067. Data are from the Angrist
and Krueger (1991) 1980 census sample. The sample size is 329,509. Standard errors are
reported in parentheses.

The first column in the table reports 2SLS and LIML esti-
mates of a model using three quarter-of-birth dummies as
instruments, with year-of-birth dummies as covariates. The
OLS estimate for this specification is 0.071, while the 2SLS
estimate is a bit higher, at 0.105. The first-stage F-statistic is
over 32, well out of the danger zone. Not surprisingly, the
LIML estimate is almost identical to 2SLS in this case.

Angrist and Krueger (1991) experimented with models that
include age and age squared measured in quarters as additional
controls. These controls are meant to pick up omitted age
effects that might confound the quarter-of-birth instruments.
The addition of age and age squared reduces the number of
instruments to two, since age in quarters, year of birth, and
quarter of birth are linearly dependent. As shown in column 2,
the first-stage F-statistic drops to 0.4 when age and age squared
are included as controls, a sure sign of trouble. But the 2SLS
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Violations of the exclusion restriction

In general, we do not believe that any of the assumptions we are
making in statistics are literally true. But we typically proceed if we
think our assumptions are “pretty good.”

Is “pretty good”enough for the exclusion restriction? Suppose we
have a candidate instrument Zi for a regressor Di . Write

yi = α+ ρDi + γZi + ei
Di = π0 + π1Zi + ξ i .

The exclusion restriction amounts to the assumption γ = 0.
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Weak instruments and the exclusion restriction

What happens if γ = γ0 6= 0?

ρIV =
cov (α+ ρDi + γ0Zi + ei ,Zi )

cov (Di ,Zi )

=
ρcov (Di ,Zi ) + γ0var (Zi )

cov (Di ,Zi )

= ρ+ γ0
var (Zi )

cov (Di ,Zi )
= ρ+

γ0
π1

The IV estimate of ρ is biased, the bias is γ0/π1.

The bias is larger in absolute value the closer π1 is to zero. I.e. the
bias is worse with weak instruments.

With π1 very close to zero, a very small violation of the exclusion
restriction can lead to a large (asymptotic) bias.
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Can violation of the exclusion restriction explain AK91?

School starting age (SSA) is a candidate violation of the exclusion
restriction. Individuals born in quarter 4 start school younger.

The best paper on school starting age is Black, Devereux, and
Salvanes, “Too Young to Leave the Nest?”REStat 2011 for Norway.
They find an effect on log earnings of -0.1 at age 25, -0.01 (not
significant) at age 30, 0.0 at age 35, suggesting SSA works through
lost labor market experience. (AK91 sample is in their 40s.)

To play with the numbers:

π1 = 0.09, this is the difference in schooling between quarter 4 and
other quarters
Those born in quarter 4 start school about 6 months younger, or -0.5
of a year.
γ0 is the effect of school starting age on earnings. Using the age 30 γ0
of -0.01

γ0
π1

=
−0.01 ∗ −0.5

0.09
= 0.055
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Violations of random assignment

Suppose control Xi is necessary for random assignment of instrument Zi .

yi = α+ ρDi + γXi + ei
Di = π0 + π1Zi + π2Xi + ξ i .

What happens if γ 6= 0 but we omit Xi?

ρIV =
cov (α+ ρDi + γXi + ei ,Zi )

cov (Di ,Zi )

=
ρcov (Di ,Zi ) + γcov (Xi ,Zi )

cov (Di ,Zi )

= ρ+ γ
cov (Xi ,Zi )
cov (Di ,Zi )

This looks like and is an omitted variables bias formula. The standard
OLS coeffi cient cov (Xi ,Di ) /var (Di ) is being replaced by it’s IV
analogue: for the auxiliary regression run Xi on Di and instrument by Zi .
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Can violation of random assignment explain AK91?

Magnitude: The bias is equal to

γ
cov (Xi ,Zi )
cov (Di ,Zi )

= γ
E [SESi |Q4i = 1]− E [SESi |Q4i = 0]
E [Si |Q4i = 1]− E [Si |Q4i = 0]

.

γ is the effect of SESi on child’s earnings. Intergenerational
correlations are about 0.4.
The top is the difference in SESi ; BJB report family income between
first and other quarter births differs by about 2%, so this is 0.02.
The bottom is 1st stage with one instrument, 0.09.

γ
E [SESi |Q4i = 1]− E [SESi |Q4i = 0]
E [Si |Q4i = 1]− E [Si |Q4i = 0]

= 0.4
0.02
0.09

= 0.088

Pattern: Buckles and Hungerman (2008): Data on mother’s
education and month of birth.

Patterns don’t line up: kid’s schooling peaks in quarter 4 (Oct - Dec),
mother’s schooling peaks in May.
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