
Ec485 Lecture 2, WT2024

1 REVIEW: Random Effect “vs.”Fixed Effects

Common misconception: the approaches are frequently thought of as *alternative* DGPs. A much more appropriate
framework is to think of them as the *same* DGP, but alternative Estimation Approaches
Common DGP with one-factor error-components model as in (1.8) above:

yit = x′itβ + z′iγ + εit = x′itβ + z′iγ + αi + νit

RE Approaches: in *RED*: [.]+[.]

yit = x′itβ + z′iγ + εit = [x′itβ + z′iγ] + [αi + νit]

FE Approaches in *BLACK*: (.) + (.)

yit = x′itβ + z′iγ + εit = (x′itβ + z′iγ + αi) + (νit)

FE-(BLACK): The four classic regression assumptions A1, A2, A3, A4 take the form:

A1 no perfect multicollinearity among the regressors X and Z rank(X,Z) = kx + kz
A2 linear additive model y = Xβ + Zγ + ε
A3 regressor exogeneity X and Z exogenous w.r.t. ε
A4 V Cov(error|regressors) V Cov(ε|X,Z)

RE-[RED]: Now the four classic regression assumptions A1, A2, A3, A4 take the form: (D is the full set of N
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variable intercepts dummies, one for each individual)

A1 no perfect multicollinearity among the regressors X and D
rank(X,D) = kx + kz +N

NB : Z is dropped
since perfectly collinear with D

A2 linear additive model y = Xβ + Zγ + ε = Xβ +Dα + ν

A3 regressor exogeneity
X and D exogenous w.r.t. ν

(no Z regressors)
A4 V Cov(error|regressors) V Cov(ν|X,D)

1.1 *FE-TYPE estimators: the αi’s are eliminated through suitable transfor-
mation or conditioned upon or estimated through suffi cient statistics

Key conclusion: Parameters estimated (either explicitly or implicitly): β (kx) and a1, · · · , aN (N),
σ2ν (1)

1.1.1 FE1: FD

***Apply OLS on FD model:

∆yit = ∆x′itβ + ∆z′iγ + ∆αi + ∆νit

= ∆x′itβ + 0 + 0 + ∆νit

NB1: No estimates of γ are possible by the approach since Z has dropped out.
NB2: ∆νit is a non-invertible MA(1) process, with known parameter −1. Hence OLS will not be BLUE and we

will need to calculate Robust SEs/VCovs
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1.1.2 FE2: Quasi-differencing/Within

***Apply OLS on Quasi-Differenced model:

Qy = QXβ +QZγ +Qα +Qν

= QXβ + 0 + 0 +Qν

= QXβ +Qν

where Qy has typical element

{Qy}it = yit − ȳi· ≡ yit −
1

Ti

Ti∑
t=1

yit

Consequently, the Q transformation eliminates all time-invariant terms – in particular α and Z.
NB1: No estimates of γ are possible by the approach since Z has dropped out.
NB2: The transformation Q is idempotent (and symmetric, hence a projection matrix). Therefore, the

V Cov(ν|X) = Qσ2νINTQ
′ = σ2νQ 6= σ2νIS

which is *singular* (it has deficient rank). Recall that S =
∑

i Ti (which simplifies to NT for a balanced PDS).
Therefore its generalized inverse will be *itself* and so the GLS estimator to take into account the non-spherical
distribution of ν will be *identical* to plain OLS! To see this formally:

plain OLS : β̂FE2 = β̂W = ((QX)′(QX))
−1

(QX)′(Qy)

GLS :
(

(QX)′ (V Cov(ν|X))geninv (QX)
)−1

(QX)′ (V Cov(ν|X))geninv (Qy)

= ((QX)′Q(QX))
−1

(QX)′Q(Qy) = β̂FE2 = β̂W

NB3: The FE2 model is *numerically* *identical* to the Variable Intercepts OLS model:

y = Xβ +Dα + ν
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because by the Frisch-Waugh-Lovell theorem, linear regression partitioning gives that:

β̂V Iols = ((MDX)′(MDX))
−1

(MDX)′(MDy) : MD ≡ INT −D(D′D)−1D′ = Q

= ((QX)′(QX))
−1

(QX)′(Qy) = β̂FE2 = β̂W
{α̂V Iols}i = ȳi· − x̄′i·β̂FE2
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1.2 *RE-TYPE estimators:

Key fact: Parameters estimated: β (kx), γ (kz), σ2α (1), and σ2ν (1)

Consider model
y = [Xβ + Zγ] + [α + ν] = [Xβ + Zγ] + [ε] ≡ Wθ + ε

RE1: pooled OLS

θ̂RE1 =

(
β̂RE1
γ̂RE1

)
= (W ′W )−1W ′y

NB: This will *not* be BLUE and its *Robust* SEs/VCov must be calculated to allow for the Clustering exhibited
by the *block-diagonal* V Cov(ε|X,Z) ≡ σ2εΩ.
RE2: "the RE"-GLS estimator

θ̂RE2 = θ̂REgls =

(
β̂REgls
γ̂REgls

)
= (W ′Ω−1W )−1W ′Ω−1y

= ([W ′Ω−1/2][Ω−1/2′W ])−1[W ′Ω−1/2][Ω−1/2′y]

= ([Ω−1/2′W ]′[Ω−1/2′W ])−1[Ω−1/2′W ][Ω−1/2′y]

NB1: This estimator will be BLUE and will have the correct SEs/VCov.
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NB2: In 1972, Fuller and Battese showed that calculating Ω−1, which is computationally burdensome, can be
avoided. Instead, the rotation Ω−1/2′ yields the equivalent very straightforward expressions:

Ω−1/2′y = {yit − λiȳi·}
Ω−1/2′X = {xit − λix̄i·}
Ω−1/2′Z = {(1− λi)zi}

where λi = 1−

√
σ2ν

σ2ν + Tiσ2α

Hence the RE2-GLS estimator can be obtained by applying plain OLS on the Ω−1/2′-transformed variables.
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2 Some Key Issues and Extensions – Static Models:

(Issue 1) RE methods more effi cient in general, but *inconsistent* if A3 violated
(Issue 2) FE methods less effi cient in general, but consistent even if Xs endogenous w.r.t. alpha_i effects – since

they are now part of regressors, which are allowed to be correlated between themselves.

(Issue 3) FEmethods cannot estimate gammas in general, since all time-invariant terms are eliminated/conditioned
upon.
(Issue 4) Wu-Hausman Specification Tests —RE and FE compared, Rao-Blackwell theorem useful
(Issue 5) FE-type and RE-type methods pose distinct challenges to generalize to Observable Dynamics in PDS

models.
(Issue 6) FE-type methods are harder/impossible to generalize to Nonlinear PDS models.
(Issue 7) FE-type methods are less robust/more likely to be seriously inconsistent in the presence of Regressors

with Measurement Errors.
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2.1 Extensions and Improvements

(4) Make RE more robust to endogeneity – the "Modified RE" estimator. Chamberlain/Mundlak/Hajivassiliou
See URL: <https://eprints.lse.ac.uk/102843/> Section 2
To summarize:

yit = x′itβ + z′iγ + αi + νit

= x′itβ + z′iγ + νit + α∗i + x̄′i·ξ + z′iζ

= x′itβ + x̄′i·ξ + z′i(γ + ζ) + α∗i + νit

by using the following arguments: the key issue is that X and Z are potentially endogenous w.r.t. αi, which means
that any RE-type estimator will be *inconsistent* in that case for β and /γ. We formulate that as:

0 6= E(αi|X,Z) = g(X,Z) =

assumption 1 : = linear function of X and Z

assumption 2 : = time-invariant function

= x̄′i·ξ + z′iζ

Thus, we define:
α∗i ≡ αi − E(αi|X,Z) = αi − x̄′i·ξ + z′iζ

Therefore, the redefined regression equation:

yit = x′itβ + x̄′i·ξ + z′i(γ + ζ) + α∗i + νit

is well-specified and does not suffer from regressor-endogeneity w.r.t. α∗i . Hence, RE-type estimators applied to it
will be consistent (and possibly effi cient).
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(5) Make FE able to estimate gammas also – the "Modified FE" estimator. FE+IVE. Hausman-Taylor 1981
approach

yit = x′itβ + z′iγ + αi + νit

= (xGoodit |xBadit )′
(
βGood

βBad

)
+ (zGoodi |zBadi )′

(
γGood

γBad

)
+ αi + νit

The regressor dimensionalities are kGx , k
B
x , k

G
z , k

B
z respectively, with kx = kGx + kBx and kz = kGz + kBz .

The following two steps achieve FE-type of estimation that produce also consistent γ estimates:
Step 1: Obtain β̂FE2 = β̂W using the Q-transformed data Qy = {yit − ȳi·) etc. This will be *consistent* for

both βGood and βBad since the αi has been eliminated from the equation.
Step 2: Define:

di = ȳi· − x̄′i·β = zGood′i γGood + zBadi
′γBad + αi + ν̄i·

d̂i = ȳi· − x̄′i·β̂FE2 = zGood′i γGood + zBadi
′γBad + αi + ν̄i· − x̄′i·(β̂FE2 − β)

Regressing d̂i on zGoodi and zBadi by OLS would be *inconsistent* because zBadi are endogenous regressors w.r.t.
αi. The Hausman-Taylor solution is to use Instrumental Variables estimator using XGood to instrument for ZBad,
which are *valid* (uncorrelated from the errors) and *relevant* (correlated with ZBad) instruments. The necessary
condition for this is that:

Number of XGood ≥ Number of ZBad

[Note: the presence of the estimation error term (β̂FE2 − β) affects only the second-order (VCov(.)) properties
of the estimators, because it converges to 0 as N →∞.)
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