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Our estimates of peer e¤ects will be biased if students are sorted system-
atically into classrooms even within schools. Although we present some evi-
dence which is suggestive of quasi-random assignment in most countries this
possibility can never be fully ruled out. Here we discuss the consequences
of such systematic sorting for our estimates. We consider the possibility
that the true peer e¤ect is zero. We then ask the question: would our test
of random assignment in table 4 reject given plausible parameter values for
a model of student achievement which are able to generate our estimation
results?
We start with a model of peer e¤ects similar to eq. (1) in the paper. We

ignore covariates other than the background variable

xic = �c + vic:

Also, we drop the distinction between classrooms and schools here, so the
subindex c refers to classrooms. We will consider sorting across classrooms
(and this would be within schools in our estimation setting). Student
achievement is given by

yic = �1�c + �2vic + �wic + �c + "ic (1)

where wic = x(�i)c is the peer leave-out mean. Notice that we have allowed
separate e¤ects on achievement of the sub-components of xic. There is no
reason to assume that the e¤ects of �c and vic are the same, simply because
we only observe xic. On the other hand, there is only a single coe¢ cient � on
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wic, although wic contains the same two components �c and the mean of vic.
But the �c component is just the same as before. Hence, �1 is neither an
indivdual e¤ect nor a peer e¤ect as the common classroom e¤ect �c does not
allow this distinction. As a result, the model in (1) is the most general linear
model for achievement using the variance components we have introduced.
We assume that vic and "ic are zero mean iid random variables. This

implies that the model in (1) has 8 parameters: �1; �2; �; �
2
�; �

2
v; �

2
�; �

2
"; ���.

This can be thought of as a covariance structure model. Since only xic is
observed rather than its components, this model generates the six moments
var(y), var(x), var(w), cov(y; x), cov(y; w), and cov(x;w) and it is obvious
that the model in this general form is not identi�ed.1

We are not necessarily interested in the full model in (1). In particular,
we would like to know whether a version of the model can generate our
results under the restriction that � = 0 but ��� > 0. The covariance ���
governs the degree of sorting of students into classrooms. If ��� = 0, the
conditions imposed in our paper hold as there are no correlated e¤ects. The
part of the classroom level variation in �c and �c which is independent is
not particularly interesting (it will just raise standard errors), so we make
the further assumption that all classroom level variation is due to correlated
e¤ects, i.e. �2� = �

2
� = ���, or in essence �c = �c. This restriction essentially

assumes the maximum amount of sorting conditional on a value for �2�. This
seems like the speci�cation that stacks things most in favor of �nding spurious
peer e¤ects.
The restricted model is:

yic = �1�c + �2vic + �c + "ic = (�1 + 1)�c + �2vic + "ic: (2)

This model has the �ve remaining parameters �1; �2; �
2
�; �

2
v; �

2
". We have

simulated this model with an arbitrary set of parameters which are able to
generate the results in the paper. We then ask the question whether we can
detect the classroom level component �c in the background variable given
our test in table 4.

1In general, it would be possible also to look at the within classroom moments in ad-
dition to the variation across the whole sample. Since wic is a leave-out variable which
varies by student, there is within class variation which in principle helps to identify para-
meters (see Lee, 2007). For example, this variation could be used to separately estimate
the e¤ects due to �c (which doesn�t vary within classes) and wic (which does). In practice,
this variation is typically not su¢ cient to be very helpful. As a result, we will abstract
from the within variation here.
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We proceed as follows. In the paper we estimate regressions of the form

yic = a+ bxic + cwic + eic: (3)

If the data are generated by (2) then this regression will yield

plim bb = (1 + �1)�+ �2(1� �)
where

� =
�2�

N�2� + �
2
v

N is the class size, and

plim bc = (N � 1)(1 + �1 � �2)�:
Since �1; �2 and � don�t have a natural scale, we focus in the paper on the
ratio between the individual and the peer e¤ect estimate, bc=bb. De�ne

� � plim bc
plim bb = (N � 1)(1 + �1 � �2)�

(1 + �1)�+ �2(1� �)
:

We want to choose parameters holding this ratio � �xed. In practice, we
choose the parameters �1; �

2
�; �

2
v; �

2
" and, solving for �2, impose the constraint

�2 =
(1 + �1)�(N � 1� �)
(N � 1)�+ �(1� �)

:

Note that the regression estimates of b and c involve all the parameters
(except �2"). The test for random assignment of students to classes, on the
other hand, only depends on the two parameters �2� and �

2
v. While we could

infer the relative magnitude of these variances directly from the between and
within classroom variance in xic in our data, we do not pursue this avenue.
Estimating �2� and assessing whether �

2
� > 0 amounts to the same as testing

for random assignment to classes. Instead, we therefore analyze the model
for a series of prespeci�ed values for �2�:
After setting �2� to a particular value, we draw the parameters �1; �

2
v; �

2
"

independently from a uniform distribution on the interval [0,10]. We then
calculate the implied �2, setting � = 0:75. This is the minimum value for
� we �nd in the last two columns of table 7. We then draw the random
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variables �c; vic; "ic from normal distributions with mean zero and the chosen
variances �2�; �

2
v; �

2
": Finally, we generate yic according to (2). We generate

data on 370 schools, which is the number of schools in our data set with more
than one class (pooling all countries). Three quarters of these schools have
two classes, the remainder three classes, generating the observed average of
2.25 class rooms per school in our sample. Each class in our sample has 25
students, the average class size in our data.
We then run the regression (3) on the simulated data. We do this in

order to verify that the regression produces values of bc= bb close to the desired
value of �. If �2� = 0, � = 0, and as a result plim bc = � = 0. But as
soon as �2� is small and positive, the regressions hit the chosen value of �
quite closely. More importantly, we then apply the �2-test for independence
of xic and classroom assignment to the simulated data. Since this test is
based on a discrete x-variable, we discretize xic into �ve approximatedly
equal sized bins. The test is in essence trying to assess whether �2� > 0. We
repeat this process a 1,000 times for each value of �2� we have chosen, and we
record the empirical rejection probabilities of the �2-test with nominal size
of 5%. �2� = 0 corresponds to the null hypothesis of the test, i.e. classroom
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assignment is independent of xic. The rejection rate for �2� = 0 is therefore
the actual size of the test in our simulated data, and the rejection rates for
�2� > 0 trace out the power function of the test for these values of �

2
�. The

results are displayed in the �gure above.
The �gure demonstrates that the test has a size distortion under the null:

the 5% rejection rate is around 0.13 for �2� = 0. In table 4 in the paper we
found a p-value for the test of 0.036 for Sweden. The size distortion in our
simulated data implies that this corresponds to an actual p-value of 0.103.
The power of the test then rises quickly and becomes close to 1.0 for values
of �2� = 0:15. Recall that we draw all other variances from a range of 0 to
10. For �2� = 0:15, the variance �

2
� will therefore be smaller than �

2
v in 98.5%

of the simulations, and on average �2� = 0:03�
2
v. This suggests that the test

has very good power to detect even very small classroom components in the
background variable.
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Derivation of the plims
Here we derive the plims for bb and bc:
plim bb =

var(w)cov(y; x)� cov(w; x)cov(y; w)
var(x)var(w)� cov(w; x)2

=

�
�2� +

�2v
N�1

� �
(�1 + 1)�

2
� + �2�

2
v

�
� �2�

�
(�1 + 1)�

2
�

�
(�2� + �

2
v)
�
�2� +

�2v
N�1

�
� �4�

=

�
N � 1

�
�2�

2
��

2
v + �

2
v

�
(�1 + 1)�

2
� + �2�

2
v

�
�2��

2
v +

�
N � 1

�
�2��

2
v + �

4
v

=
(�1 + 1)�

2
��

2
v + �2�

2
v

��
N � 1

�
�2� + �

2
v

�
N�2��

2
v + �

4
v

=
(�1 + 1)�

2
� + �2

��
N � 1

�
�2� + �

2
v

�
N�2� + �

2
v

= (1 + �1)�+ �2(1� �)
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where

� =
�2�

N�2� + �
2
v

and

plim bc =
var(x)cov(y; w)� cov(w; x)cov(y; x)

var(x)var(w)� cov(w; x)2

=
(�2� + �

2
v)
�
(�1 + 1)�

2
�

�
� �2�

�
(�1 + 1)�

2
� + �2�

2
v

�
(�2� + �

2
v)
�
�2� +

�2v
N�1

�
� �4�

=

�
N � 1

� �
(�1 + 1)�

2
��

2
v � �2�2��2v

�
�2��

2
v +

�
N � 1

�
�2��

2
v + �

4
v

=

�
N � 1

�
[�1 + 1� �2]�2�
N�2� + �

2
v

= (N � 1)(1 + �1 � �2)�:

Solving the ratio of the two for �2 yields

� =
(N � 1)(1 + �1 � �2)�
(1 + �1)�+ �2(1� �)

[(1 + �1)�+ �2(1� �)]� = (N � 1)(1 + �1 � �2)�
(1 + �1)��+ �2(1� �)� = (N � 1)(1 + �1)�� (N � 1)�2�
�2(1� �)�+ (N � 1)�2� = (N � 1)(1 + �1)�� (1 + �1)��
�2
�
(1� �)�+ (N � 1)�

�
=

�
N � 1� �

�
(1 + �1)�

�2 =
(1 + �1)�(N � 1� �)
(N � 1)�+ �(1� �)

:
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