
Chapter 6

Getting a Little Jumpy: Regression
Discontinuity Designs

But when you start exercising those rules, all sorts of processes start to happen and you start
to �nd out all sorts of stu¤ about people . . . Its just a way of thinking about a problem, which
lets the shape of the problem begin to emerge. The more rules, the tinier the rules, the more
arbitrary they are, the better.
Douglas Adams, Mostly Harmless (1995)

Regression discontinuity (RD) research designs exploit precise knowledge of the rules determining treat-
ment. RD identi�cation is based on the idea that in a highly rule-based world, some rules are arbitrary and
therefore provide good experiments. RD comes in two styles, fuzzy and sharp. The sharp design can be
seen as a selection-on-observables story. The fuzzy design leads to an instrumental-variables-type setup.

6.1 Sharp RD

Sharp RD is used when treatment status is a deterministic and discontinuous function of a covariate, xi.
Suppose, for example, that

di =
�
1 if xi � x0
0 if xi < x0

: (6.1.1)

where x0 is a known threshold or cuto¤. This assignment mechanism is a deterministic function of xi
because once we know xi we know di. It�s a discontinuous function because no matter how close xi gets to
x0, treatment is unchanged until xi = x0.
This may seem a little abstract, so here is an example. American high school students are awarded

National Merit Scholarship Awards on the basis of PSAT scores, a test taken by most college-bound high
school juniors, especially those who will later take the SAT. The question that motivated the �rst discussions
of RD is whether students who win these awards are more likely to �nish college (Thistlewaithe and Campbell,
1960; Campbell, 1969). Sharp RD compares the college completion rates of students with PSAT scores just
above and just below the National Merit Award thresholds. In general, we might expect students with higher
PSAT scores to be more likely to �nish college, but this e¤ect can be controlled by �tting a regression to the
relationship between college completion and PSAT scores, at least in the neighborhood of the award cuto¤.
In this example, jumps in the relationship between PSAT scores and college attendance in the neighborhood
of the award threshold are taken as evidence of a treatment e¤ect. It is this jump in regression lines that
gives RD its name.1

An interesting and important feature of RD, highlighted in a recent survey of RD by Imbens and Lemieux
(2008), is that there is no value of xi at which we get to observe both treatment and control observations.
Unlike full-covariate matching strategies, which are based on treatment-control comparisons conditional on
covariate values where there is some overlap, the validity of RD turns on our willingness to extrapolate across
covariate values, at least in a neighborhood of the discontinuity. This is one reason why sharp RD is usually

1The basic structure of RD designs appears to have emerged simultaneously in a number of disciplines but has only recently
become important in applied econometrics. Cook (2008) gives an intellectual history. In a recent paper using Lalonde (1986)
style within-study comparisons, Cook and Wong (2008) �nd that RD generally does a good job of reproducing the results from
randomized trials.
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seen as distinct from other control strategies. For this same reason, we typically cannot a¤ord to be as
agnostic about regression functional form in the RD world as in the world of Chapter 3.
Figure 6.1.1 illustrates a hypothetical RD scenario where those with xi � 0:5 are treated. In Panel A,

the trend relationship between yi and xi is linear, while in Panel B, it�s nonlinear. In both cases, there is a
discontinuity in the relation between E[y0ijxi] and xi around the point x0:
A simple model formalizes the RD idea. Suppose that in addition to the assignment mechanism, (6.1.1),

potential outcomes can be described by a linear, constant-e¤ects model

E[y0ijxi] = �+ �xi

y1i = y0i + �

This leads to the regression,
yi = �+ �xi + �di + �i; (6.1.2)

where � is the causal e¤ect of interest. The key di¤erence between this regression and others we�ve used
to estimate treatment e¤ects (e.g., in Chapter 3) is that di, the regressor of interest, is not only correlated
with xi, it is a deterministic function of xi. RD captures causal e¤ects by distinguishing the nonlinear and
discontinuous function, 1(xi � x0), from the smooth and (in this case) linear function, xi:
But what if the trend relation, E[y0ijxi], is nonlinear? To be precise, suppose that E[y0ijxi] = f(xi) for

some reasonably smooth function, f(xi). Panel B in Figure 6.1.1 suggests there is still hope even in this
more general case. Now we can construct RD estimates by �tting

yi = f(xi) + �di + �i; (6.1.3)

where again, di = 1(xi � x0) is discontinuous in xi at x0. As long as f(xi) is continuous in a neighborhood
of x0, it should be possible to estimate a model like (6.1.3), even with a �exible functional form for f(xi). For
example, modeling f(xi) with a pth-order polynomial, RD estimates can be constructed from the regression

yi = �+ �1xi + �2x
2
i + :::+ �px

p
i + �di + �i: (6.1.4)

A generalization of RD based on (6.1.4) allows di¤erent trend functions for E[y0ijxi] and E[y1ijxi]:
Modeling both of these CEFs with pth-order polynomials, we have

E[y0ijxi] = f0(xi) = �+ �01~xi + �02~x
2
i + :::+ �0p~x

p
i

E[y1ijxi] = f1(xi) = �+ �+ �11~xi + �12~xi
2 + :::+ �1p~xi

p;

where ~xi � xi � x0. Centering xi at x0 is just a normalization; it ensures that the treatment e¤ect at
xi = x0 is still the coe¢ cient on di in the regression model with interactions.
To derive a regression model that can be used to estimate the e¤ects interest in this case, we use the fact

that di is a deterministic function of xi to write

E[yijxi] = E[y0ijxi] + E[y1i � y0ijxi]di:

Substituting polynomials for conditional expectations, we then have

yi = �+ �01~xi + �02~x
2
i + :::+ �0p~x

p
i (6.1.6)

+�di + �
�
1di~xi + �

�
2di~xi

2 + :::+ ��pdi~xi
p + �i;

where ��1 = �11 � �01, ��2 = �12 � �02, and ��p = �1p � �0p and the error term, �i, is the CEF residual.
Equation (6.1.4) is a special case of (6.1.6) where ��1 = ��2 = ��p = 0: In the more general model, the

treatment e¤ect at xi � x0 = c > 0 is � + ��1c + ��2c
2 + ::: + ��pc

p, while the treatment e¤ect at x0 is �:
The model with interactions has the attraction that it imposes no restrictions on the underlying conditional
mean functions But in our experience, RD estimates of � based on the simpler model, (6.1.4), usually turn
out to be similar to those based on (6.1.6).
The validity of RD estimates based on (6.1.4) or (6.1.6) turns on whether polynomial models provide an

adequate description of E[y0ijXi]: If not, then what looks like a jump due to treatment might simply be an
unaccounted-for nonlinearity in the counterfactual conditional mean function. This possibility is illustrated
in Panel C of Figure 6.1.1, which shows how a sharp turn in E[y0ijxi] might be mistaken for a jump from
one regression line to another. To reduce the likelihood of such mistakes, we can look only at data in a
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Figure 6.1.1: The sharp regression discontinuity design


