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Models

1. Consider the “dummy variable”linear regression model:

yi = iTαi +Xiβ + εi

for a balanced panel data set with i = 1, · · · , N cross-sectional units, each
observed for T time periods. yi and εi are T × 1 vectors, Xi a T × k
matrix, β a k × 1 vector of unknown slope parameters, and there is a
different intercept αi for each unit i. Define N dummy variable vectors
(of dimension NT × 1) indicating the different units, e.g., di is an NT × 1
vector with typical element

dit =

{
1 if observation it refers to individual unit i
0 otherwise

Stacking the observations for all N units in the standard way and defining
the vector α (N × 1) conformably, gives the matrix formulation:

y = Dα+Xβ + ε.

Define the usual projection matrix Md = I −D(D′D)−1D′. Use standard
partitioned-regression results to show that:

(a) The OLS coeffi cient vector β̂, known as the “fixed-effects”estimator,
can be obtained by regressing {yit − ȳi.} on {xit − x̄i.}, where yi. is
the mean of the T observations of i for the y variable, and xi. is the
k× 1 vector of means of the x variables over the T observations of i.
ANSWER: see Greene, 16.4.2

(b) The OLS estimates for the N intercepts are:

α̂i = ȳi. − x̄′i.β̂.

ANSWER: see Greene, 16.4.2

(c) The disturbance variance estimator is:

s2 =

∑N
i=1

∑T
t=1(yit − α̂i − x′itβ̂)

NT −N − k
How does this expression differ from the one obtained by regressing
yit − ȳi. on xit − x̄i.?
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ANSWER:
The FE/Within estimator corresponds to OLS estimation of the model

yit − ȳi· = (xit − x̄i·) + (εit − ε̄i·) (1)

say
ỹ = X̃β + ε̃

where:
ε̃ = {αi + νit − αi − ν̄i·} = {νit − ν̄i·} = Qε

and:
Q ≡ INT − P and P ≡ IN ⊗ (

1

T
iT i
′
T )

OLS on equation (1) gives sum of squared residuals having expecta-
tion

ERSS = σ2νtraceQ = σ2ν(NT −N(T − 1)) = σ2νN(T − 1)

[NB: you may want to subtract the number of regressors, k, but that
is irrelevant for N →∞]
But the package thinks that the degrees of freedom are NT −k, which
is incorrect.
Thus, to obtain a consistent estimator for for σ2ν we can use:

s2ν =
NT − k

N(T − 1)− k · s
2
FE_by_OLS

Intuition: regular OLS ignores the fact that N dummy variables (with
the αis) are implicitly present in the model.
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2. Consider the linear regression model:

yit = Xitβ + εit, i = 1, · · · , N, t = 1, · · · , Ti.

for an unbalanced panel-data set N cross-sectional units, observed for pos-
sibly different numbers Ti of time periods. The regressors are fixed in
repeated samples.
The disturbance term is believed to have the one-factor random-effects
structure:
εit = αi + νit with αi independent of νjt for any i, j, t, αi ∼ (0, σ2α) i.i.d.
over i, and νit ∼ (0, σ2ν) i.i.d. over both i and t. Define

θi ≡ 1−

√
σ2ν

Tiσ2α + σ2ν

(a) Show that the transformed error term: ε∗it ≡ εit − λiε̄i· where εit ≡
1
Ti

∑
t εit, satisfies the Gauss-Markov conditions. Specifically, you

should show that ε∗it is homoskedastic and serially uncorrelated.
ANSWER:
Consider ε∗it ≡ εit − λiε̄i· Let:

ρ ≡ σ2α
σ2α + σ2ν

=
σ2α
σ2ε

and Ω = σ2ε



1 ρ · · · ρ |
. . .

. . . ρ |

. . . ρ | 0
1 |

− − − − − − − −
|

0 | 0
|


In other words,

corr(εit, εis) =

{
ρ for t 6= s
1 for t = s

and cov(εit, εis) =

{
ρ · σ2ε for t 6= s
σ2ε for t = s

Assume a balanced Panel Data Set with Ti = T for all i. We also
use I to denote the identity matrix INT of dimension NT × NT .
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Then:

Eε∗ε∗′ = (I − λP )Eεε′(I − λP )

= (I − λP )(σ2νI + σ2αP )(I − λP )

= (σ2νI + σ2αTP − σ2νλP − σ2αTλP )(I − λP )

= [σ2νI + (σ2αT (1− λ)− σ2νλ)P ](I − λP )

= σ2νI + P [σ2αT (1− λ)− σ2νλ− σ2νλ− λ(σ2αT (1− λ)− σ2νλ)]

= σ2νI + P [σ2αT (1− λ)2 + σ2νλ
2 − 2σ2νλ]

= σ2νI + P [σ2αT (1− λ)2 + σ2ν(1− λ)2 − σ2ν ]

= σ2νI + P [(σ2αT + σ2ν)(1− λ)2 − σ2ν ]

= σ2νI

if the term in square brackets after the P matrix vanishes, i.e., if

(σ2αT + σ2ν)(1− λ)2 − σ2ν = 0

(1− λ)2 =
σ2ν

σ2αT + σ2ν

λ = 1±

√
σ2ν

σ2αT + σ2ν

The 1 +
√ root is discarded because it would lead to a non-convex

combination between the two base analysis-of-covariance transforma-
tions, namely the Within and the Between – see Question 3 below.
Hence we have established that for

λ ≡ 1−

√
σ2ν

σ2αT + σ2ν

the transformed error ε∗ with typical element ε∗it ≡ εit − λiε̄i· has a
scalar VCov matrix Eε∗ε∗′ = σ2νINT . Hence it is homoskedastic and
not autocorrelated, a pure Gauss-Markov error over both i and t.
[NB: a more tedious derivation follows without linear algebra, by es-
tablishing the condition which makes:

cov(ε∗it, ε
∗
is) = 0

for t 6= s ]
In this context, the convex combination idea fits nicely: Consider the
convex combination of the Within and Between transformations:

θ{zit − z̄i·}+ (1− θ)z̄i·

with 0 ≤ θ ≤ 1 At one extreme, θ = 0 we obtain the Between trans-
formation, while for θ = 1 we obtain the Within/FE transformation.
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The optimal θ defines the GLS/RE transformation, and is somewhere
in between the two extremes. I.e.,

0 ≤ θoptimal = λ ≡ 1−

√
σ2ν

σ2αT + σ2ν
≤ 1

Since *both* the lambda roots for GLS/RE give a scalar VCov σ2νI
for the GLS-transformed error vector, either of them makes this er-
ror have a spherical distribution with Homoskedasticity and no au-
tocorrelation. To understand the issue of the convex combination,
recall that the matrix P transforms a vector (e.g., the residual vec-
tor epsilon) into time-averages for each individual (repeated for all
time observations for each individual so the transformed vector will
be of the same dimension as the original one). Similarly, its orthog-
onal matrix Q=(I-P) will change a vector into *deviations* from the
individual time-averages. So Py and PX would be the transformed
dep.var. and regressors for "Between" analysis, while Qy and QX
would be the transformed dependant variable and regressors suitable
for Within or Fixed-Effects analysis. The GLS/RandomEffects es-
timator is the optimal convex combination of Between and Within
variation. To see this, note that the GLS transformation is: I -
lambda*P = I - lambda*(I-Q) = (1-lambda)*I + lambda*Q Consider
the convex combination of the P and Q transformations:
lambda*P + (1-lambda)*Q
Note that both formulae reduce to Q (=Within/FE) if lambda=1; and
they reduce to P (=Between) if lambda=0.
The convex combination fraction is between 0 and 1 depending on

T, σ2ν and σ2α . So λ ≡ 1 +
√

σ2ν
σ2αT+σ

2
ν
will exceed 1, while λ ≡

1 −
√

σ2ν
σ2αT+σ

2
ν
will be between 0 and 1 as needed. This is why we

reject the 1+... root and keep the 1-... one.

(b) Use the previous result to define a convenient implementation of the
GLS estimator for this model.
ANSWER: the GLS transformation with the optimal λ changes the
error term to a Gauss-Markov one with Homoskedasticity and No
autocorrelation. Hence the BLUE estimator, which is the GLS, is
identical to plain OLS on the transformed model.

(c) How would you obtain a consistent estimator for λi which you would
need to define the feasible GLS estimator?
ANSWER: see lecture notes.
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3. For a balanced panel data set, recall the transformations:

{zit − z̄i·} “Within′′

{z̄i·} “Between′′

{zit − λz̄i·} “GLS′′

Running OLS on the “within-”, “between-”, and “GLS-” transformed
models defines the β̂W , β̂B and β̂GLS respectively. It can be shown (see
Greene, sections 14.3—14.4) that β̂GLS is a matrix-weighted average of β̂W
and β̂B . Specifically,

β̂GLS = FW β̂W + (I − FW )β̂B ,

where FW ≡ [SWXX +(1−λ)2SBXX ]−1SWXX , θ was defined above, and S
W,B
XX

are sample-moment matrices of the X variables from the W,B transfor-
mations respectively.
Define three alternative Wu-Hausman statistics based on the three differ-
ence vectors:

d̂1 = β̂B − β̂W , d̂2 = β̂GLS − β̂W , d̂3 = β̂GLS − β̂B .

(a) Show that if λ is known exactly (i.e., does not need to be estimated)
the three Wu-Hausman tests will be algebraically equivalent.
ANSWER:

d̂1 = β̂B − β̂W
d̂2 = β̂GLS − β̂W

= F β̂W + (I − F )β̂B − β̂W = (I − F )(β̂B − β̂W )

= (I − F )d̂1

d̂3 = β̂GLS − β̂B
= F β̂W + (I − F )β̂B − β̂B = −Fβ̂B + Fβ̂W

= −F d̂1

Hence we see that:

d̂2 = A2d̂1 , A2 = I − F nonsingular
d̂3 = A3d̂1 , A3 = −F nonsingular

and

q̂1 = d̂′1[V (d̂1)]
−1d̂1

q̂2 = d̂′2[V (d̂2)]
−1d̂2 = d̂′1A

′
2[A2V (d̂1)A

′
2]
−1A2d̂1

= d̂′1A
′
2(A
′
2)
−1V (d̂1)

−1(A2)
−1A2d̂1

= d̂′1V (d̂1)
−1d̂1

= q̂1
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Similarly for q̂3 = q̂1.
General result: Quadratic form of z in V (z)−1 is the same as quadratic
form of Az in V (Az)−1 for any fixed nonsingular matrix A.

(b) What types of hypotheses can these statistics be used to test? When
would these test procedures have high power?
ANSWER:
If εit = αi + νit with E(νit|X) = 0 but E(αi|X) 6= 0, GLS/RE and
B will be inconsistent, while FE/W will be consistent. Hence can
consider Hausman tests based on three differences vectors:

d̂1 : V (d̂1) = VB + VW − 2 · 0 since P and Q = I − P are orthogonal

d̂2 : V (d̂2) = VW − VGLS by the asymptotic Rao-Blackwell theorem since GLS is effi cient under H0

d̂3 : V (d̂3) = VB − VGLS again by Rao-Blackwell

A HT will have high power if:
(i) the two estimators that are differenced have different probability
limits under the alternative H1.
[For d̂1, there is inconsistency due to β̂B ; for d̂2, there is inconsistency
due to β̂GLS ; and for d̂3, there is inconsistency due to both β̂GLS
and β̂B .]
And:
(ii) the asymptotic VCov AV (V (d̂j)), j = 1, 2, 3, is "low".

(c) Define a fourth Wu-Hausman statistic based on the difference vec-
tor: d̂4 = β̂GLS − β̂OLS where β̂OLS is the OLS estimator from the
untransformed data.

i. Explain how you would calculate the variance-covariance matrix
of d̂4.
NB: You do not need to calculate the precise expression – sim-
ply explain what the issues are.
ANSWER:
Note that:

V (d̂4) = V̂OLS − V̂GLS
since GLS is effi cient under H0. But of course

V̂OLS 6= σ2ε(X
′X)−1

since εit = αi + νit implies serial correlation in εit. So need
formula

(X ′X)−1X ′ΩX(X ′X)−1

ii. Would such a test have good power properties?
ANSWER:
Power issues as above. NOTE: if both GLS and OLS remain
consistent under H1 (e.g., Eα|X = 0 and Eν|X = 0) then the
test would have zero power.
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4. The classic linear dynamic balanced panel data model :

yit = δyi,t−1 + x′itβ + z′iγ + αi + νit, i = 1, · · · , N, t = 1, · · · , T

(a) The Bargava and Sargan approach:
Step 1 —write out explicitly as a separate equation for each t, so a
cross-section on a System of T equations for the T endogenous vari-
ables y1, y2, · · · , yT and the exogenous variables xiT , xi,T−1, · · · , xi1, zi
Step 2 —write out a linear quasi-reduced form equation for yi1 in
terms of full exogenous information available to the econometrician
(but not actually available to the economic agents at time t = 1):

yiT = δyi,T−1 + x′iTβ + z′iγ + αi + νiT
yi,T−1 = δyi,T−2 + x′i,T−1β + z′iγ + αi + νi,T−1
...

...
...

yi2 = δyi1 + x′i2β + z′iγ + αi + νi2
yi1 = x′i1θ1 + x′i2θ2 + · · ·+ x′iT θT + z′iζ + ui1

i = 1, · · · , N

i. Optimal estimation assuming normality of the errors is achieved
through Full Information MLE of (δ, β′, γ′, θ′1, · · · , θ′T , ζ ′)′ and
(σ2α, σ

2
ν , σ

2
0) implied by the cross-equation restrictions of the above

system and the variance-covariance restrictions of the structure:

ω2T ωT,T−1 ωT,T−2 · · · ωT2 ωT1
ωT−1,T ω2T−1 ωT−1,T−2 · · · ωT−1,2 ωT−1,1

ωT−2,T ωT−2,T−1
. . .

...
...

...
...

. . .
. . .

. . . ω32 ω31
ω2T ω2,T−1 · · · ω23 ω22 ω21
ω1T ω1,T−1 · · · ω13 ω12 ω21


=



σ2ν + σ2α σ2α σ2α · · · σ2α A
σ2α σ2ν + σ2α σ2α · · · σ2α A

σ2α σ2α
. . .

...
...

...
...

...
. . .

. . . σ2α A
σ2α σ2α · · · σ2α σ2ν + σ2α A
A A · · · A A B


where A =

σ2α
1−δ and B =

σ2α
(1−δ)2 +

σ2ν
1−δ2 + σ20.

Without assuming normality, the optimal linear system estima-
tor is 3SLS

ii. If one wants to test the one-factor analytic structure, one can
carry out FIML (δ, β′, γ′, θ′1, · · · , θ′T , ζ ′)′ with an unrestricted Ω
cross-equation variance-covariance, and compare the results to
those of the first FIML through, say, a Likelihood Ratio statistic.
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iii. If one believes that the initial condition yi1 is exogenous, then one
applies FIML (under Normality) or 3SLS (without Normality)
on the system with T −1 equations in the T −1 endogenous vari-
ables y2, · · · , yT and the exogenous variables y1, xiT , xi,T−1, · · · , xi1, zi.
To test the exogeneity of yi1, one would need to carry out a non-
nested test, since the null hypothesis that yi1 is exogenous implies
A = B = 0 simultaneously.

(b) Applying first differencing to the original model gives:

∆yit = δ∆yi,t−1 + ∆x′itβ + ∆νit, i = 1, · · · , N, t = 2, · · · , T

Since the error term ∆νit is a MA(1) with known parameter −1,
valid instrumental variables for the lagged dependent variable term
are: ∆yi,t−m and yi,t−m for m ≥ 2. Note that there is a triangular
structure in the set of optimal instruments, since the further along
one moves in time, the greater the number of valid instruments.
NB: the regular yit − ȳi� transformation is not useful for this model
since in that case, no valid instruments can be obtained by lagging
the ys and ∆ys any number of times, because yi,t−1 − ȳi� and the
implied error νi,t−1− ν̄i� are serially correlated with yis and ∆yis for
every s.

(c) Comparing methods (a) and (b) when the following additional com-
plications are present in the linear dynamic panel data model:

i. One of the xit regressors is correlated with νit:
This for example could be caused by that regressor being mea-
sured with error. Then both (a) and (b) will be inconsis-
tent. But there the typical problem of FE-type estimators (e.g.,
Arellano-Bond Difference+IVE) may occur here, in that such es-
timators may exacerbate the inconsistency because the∆(·) (and
the general FE) transformation usually reduces significantly the
signal-to-noise ratio. This is because typically the true signal
may be changing more slowly over time compared to the mea-
surement error.

ii. All of the xit regressors are correlated with αi:
The FE-type estimators eliminate the αi and hence their con-
sistency is not affected by such correlations. But it may be
preferable to apply the generalization to RE-type of estimators
that we discussed in the lectures, where we model explicitly the
correlation between the x regressors and the αi terms through a
model of the form: E(αi|X,Z) = x̄i·ξ. Hence, entering explic-
itly the time-averages of the xs into the original equation:

yit = δyi,t−1 + x′itβ + x̄i·ξ + z′iγ + α∗i + νit

yields a new α∗i persistent heterogeneity random effect that is un-
correlated from all regressors. Hence, the B-S RE-type approach
can then proceed normally.
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iii. One of the xit regressors is measured with error, ξit:
See point i. above.

iv. One of the zi regressors is measured with error, ζi:
Since FE-type estimators eliminate time-invariant regressors, the
Difference+IVE method will not be affected by this type of er-
rors.
Defining zji = z∗ji + wji where the true z

∗j
i is only observed

through the error wji :

yit = δyi,t−1 + x′itβ + z′,−ji γ−j + z′ji γ
j + αi − wjγj + νit

If we could think of an instrumental variable for zji , we could
modify the B-S approach by adding a reduced-form equation for
the observed zji in terms of all the time-invariant variables plus
the additional instrumental variable for it.
Otherwise, the random-effects-type estimators, e.g., B-S would
be inconsistent.
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5. Consider the dynamic linear regression model for balanced data:

yit = δyi,t−1 + x′itβ + z′iγ + εit , i = 1, · · · , N , t = 1, · · · , T

where εit follows the one factor error components model: εit = αi + νit
with αi modelling individual unobserved persistent heterogeneity.

(a) Describe two estimation approaches for this model: the first should
rely on the “Fixed Effects” principle of eliminating the unobserved
persistent heterogeneity term αi and carrying out estimation condi-
tional on it.The second should rely on the “Random Effects”princi-
ple of deriving the (possibly optimal) estimator that considers either
the full p.d.f.. or the first tow moments of the disturbance vector
(ε11, · · · , ε1T , · · · , εi1, · · · , εiT , · · · , εN1, · · · , εNT )′, i.e., pdf(ε|X,Z)
or E(ε|X,Z) and V Cov(ε|X,Z).
Arellano-Bond estimation by applying (optimal) IVE to the first-
differences model:
Arellano-Bond along First-Differencing+IVE lines using the fact that
since the first-differenced model is:
∆yit = δ∆yi,t−1 + ∆x′itβ + ∆νit
in view of the non-invertible MA(1) error, the endogeneity of ∆yi,t−1
can be overcome by using information from t = 2 and/or earlier and
doing IVE.
Barghava-Sargan estimation by writing panel data model as a cross-
sectional system of equations, one for each time period and treating
it as a Simultaneous equations system. Additional trick: complete
model by adding the quasi-reduced form for the first observation as
yi1 = ziζ + xi1ξ1 + · · ·+ xiT ξT + ui1
You should discuss the properties of the two estimation approaches
under the following three scenariios about the νit error term:

i. νit ∼ N(0, σ2ν) i.i.d. over both i and t;
Classic case. Valid instruments for AB are values of yi,t−q,
q ≥ 2. As we move further down the time periods of a given in-
dividual, additional lags of y become valid instruments. Hence,
the effi cient IV/GMM estimator uses instruments with a trian-
gular structure, resetting once a new individual is considered.

ii. νit = ξit + λξi,t−1 with ξit ∼ N(0, σ2ξ) i.i.d. over both i and t;
Now valid instruments for AB are values of yi,t−q, q ≥ 3.

iii. νit = ρνi,t−1 + ξit with |ρ| < 1 and ξit ∼ N(0, σ2ξ) i.i.d. over
both i and t.
AB will not provide consistent estimates since no valid instru-
ments exist in this case: The variables yi,t−q, are correlated with
the regressor yi,t−1 for *any* q.

In all three cases (i)-(iii), the B-S approach remains valid, since the
system estimation approach used (3SLS or FIML) allows for *any*
valid correlation structure among the equation errors,
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(ui1, εi2, εi3, · · · , εit, · · · , εiT )′. Hence in fact the particular error
structures (i)-(iii) can be *tested* using classical tests (Wald, LR,
LM), with the Restricted model imposing the particular correlation
structure in the estimation vs. the Unrestricted model with allowing
3SLS or FIML to estimate the variance-cov structure of the errors.

(b) Now assume the simplest αi+νit structure and consider how the two
estimation approaches you described above will need to be modified
to analyze the alternative models:

yit = g(xit, β, zi, γ) + δyi,t−1 + εit (Model 1)

where the non-linear function g(.) is known up to parameter vectors
β and γ;
and

yit = h(xit, β, zi, γ, δyi,t−1) + εit (Model 2)

and where the non-linear function h(.) is known up to parameter
vectors β and γ and parameter δ.
The first model is additive in the errors, so it can be analysed com-
pletely analogously by combining RE and FE or ∆ transformations
with NLLS instead of OLS, or GMM in place of IV as necesary.
Key thing to remember: the FE and RE operators must be applied
to the non-linear function exp(.) and *not* the non-linear function
evaluated at the FE- or RE-transformed data.
I.e., using g((xit − λix̄i·)′β + (1 − λi)z′iγ) would be wrong for RE,
while we should use instead:
g(x′itβ + z′iγ)− λig(x′i,t−1β + z′iγ) for the non-linear term.
Since Model 1 contains the additive dynamic term +δyi,t−1 it is not
appropriate to combine the usual RE or FE transformations together
with NLLS to account for the presence of the g(.) term, just like
the linear case where OLS to the transformed models would lead to
inconsistency because of the endogeneity of all transformations of the
+δyi,t−1 term. For example, applying first differencing to eliminate
the alpha term, gives:

yit−yi,t−1 = g(xit, β, zi, γ)−g(xi,t−1, β, zi, γ)+δ(yi,t−1−yi,t−2)+νit−νi,t−1

Hence, one cannot apply NLLS to this model because of the MA(1) of
the resulting error term. Instead, one should use NLIV/GMM based
on yi,t−2, yi,t−3, ... terms as valid instrumental variables.
In Model 2, there is a very significant additional complication: the
non-linearity encompasses also the yi,t−1 part. The presence of the
lagged term under the non-linear function makes this model non-
additive in the error term (at least with the αi present in all periods).
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Hence RE- or FE- plus NLLS will *not* work for this model, but we
need to use instead MLE that takes into account correctly the non-
trivial Jacobian of the y −→ error transformation.
Another possibility for estimating this model consistently (though not
effi ciently, as is the case of MLE) would be as follows: assuming,
as with MLE, that the regressors are *strongly* exogenous w.r.t. the
error term, implies that lagged Xs are valid instruments for the (en-
dogenous) lagged ys that appear as regressors. Hence NLIV/GMM
could be used instead.

(c) Finally suppose that in part (b), the δ parameter equals 0. What
happens to Models 1 and 2 in such case? Discuss estimation when
(i) all regressors are measured without error; and (ii) when one or
more regressor(s) contain(s) errors of measurement. In such case
(ii), does it make a difference whether the mismeasured regressors
are among the Xs or the Zs?
If δ is 0, then Models 1 and 2 have exactly the same structure. So
let us focus on Model 1.
If all the regressors are measured correctly (case (i)), then this is the
classic case (easy) with the error term appearing additively outside
the nonlinear function g(.). Solution: FE or RE transformations
plus NLLS.
In case (ii) however, the problem becomes essentially one with *non*additive
error terms, since the measurement errors are inside the nonlinear
function. It is equally hard to deal with this problem whether it is the
Xs or Zs that are mismeasured – there is no simplification afforded
by the within or first-differencing transformations, since the Zs are
underneath the g(.) function, and hence such transformations will
not eliminate the time-invariant Zs.

c© Vassilis Hajivassiliou, LSE 2000-2024
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