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Our estimates of peer effects will be biased if students are sorted system-
atically into classrooms even within schools. Although we present some evi-
dence which is suggestive of quasi-random assignment in most countries this
possibility can never be fully ruled out. Here we discuss the consequences
of such systematic sorting for our estimates. We consider the possibility
that the true peer effect is zero. We then ask the question: would our test
of random assignment in table 4 reject given plausible parameter values for
a model of student achievement which are able to generate our estimation
results?

We start with a model of peer effects similar to eq. (1) in the paper. We
ignore covariates other than the background variable

Lie = 1N, + Vic.

Also, we drop the distinction between classrooms and schools here, so the
subindex c refers to classrooms. We will consider sorting across classrooms
(and this would be within schools in our estimation setting).  Student
achievement is given by

Yie = B1M,. + BoVic + AWic + 1, + €ic (1)

where w;. = T(_;). is the peer leave-out mean. Notice that we have allowed
separate effects on achievement of the sub-components of z;.. There is no
reason to assume that the effects of 7, and v;. are the same, simply because
we only observe x;.. On the other hand, there is only a single coefficient A on
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Wi, although w;. contains the same two components 7, and the mean of v;..
But the 7, component is just the same as before. Hence, 3, is neither an
indivdual effect nor a peer effect as the common classroom effect 7, does not
allow this distinction. As a result, the model in (1) is the most general linear
model for achievement using the variance components we have introduced.

We assume that v;. and g;. are zero mean iid random variables. This
implies that the model in (1) has 8 parameters: (3, 85, A, 02,0%,0%, 02, 0y
This can be thought of as a covariance structure model. Since only z;. is
observed rather than its components, this model generates the six moments
var(y), var(x), var(w), cov(y, ), cov(y,w), and cov(x,w) and it is obvious
that the model in this general form is not identified.!

We are not necessarily interested in the full model in (1). In particular,
we would like to know whether a version of the model can generate our
results under the restriction that A = 0 but o,, > 0. The covariance o,,,
governs the degree of sorting of students into classrooms. If o,, = 0, the
conditions imposed in our paper hold as there are no correlated effects. The
part of the classroom level variation in 7. and g, which is independent is
not particularly interesting (it will just raise standard errors), so we make
the further assumption that all classroom level variation is due to correlated
effects, i.e. 02 = 02 = 0y, or in essence 1), = p1,. This restriction essentially
assumes the maximum amount of sorting conditional on a value for 0127. This
seems like the specification that stacks things most in favor of finding spurious
peer effects.

The restricted model is:

Yic = 51776 + BQU’iC + Ne + Eic = (ﬁl + 1)77c + B2vic + Eic- (2)

This model has the five remaining parameters (3, 35,07,0%,02. We have
simulated this model with an arbitrary set of parameters which are able to
generate the results in the paper. We then ask the question whether we can
detect the classroom level component 7. in the background variable given
our test in table 4.

'In general, it would be possible also to look at the within classroom moments in ad-
dition to the variation across the whole sample. Since w;. is a leave-out variable which
varies by student, there is within class variation which in principle helps to identify para-
meters (see Lee, 2007). For example, this variation could be used to separately estimate
the effects due to p, (which doesn’t vary within classes) and w;. (which does). In practice,
this variation is typically not sufficient to be very helpful. As a result, we will abstract
from the within variation here.



We proceed as follows. In the paper we estimate regressions of the form
Yie = 0 + bTjie + CWie + €4c. (3)
If the data are generated by (2) then this regression will yield

plimgz (1+8)a+ By(1 —a)

where
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No2 + o2
N is the class size, and

plim ¢ = (N = 1)(1 + f; — By)a.
Since 31, 85 and A don’t have a natural scale, we focus in the paper on the
ratio between the individual and the peer effect estimate, ¢/b. Define

plimec (N —1)(1+ 3, — By)a

" plim/g (14 B)a+By(1—a)’

We want to choose parameters holding this ratio k fixed. In practice, we

choose the parameters f3,, 07, 03, 02 and, solving for ,, impose the constraint

6 _ <1+51>06(N—1—/1)
> (N—-Da+r(l—a)’

Note that the regression estimates of b and ¢ involve all the parameters
(except 02). The test for random assignment of students to classes, on the
other hand, only depends on the two parameters 0727 and 2. While we could
infer the relative magnitude of these variances directly from the between and
within classroom variance in z;. in our data, we do not pursue this avenue.
Estimating 072] and assessing whether 0727 > ( amounts to the same as testing
for random assignment to classes. Instead, we therefore analyze the model
for a series of prespecified values for 0727.

After setting o7 to a particular value, we draw the parameters 3,02, 02
independently from a uniform distribution on the interval [0,10]. We then
calculate the implied f3,, setting x = 0.75. This is the minimum value for
k we find in the last two columns of table 7. We then draw the random
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variables 1., v, €;. from normal distributions with mean zero and the chosen
variances o7, 07,02, Finally, we generate y;. according to (2). We generate
data on 370 schools, which is the number of schools in our data set with more
than one class (pooling all countries). Three quarters of these schools have
two classes, the remainder three classes, generating the observed average of
2.25 class rooms per school in our sample. Each class in our sample has 25
students, the average class size in our data.

We then run the regression (3) on the simulated data. We do this in
order to verify that the regression produces values of ¢/ b close to the desired
value of k. If 0727 =0, a =0, and as a result plim ¢ = x = 0. But as
soon as 0727 is small and positive, the regressions hit the chosen value of
quite closely. More importantly, we then apply the x2-test for independence
of z;. and classroom assignment to the simulated data. Since this test is
based on a discrete z-variable, we discretize z;. into five approximatedly
equal sized bins. The test is in essence trying to assess whether Uf] > 0. We
repeat this process a 1,000 times for each value of 037 we have chosen, and we
record the empirical rejection probabilities of the Y2-test with nominal size

of 5%. 0727 = 0 corresponds to the null hypothesis of the test, i.e. classroom



assignment is independent of z;.. The rejection rate for 03] = 0 is therefore
the actual size of the test in our simulated data, and the rejection rates for
0127 > 0 trace out the power function of the test for these values of 0727. The
results are displayed in the figure above.

The figure demonstrates that the test has a size distortion under the null:
the 5% rejection rate is around 0.13 for 03] = 0. In table 4 in the paper we
found a p-value for the test of 0.036 for Sweden. The size distortion in our
simulated data implies that this corresponds to an actual p-value of 0.103.
The power of the test then rises quickly and becomes close to 1.0 for values
of 0727 = 0.15. Recall that we draw all other variances from a range of 0 to
10. For 0727 = 0.15, the variance 03] will therefore be smaller than 2 in 98.5%
of the simulations, and on average 0727 = 0.0302. This suggests that the test
has very good power to detect even very small classroom components in the
background variable.
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Derivation of the plims
Here we derive the plims for b and ¢:

var(w)cov(y, x) — cov(w, z)cov(y, w)
var(x)var(w) — cov(w, )2

F5) (8 + )02+ By02] = 02 (8, + 1) 02
(02 + 02) <02 + %) — ot

plim b =
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.~ wvar(z)cov(y,w) — cov(w, x)cov(y, x)
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(0727 + 012;) [( p+1) U?;] - % [(51 +1) U%, + 5203}
(o3 4 07) <02 + ]\?21> — o
(N —1) [(B) +1) 0703 — By0707]
02024 (N —1) 0202 + 0
(- 1)[5,+1- 8,02
No2+ 0?2

= (N=D(1+ 8, - By

Solving the ratio of the two for 3, yields

o (F-D(+8 - By

(14 B)a+ By(1 — )

[(1+BDa+By(1—a)lk = (N=1)(1+ 5, - B)a
1+ B ar+ (1 —a)s = (N=1)(1+p)a— (N —1)ba
52(1_04)5"‘( — 1B = (N D1+ B)a—(1+5)ak

B[l —a)s+(N=1)a] = [N—-1-k](1+8))a
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