
8.2. CLUSTERING AND SERIAL CORRELATION IN PANELS 161

The results with little heteroskedasticity, reported in the second panel, show that conventional standard
errors are still too low; this bias is now in the order of 15%. HC0 and HC1 are also too small, about
like before in absolute terms, though they now look worse relative to the conventional standard errors.
The HC2 and HC3 standard errors are still larger than the conventional standard errors, on average, but
empirical rejection rates are higher for these two than for conventional standard errors. This means the
robust standard errors are sometimes too small �by accident," an event that happens often enough to in�ate
rejection rates so that they exceed the conventional rejection rates.
The lesson we can take a away from this is that robust standard errors are no panacea. They can be

smaller than conventional standard errors for two reasons: the small sample bias we have discussed and the
higher sampling variance of these standard errors. We therefore take empirical results where the robust
standard errors fall below the conventional standard errors as a red �ag. This is very likely due to bias or
a chance occurrence that is better discounted. In this spirit, we like the idea of taking the maximum of
the conventional standard error and a robust standard error as your best measure of precision. This rule of
thumb helps on two counts: it truncates low values of the robust estimators, reducing bias, and it reduces
variability. Table 8.1.1 shows the empirical rejection rates obtained using Max(HCj ; Conventional): The
empirical rejection rates using this rule of thumb look pretty good in the �rst two panels and greatly improve
on the robust estimators alone.8

Since there is no gain without pain, there must be some cost to usingMax(HCj ; Conventional). The cost
is that the best standard error when there is no heteroskedasticity is the conventional OLS estimate. This
is documented in the bottom panel of the table. Using the maximum in�ates standard errors unnecessarily
under homoskedasticity, depressing rejection rates. Nevertheless, the table shows that even in this case
rejection rates don�t go down all that much. We also view an underestimate of precision as being less costly
than an over-estimate. Underestimating precision, we come away thinking the data are not very informative
and that we should try to collect more data, while in the latter case, we may mistakenly draw important
substantive conclusions.
A �nal comment on this Monte Carlo investigation concerns the sample size. Labor economists like

us are used to working with tens of thousands of observations or more. But sometimes we don�t. In
a study of the e¤ects of busing on public school students, Angrist and Lang (2004) work with samples of
about 3000 students grouped in 56 schools. The regressor of interest in this study varies within grade
only at the school level, so some of the analysis in this paper uses 56 school means. Not surprisingly,
therefore, Angrist and Lang (2004) obtained HC1 standard errors below conventional OLS standard errors
when working with school-level data. As a rule, even if you start with the micro data on individuals, when
the regressor of interest varies at a higher level of aggregation - a school, state, or some other group or
cluster - e¤ective sample sizes are much closer to the number of clusters than to the number of individuals.
Inference procedures for clustered data are discussed in detail in the next section.

8.2 Clustering and Serial Correlation in Panels

8.2.1 Clustering and the Moulton Factor

Bias problems aside, heteroskedasticity rarely leads to dramatic changes in inference. In large samples where
bias is not likely to be a problem, we might see standard errors increase by about 25 percent when moving
from the conventional to the HC1 estimator. In contrast, clustering can make all the di¤erence.
The clustering problem can be illustrated using a simple bivariate regression estimated in data with a

group structure. Suppose we�re interested in the bivariate regression,

yig = �0 + �1xg + eig; (8.2.1)

where yig is the dependent variable for individual i in cluster or group g, with G groups. Importantly,
the regressor of interest, xg, varies only at the group level. For example, data from the STAR experiment
analyzed by Krueger (1999) come in the form of yig, the test score of student i in class g, and class size,
xg.
Although students were randomly assigned to classes in the STAR experiment, the data are unlikely to

be independent across observations. The test scores of students in the same class tend to be correlated
because students in the same class share background characteristics and are exposed to the same teacher

8Yang, Hsu, and Zhao (2005) formalize the notion of test procedures based on the maximum of a a set of test statistics with
di¤ering e¢ ciency and robustness properties.
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and classroom environment. It�s therefore prudent to assume that, for students i and j in the same class, g;

E[eigejg] = ��2e > 0; (8.2.2)

where � is the intra-class correlation coe¢ cient and �2e is the residual variance.
9

Correlation within groups is often modeled using an additive random e¤ects model. In particular, we
assume that the residual, eig, has a group structure:

eig = vg + �ig: (8.2.3)

where vg is a random component speci�c to class g and �ig is a mean-zero student-level component that�s
left over. We focus here on the correlation problem, so both of these error components are assumed to be
homoskedastic.
When the regressor of interest varies only at the group level, an error structure like (8.2.3) can increase

standard errors sharply. This unfortunate fact is not news - Kloek (1981) and Moulton (1986) both made
the point - but it seems fair to say that clustering didn�t really become part of the applied econometrics
zeitgeist until about 15 years ago.
Given the error structure, (8.2.3), the intra-class correlation coe¢ cient becomes

� =
�2v

�2v + �
2
�

:

where �2v is the variance of vg and �
2
� is the variance of �ig. A word on terminology: � is called the intra-class

correlation coe¢ cient even when the groups of interest are not classrooms.
Let Vc(b�1) be the conventional OLS variance formula for the regression slope (generated using 
c in

the previous section), while V (b�1) denotes the correct sampling variance given the error structure, (8.2.3).
With regressors �xed at the group level and groups of equal size, n, we have

V (b�1)
Vc(b�1) = 1 + (n� 1)�; (8.2.4)

a formula derived in the appendix to this chapter. We call the square root of this ratio the Moulton factor,
after Moulton�s (1986) in�uential study. Equation (8.2.4) tells us how much we over-estimate precision by
ignoring intra-class correlation. Conventional standard errors become increasingly misleading as n and �
increase. Suppose, for example, that � = 1. In this case, all the errors within a group are the same, so
the yig�s are the same as well. Making a data set larger by copying a smaller one n times generates no
new information. The variance Vc(b�1) should therefore be scaled up by a factor of n. The Moulton factor
increases with group size because with a �xed overall sample size, larger groups means fewer clusters, in
which case there is less independent information in the sample (because the data are independent across
clusters but not within).10

Even small intra-class correlation coe¢ cients can generate a big Moulton factor. In Angrist and Lavy
(2007), for example, 4000 students are grouped in 40 schools, so the average n is 100. The regressor
of interest is school-level treatment status - all students in treated schools were eligible to receive cash
rewards for passing their matriculation exams. The intra-class correlation in this study �uctuates around
.1. Applying formula (8.2.4), the Moulton factor is over 3: the standard errors reported by default are only
one-third of what they should be.
Equation (8.2.4) covers an important special case where the regressors are �xed within groups and group

size is constant. The general formula allows the regressor, xig, to vary at the individual level and for di¤erent
group sizes, ng. In this case, the Moulton factor is the square root of

V (b�1)
Vc(b�1) = 1 +

�
V (ng)

n
+ n� 1

�
�x�; (8.2.5)

where n is the average group size, and �x is the intra-class correlation of xig:

�x =

P
g

P
i 6=k (xig � x) (xkg � x)

V (xig)
P
g ng(ng � 1)

:

9This sort of residual correlation structure is also a consequence of strati�ed sampling (see, e.g., Wooldridge, 2003). Most
of the samples that we work with are close enough to random that we typically worry more about the dependence due to a
group structure than clustering due to strati�cation.
10With non-stochastic regressors and homoscedastic residuals, the Moulton factor is a �nite-sample result. Survey statisticians

call the Moulton factor the design e¤ ect because it tells us how much to adjust standard errors in strati�ed samples for deviations
from simple random sampling (Kish, 1965).
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Note that �x does not impose a variance-components structure like (8.2.3) - here, �x is a generic measure
of the correlation of regressors within groups. The general Moulton formula tells us that clustering has a
bigger impact on standard errors with variable group sizes and when �x is large. The impact vanishes when
�x = 0: In other words, if the xig�s are uncorrelated within groups, the grouped error structure does not
matter for the estimation of standard errors. That�s why we worry most about clustering when the regressor
of interest is �xed within groups.
We illustrate formula (8.2.1) using the Tennessee STAR example. A regression of Kindergartners�

percentile score on class size yields an estimate of -0.62 with a robust (HC1) standard error of 0.09. In
this case, �x = 1 because class size is �xed within classes while V (ng) is positive because classes vary in size
(in this case, V (ng) = 17:1). The intra-class correlation coe¢ cient for residuals is .31 and the average class

size is 19.4. Plugging these numbers into (8.2.1) gives a value of about 7 for V (b�1)
Vc(c�1) ; so that conventional

standard errors should be multiplied by a factor of 2:65 =
p
7. The corrected standard error is therefore

about 0.24.
The Moulton factor works similarly with 2SLS except that �x should be computed for the instrumental

variable and not the regressor. In particular, use (8.2.5) replacing �x with �z, where �z is the intra-class
correlation coe¢ cient of the instrumental variable (Shore-Sheppard, 1996) and � is the intra-class correlation
of the second-stage residuals. To understand why this works, recall that conventional standard errors for
2SLS are derived from the residual variance of the second-stage equation divided by the variance of the
�rst-stage �tted values. This is the same asymptotic variance formula as for OLS, with �rst-stage �tted
values playing the role of regressor.11

Here are some solutions to the Moulton problem:

1. Parametric: Fix conventional standard errors using (8.2.5). The intra-class correlations � and �x are
easy to compute and supplied as descriptive statistics in some software packages.12

2. Cluster standard errors: Liang and Zeger (1986) generalize the White (1980a) robust covariance matrix
to allow for clustering as well as heteroskedasticity:

V̂ (b�) = (X 0X)
�1
 X

g

Xg
b	gXg

!
(X 0X)

�1 (8.2.6)

b	g = abegbe0g = a

266664
be21g be1gbe2g � � � be1gbenggbe1gbe2g be22g ...
...

. . . be(ng�1)gbenggbe1gbengg � � � be(ng�1)gbengg be2ngg

377775 :

where Xg is the matrix of regressors for group g, and a is a degrees of freedom adjustment factor
similar to that in HC1. The clustered variance estimator V̂ (b�) is consistent as the number of groups
gets large under any within-group correlation structure and not just the parametric model in (8.2.3).
V̂ (b�) is not consistent with a �xed number of groups, however, even when the group size tends to
in�nity. Clustered standard errors are therefore unlikely to be reliable with few clusters, a point we
return to below.

3. Use group averages instead of micro data: let yg be the mean of yig in group g. Estimate

yg = �0 + �1xg + eg

by weighted least squares using the group size as weights. This is equivalent to OLS using micro data
but the standard errors are asymptotically correct given the group structure, (8.2.3). Again, the
asymptotics here are based on the number of groups and not the group size. Importantly, however,
because the group means are close to Normally distributed with modest group sizes, we can expect the
good �nite-sample properties of regression with Normal errors to kick in. The standard errors that
come out of grouped estimation are therefore likely to be more reliable than clustered standard errors
in samples with few clusters.

11 Clustering can also be a problem in regression-discontinuity designs if the variable that determines treatment assignment
varies only at a group level (see Card and Lee, 2008, for details).
12Use Stata�s loneway command, for example.


