
Ec485 Lecture 5, WT2024

1 Reminder: Major Diffi culties with B. Nonadditive Errors:

Diffi culty 1: FD/Delta, Within differencing, GLS quasi-differencing transformations do not achieve anything
special/useful
Diffi culty 2: Fe-type alternative idea of introducing N intercepts/dummies leads to “Infinite Incidental Para-

meters”problem
Diffi culty 3: The epsilon—>y transformation – Jacobian is not 1; is not constant; depends on data and unknown

parameters

***Very interesting class of models with Nonadditive Nonlinearity is LDV class of models
Simple PD version:

Multiperiod Binary Probit Model through MLE methods (Heckman 1981)
Case 1: without lagged DV dynamics
Case 2: Lagged Limited DV vs. Lagged Latent DV – > State-Dependence *vs* Unobserved Persis-

tent Heterogeneity
Multiperiod Binary Probit Model through GMM methods (Avery, Hansen, and Hotz 1983)

Diffi culty 4: T*contemporaneous_correlated_dimension = M_i correlated dimensions per individual observa-
tion i – > typically *integrals* of order M_i for each likelihood contribution

NB: Fundamental point: Diffi culty 4 may *not* arise if certain simplifications are applicable – eg1 Heckman1981,
eg2 Averyetal1983
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–> Motivating Simulation-Based Inference:
Summary of more extensive "Simulation-Based Inference" Supple-

mentary Notes on this website
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Classical Simulation-Based Inference

2 The Canonical LDV Model

y∗i = Xiβ + εi, yi = τ(y∗i ). (1)

εi = Γiη, Eεiεi ≡ Ωi(σ) = Γi(σ)Γi(σ)′. (2)

D(yi) = {y∗i |y = τ(y∗i )}. (3)

2.1 Examples of LDV Models —different τ(·) functions
Model 1: multinomial probit
Alternative j yields the (random) utility

y∗ij = xijβ + εij j = 1, · · · , J

and individual i chooses alternative k that satisfies

−∞ < y∗ik <∞, 0 < y∗ik − y∗ij <∞, (4)

The analyst observes the indicator yi ≡ arg maxj{y∗i1, · · · , y∗ij, · · · , y∗iJ}.

Applications —see Model 3 below.
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Model 2: multivariate rank ordered probit
As with model 1, individual i chooses alternative k that offers the highest utility y∗ik. The analyst, however, observes
the full ranking of the J alternatives in terms of the utility they yield, i.e., the analyst observes the J-dimensional
vector of indices

yi ≡ (k1, · · · , kJ)′

such that
y∗ik1 ≤ y∗ik2 ≤ · · · ≤ y∗ikJ . (5)

Model 3: multiperiod (panel) probit
Binary:

yit = 1(y∗it = x′itβ + εit > 0) (6)

Multinomial:
yit = arg max

j
{y∗it1, · · · , y∗itj, · · · , y∗itJ} (7)
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Illustrations:

• Applications (Fields):

— Finance —Portfolio optimization

— Marketing —purchasing decisions

— Political Science —voting behavior

— Psychology —decision trees

— Experimental Economics —Bayesian vs. Heuristic Behavior

• Specific Economic Applications:

— The Incidence of External Debt Crises of Developing Countries, Hajivassiliou (1994).

— Unemployment and Liquidity Constraints, Hajivassiliou and Ioannides (1994).

— Health, Children, and Elderly Living Arrangements, Börsch-Supan, Hajivassiliou, Kotlikoff, and Morris
(1992).

Model 4: multiperiod (panel) Tobit
(8)

Illustration: The Extent of External Debt Crises of Developing Countries, Hajivassiliou (1994).

5



2.2 Classical Estimation Methods

`i(θ; yi) =

∫
D(yi)

n(y∗i −Xiβ,Ωi) dy
∗
i , (9)

n(ε,Ω) = (2π)−T/2|Ω|−1/2 exp[−1

2
ε′Ω−1ε] (10)

`iθ(θ; yi) ≡
∂`i(θ; yi)

∂θ
= `i(θ; yi)E{h(y∗i −Xiβ)|y∗i ∈ D(yi)}, (11)

si(θ; yi) ≡
∂`n`i(θ; yi)

∂θ
= E{h(y∗i −Xiβ)|y∗i ∈ D(yi)}

`iθ/`i =

∫
D(yi)

h(z,Xi, β,Ωi)n(z −Xiβ,Ωi) dz

`i
. (12)

i.i.d. observations across i.

`iθ ≡ `θ(θ; yi) ≡
∂`(θ; yi)

∂θ
= `(θ; yi)E{h(y∗i −Xiβ)|y∗i ∈ D(yi)},

si ≡ s(θ; yi) ≡
∂`n`(θ; yi)

∂θ
= `iθ/`i = E{h(y∗i −Xiβ)|y∗i ∈ D(yi)}.

θ̂MLE.1 ≡ arg max
θ

1

N

∑
i

`n`i(θ),

or equivalently,

θ̃MLE.2 solves

{
1

N

∑
i

si(θ) =
1

N

∑
i

[`iθ(θ)/`i(θ)] = 0

}
.

NOTE: at θ∗ true, E{∂ln`i(θ
∗)

∂θ
} = E{h(y∗i −Xiβ

∗)|D(yi)} = 0.
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2.3 The Intractability of the Classical Estimators

• Cross-sectional MNP with 10 choices.

• 2000 individuals.

• 20 explanatory variables.

• Unconstrained variance/covariance matrix for unobservable utilities.

• Implication: each loglikelihood function requires evaluating 2000 integrals of dimension 9.

1. Classical MLE based on Numerical Quadrature will be inconsistent and will require 3 months of CRAY-1
CPU!

2. SSML/GHK and MSS/Gibbs will be consistent and asymptotically normal and can be calculated with
24 hours of Sparc-10 CPU.

Comparison: 49 vs. 100, i.e., about 2600 longer on the same machine. (or 1 day vs. 10 years!)
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2.4 Simulation Estimation Methods

Consider a simulator ˜̀
i ≡ ˜̀

i(θ, R) for the likelihood contribution `i(θ), based on R independent GHK/SRC simu-
lations. Then, the SSML/GHK estimator is defined by:

θ̂SSML ≡ arg max
θ

{
1

N

∑
i

ln ˜̀
i(θ, R)

}
.

Consider a simulator, s̃i ≡ s̃i(θ, R), for the score function si(·), satisfying y∗i ∈ D(yi), based on R independent draws
according to rG Gibbs resamplings. Then, the MSS1/GSS estimator:

θ̂MSS.1 solves

{
1

N

∑
i

s̃i(θ, R, rG) = 0

}
.

Consider a simulator ˜̀
iθ(θ, R) for the derivative of a likelihood contribution `iθ(θ), based onR independent GHK/SRC

draws, and a simulator ˜̀
i(θ, R) for the denominator probability based on the same R GHK/SRC draws. Then, the

MSS2/GHK estimator is:

θ̃MSS.2 solves

{
1

N

∑
i

[˜̀iθ(θ, R)/˜̀
i(θ, R)] = 0

}
.

Not good idea (dominated):

θ̃MSS.3 solves

{
1

N

∑
i

[˜̀iθ(θ, R)/˜̀
i(θ, Rd)] = 0

}
.
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A Simple Explanation of How Simulation Works

NB: Given the non-linearities involved, all estimation methods will involve iterative search over the unknown
θ.

Consider a trial parameter vector θ(n) at iteration n.
Maximum likelihood estimation requires the evaluation of

L(θ(n)) =
1

N

N∑
i=1

ln`i(θ
(n); yi).

Method of Scoring seeks to evaluate

S(θ(n)) =
1

N

N∑
i=1

si(θ
(n); yi) =

1

N

N∑
i=1

`iθ(θ
(n); yi)

`i(θ
(n); yi)

.

Method of moments calculates

M(θ(n)) =
1

N

N∑
i=1

mi(θ
(n); yi) =

1

N

N∑
i=1

w(θ(n);Xi)
′(yi − g1i(θ(n);Xi),

where g1i(·) ≡ E(yi; θ
(n)) and w(·) is an instrument function. Finally, a Pseudo-ML method evaluates the quadratic

form

Q(θ(n)) =
1

N

N∑
i=1

(yi − g1i(θ(n);Xi))
′ · g2i(θ(n);Xi)

−1 · (yi − g1i(θ(n);Xi)),

where g1i(·) ≡ E(yi; θ
(n)) and g2i(·) ≡ V (yi; θ

(n)).

IF ANALYTICALLY or NUMERICALLY TRACTABLE:
`i(θ

(n); yi), `iθ(θ
(n); yi), si(θ

(n); yi), g1i(θ
(n); yi), and g2i(θ

(n); yi):
Computer routines can be written to evaluate these expressions as functions of any possible trail parameter

vector θ(n).
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2.5 Estimation by Simulation

Relies on simulating routines ˜̀
i(θ

(n); yi, R), ˜̀
iθ(θ

(n); yi, R), s̃i(θ
(n); yi, R), g̃1i(θ

(n); yi, R), and g̃2i(θ
(n); yi, R), defined

as follows:

• Draw a set of R uniform J−dimensional random vectors
ũ1i , · · · , ũri , · · · , ũRi . By the assumptions of this model, the disturbance vector εi is i.i.d. with density function
fε(εi; θ

∗), with E(εi|Xi) = 0 and E(εiε
′
i|Xi) = Ωi(σ).

• At the given trial parameter vector θ(n) = (β(n), σ(n))′, using the inverse of the cumulative distribution function
of ε, F−1ε (·), obtain a set of R ε̃i’s,

ε̃ri (σ
(n)) = F−1ε (ũri ; Ω(σ(n)),

which will imply a set of R simulated latent vectors ỹ∗ri (θ(n)), using the specification yi = τ(y∗i ).

• From the R simulated ỹri vectors, calculate the empirical counterparts of the `i(·) etc. functions and thus
define the simulators ˜̀

i(θ
(n); yi, R), ˜̀

iθ(θ
(n); yi, R), s̃i(θ

(n); yi, R), g̃1i(θ
(n); yi, R),

and g̃2i(θ
(n); yi, R).

• Keeping the same uniform random variates, ũri’s, a new trial parameter vector θ
(n) will imply a new

set of simulated ε̃ri (σ
(n)), leading to new ỹ∗i and hence new values for ˜̀

i, etc.

The iterative search algorithms will keep trying different parameter vectors θ to satisfy the relevant
criterion.
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2.6 A Cautionary Tale:

SML (Lerman and Manski (1981)):
θ̂LM = arg maxθ

1
N

∑
i ln

˜̀
i(θ, R),

such `i are simulated unbiasedly (E ˜̀
ir = `i) and consistently with R (˜̀i(θ, R) →p `i(θ) as R → ∞). Empirical

choice probabilities as the simulating function ˜̀
i.

This simulator is:

• discontinuous function of the parameters and variates

• and not bounded away from 0 and 1.
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2.7 Key Advantages of MSS over Leading Competitor (MSM)

• Applicable to any LDV model that can be written as a set of linear inequality constraints on the underlying
latent variables, the distribution of which belongs to the linear exponential class.

• Asymptotically effi cient.
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3 Smooth Simulators for MSS Estimation

3.1 The Smooth Recursive Conditioning Simulator (GHK)

• Consider the T×1 random variate vector Y ∗ distributed asN(µ∗,Ω) and consider the eventE ≡ {a∗ ≤MY ∗ ≤ b∗},
where −∞ ≤ a∗ < +∞, −∞ < b∗ ≤ +∞, a∗ < b∗, the matrix M is non-singular, and the matrix Ω is positive
definite.

• Define a ≡ a∗ −Mµ∗, b ≡ b∗ −Mµ∗, µ ≡Mµ∗, and let L be the (lower-triangular) Cholesky decomposition
of Σ ≡MΩM ′ ≡ LL′.

• For a vector e, let e<j denote the subvector of the first j−1 components, and for a matrix A, let Aj,<j denote
a vector containing the first j − 1 elements of row j.

• Draw sequentially e1 ∼ N(0, 1) s.t. a1 ≤ l11 · e1 ≤ b1, e2 ∼ N(0, 1) s.t. a2 ≤ l21 · e1 + l22 · e2 ≤ b2
, · · · , and eT ∼ N(0, 1) s.t. aT ≤ lT1 · e1 + · · · + lTT · eT ≤ bT . These univariate truncated normal
variates are drawn according to the following smooth scheme: Let U be a uniform (0,1) random variable and
let Φ(·) denote the standard normal N(0, 1) cumulative distribution function. Define the random variable
e ≡ Φ−1((Φ(b)−Φ(a)) ·U + Φ(a)), where −∞ ≤ a < b ≤ ∞. As Proposition 1 proves, e is distributed N(0, 1)
conditional on a ≤ e ≤ b.

• Now let e ≡ (e1, · · · , eT )′ and define

Q1 ≡ Prob(a1/l11 ≤ e1 ≤ b1/l11),

Qt(e1, · · · , et−1) ≡ Prob((at − Lt,<t · e<t)/ltt ≤ et ≤ (bt − Lt,<t · e<t)/ltte1, · · · , et−1).

• Then:
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`(y,X; β,Ω) =

∫
a∗(y)≤M(y)·z≤b∗(y)

n(z −Xβ,Ω) dz

· · ·

˜̀(e; y,X; β,Ω;R) =
1

R

R∑
r=1

T∏
t=1

Qt(e1r, · · · , et−1,r).

As Lemma 1 establishes, the simulator ˜̀(e; y,X; β,Ω;R) is:

1. an unbiased estimator of `(y,X; β,Ω);

2. a smooth, i.e., a continuous and differentiable function of the model parameters β and Ω and the
underlying uniform random deviates.
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3.2 An Outline of the GHK Method

P (y∗ ∈ A) =

∫
a∗<Qy∗<b∗

n(y∗)dy∗ =

∫
a<Ls∗<b

n(s∗)ds∗ =

∫
a<Le∗<b

n(e∗)

g(e∗)
g(e∗)de∗

But:

g(e∗) ≡ n(e∗)

p(a < Le∗ < b)
=

ΠM
j n(e∗j)

ΠM
j Prob(λj < ẽj < λ̄j)

Therefore:
n(e∗)

g(e∗)
= ΠM

j=1Prob(λj < ẽj < λ̄j)

since n(e∗) = n(s∗).
Definitions:

y∗ ∼ N(µ,Σ), s∗ ∼ N(0, I), LL′ = QΣQ′∗ −Qµ, b = b∗ −Qµ
and e∗ is drawn according to the sequential scheme:

ẽ∗j ∼ N(0, 1) truncated on λj < ẽj < λ̄j

where uj ∼ U [0, 1] and
e∗ ≡ Φ−1 ([Φ(b)− Φ(a)] · uj + Φ(a)) .
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3.3 The Gibbs Resampling Simulator (GSS)

Developed for and has been applied to the problems of image reconstruction, neural networks and expert systems.

• Let the T × 1 variate random vector Z describe the distribution of Y ∗ ∼ N(Xβ,Ω) truncated on the event
E ≡ a∗ ≤M · Y ∗ ≤ b∗.

• Assume, without loss of empirical generality, that the truncation region (a∗, b∗) is compact, equivalent
to −∞ < a < b < +∞.

• Gibbs sampling: Markovian updating scheme: Given an arbitrary starting set of values Z(0)1 , Z
(0)
2 , · · · , Z(0)T ,

we draw Z
(1)
1 ∼ [Z1|Z(0)2 , · · · , Z(0)T ], then Z(1)2 ∼ [Z2|Z(1)1 , Z

(0)
2 · · · , Z

(0)
T ], Z(1)3 ∼ [Z3|Z(1)1 , Z

(1)
2 , Z

(0)
3 · · · , Z

(0)
T ],

· · · , and so on, up to
Z
(1)
T ∼ [ZT |Z(1)1 , · · · , Z(1)T−1]. Thus each variable is “visited”in the “natural”order and a cycle in this scheme
requires T random variate generations. After rG such iterations we would arrive at Z(rG) ≡ (Z

(rG)
1 , · · · , Z(rG)T ).

Proposition 3: Z(rG) asymptotically has the true joint distribution of Z as rG grows without bound.

• Let Z(rG)r be a vector drawn according to the Gibbs scheme after rG resamplings. Define a simulator for the
logarithmic score, si, by s̃i(Z(rG), y,X, β,Ω, n, R) ≡ 1

R

∑
r h(Z

(rG)
r , y,X, β,Ω), where R is the (finite) number

of terminal simulations drawn, and rG the number of Gibbs resamplings used for each simulation.

3.4 Results:

1. s̃i is a continuous function of parameters and random draws;

2. s̃i is unbiased for the true si asymptotically with rG;

3. the MSS/GSS estimator is CUAN provided rG rises at a rate at least as fast as logN .
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Theory of GSS : see Supplementary Notes on this website. �

Need compact support: For example, consider the one-factor model εi = αζ̇ + ui, where ζ and ui are
independent standard normal variates, and α is a parameter. In this model, as α → ∞, the rate of convergence of
the Gibbs sampler from an initial density to the limiting density is slower and slower.
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4 Main Asymptotic Properties of MSS Estimation

Summary of Conclusions:

1. The SSML/GHK estimator will be consistent and uniformly asymptotically normal (CUAN) with the number
of observations N →∞, as long as R rises at least as fast as

√
N .

2. The MSS/GSS estimator will be CUAN as N → ∞, for any finite number of simulations R provided the
number of Gibbs resamplings rG used to calculate each simulation rises at least as fast as logN .

3. The MSS/GHK-Ratio estimator (using the GHK/SRC simulator to simulate the numerator likelihood deriv-
atives and the denominator likelihood probabilities R times) will be CUAN as long as R rises at least as fast
as
√
N .

4. MSS/AR (based on acceptance-rejection arguments —Devroye (1986)): CUAN and asymptotically effi cient
as N →∞ for any (finite) R. Problem: Discontinuous function.

NOTE: Same underlying random variates, used to simulate the h(·), `(·), and `(·) functions, be used throughout
the iterative searches.

18



Theorem 1 Assume that:

1. the parameter θ is contained in a compact set Θ, and that the true value θ∗ is in the interior of Θ;

2. the score si(θ) is continuously differentiable on Θ;

3. the score and its derivatives, and the simulated score, are dominated by a function independent of θ with finite
first and second order moments;

4. Eisi(θ) = 0 if and only if θ = θ∗, and that J = −Eisiθ(θ∗) is positive definite, where Ei denotes expectation
with respect to the distribution of the observations;

5. observations and simulators are i.i.d. across observations;

6. (a) the simulation bias

BN(θ) =
1√
N

N∑
i=1

[Eis̃i(θ)− si(θ)], (13)

converges to zero in probability, uniformly in θ, and

(b) the simulation residual process

ζN(θ) =
1√
N

N∑
i=1

ξi(θ), with (14)

ξi(θ) ≡ [s̃i(θ)− Eis̃i(θ)− s̃i(θ∗) + Eis̃i(θ
∗)].

is stochastically equicontinuous

Then, MSS satisfies θ̂N
p→ θ∗ and

√
N(θ̂N − θ∗)

d→ Z ∼ N (0, J−1 + J−1QJ−1), where Q = E[s̃i(θ
∗) −

Eis̃i(θ
∗)][s̃i(θ

∗)− Eis̃i(θ∗)]′ .

Proof (see Supplementary notes for a sketch)
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Corollary 2 If the simulation process is unbiased, or if the bias in an observation is dominated by a positive function
independent of θ whose expectation is of order (1/

√
N), then the simulation bias converges to zero.

In the canonical LDV model, the simulation process is:

1. unbiased for MSS/AR for any R;

2. the bias is suitably dominated for MSS/GHK-Ratio as long as
√
N
R
→ 0; and

3. the bias is suitably dominated for MSS/GSS as long as logN
rG
→ 0).

Corollary 2. Assume that the simulator s̃i(θ) is probably Lipschitz on Θ. Then, the simulation residual process
is stochastically equicontinuous.

In the canonical LDV model:

1. the GHK simulator is continuously differentiable;

2. the Gibbs simulator is continuously differentiable; and

3. the AR simulator is probably Lipschitz.

This implies that Stochastic Equicontinuity holds for all three MSS estimators.
Proof of Corollary 2 (see Supplementary notes for a sketch)

�
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4.1 Schematic Outline of Proof

θ̂MSS :
1√
N

∑
i

s̃i(θ̂MSS) = 0

1√
N

∑
i

s̃i(θ̂MSS) =

1√
N
{

si(θ
∗) (15)

+s̃i(θ
∗)− si(θ∗) (16)

+si(θ̂)− si(θ∗) (17)

+s̃i(θ̂)− si(θ̂)− s̃i(θ∗) + si(θ
∗) (18)

}
Classical Terms:

(15) : Asymptotically Normal

(17) : proportional to
√

(N)(θ̂ − θ∗)
Simulation-Induced Terms:

(16): Simulation Bias ≡ 1√
N
{Es̃i(θ)− si(θ)}

(18): Simulation Residual Process ≡
1√
N
{Es̃i(θ)− si(θ)− Es̃i(θ∗) + si(θ

∗)}
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5 Simulation-Based Testing

Consider the classic inference problem on an unknown parameter vector θ of dimension p × 1. We wish to devise
tests for (a) a set of r linear hypotheses denoted by Rθ = q, where the known matrix R is of dimension r × p and
q denotes the r × 1 vector of known real numbers; and for (b) a set of r nonlinear restrictions denoted by g(θ) = 0
where 0 has dimension r × 1 and the (at least twice continuously differentiable) function g(·) from Rp → Rr.
Suppose that, using the simulation methods discussed above, we have obtained a simulation-based estimator for

θ which possesses good asymptotic properties, e.g., CUAN, Asymptotically Best CUAN, etc. The fundamental point
made by Hajivassiliou (2001) was that to devise test procedures based on the classic “Trinity”of testing approaches,
we will need to evaluate only once the “trinity”test statistics using the simulation-based estimator θ̂. This is in sharp
contrast to carrying out simulation-based estimation, where the estimation criterion function (Method-of-Moments
distance metric, Log Likelihood Function, etc.) will need to be evaluation thousands or millions of times before we
converge to the solution.
Consequently, we can afford to perform a very large number of replications in our evaluation of the simulated

test statistic based on θ̂, therefore guaranteeing very high precision in the evaluation-by-simulation of the simulated
statistics.

5.1 Simulated Wald Statistics

5.2 Simulated Likelihood Ratio Statistcs

5.3 Simulated Lagrange Multiplier Statistics

c© Vassilis Hajivassiliou, LSE 1997-2024
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