
London School of Economics Vassilis Hajivassiliou
Department of Economics Winter Term 2024

Further Topics in Econometrics
(Ec485/Ec518)

Answers to Problem Set #2 —Simulation-Based
Inference

1. Consider a balanced panel data set with N individuals indexed by i =
1, · · · , N each observed for T = 5 time periods. Consider the Multiperiod
Binary Probit model defined by

yit =

{
1 iff x′itβ + εit > 0
0 otherwise

Suppose that the errors ε are fully independent from all regressor variables.
They are also independent across individuals, but have the one-factor
error-components structure:

εit = αi + νit ∼ N(0, σ2α + σ2ν)

where αi ∼ N(0, σ2α) i.i.d. over i; νit ∼ N(0, σ2ν) i.i.d. over both i and ν;
and αi, νit fully mutually independent for all i and t.

Consider the 5× 1 sequence of binary choices for individual i

yi ≡


yi1
yi2
yi3
yi4
yi5


and denote the stacked vector of the sequences of the binary choices of all
individuals by the 5N × 1 vector y. The regressors are similarly stacked
into the 5N ×k matrix X, where k is the number of explanatory variables
in the model. Our aim is to estimate the unknown parameters using the
observed data set (y,X).

(a) Can the regressor matrix X contain an intercept (vector of ones)?
Why or why not?
ANSWER:
It is possible to run a probit model here with a constant since there
is no perfect multicollinearity problem. Three points: (1) since the
threshold is already normalized to be 0, there is no problem including
the constant – it is of course true that the threshold and the intercept
cannot be separately. (2) Given the E alpha=0 assumption, there is
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no confusion between including an intercept and it being confused
with the mean of alpha. Finally, (3) had we tried to adopt Fixed-
Effects-type of estimation by including N individual intercepts for
each ai, then there would have been multicollinearity with an overall
constant. But we cannot estimate all the alphas in any case because
of the infinite incidental parameters problem.

(b) Are the variance terms σ2α + σ2ν identified? Why or why not?
ANSWER:
As with any binary threshold crossing model, the β parameters ap-
pear in the likelihood contributions as ratios with

√
σ2ε =

√
σ2α + σ2ν ,

i.e., as β/
√
σ2α + σ2ν . Consequently, σ

2
α and σ

2
ν cannot be separately

identified – one option would be to normalize σ2ε = σ2α + σ2ν = 1,
which shows that only one of the two variances can be identified even
after this normalization.

(c) Suppose an investigator carries out Pooled Binary Probit estimation,
whereby the panel data structure is completely ignored and all indi-
vidual observations are treated as if they came from a single cross-
section sample of dimension 5N × 1. Discuss the properties of this
estimation approach.
ANSWER:
An individual observation of the binary LDV yit is a Bernoulli r.v.
conditional on the regressors and the parameters, with (marginal)
probability of success:

Pr(yit = 1|X, params) = Pr(x′itβ + εit > 0)

= Pr(
x′itβ + εit√
σ2α + σ2ν

> 0) = Φ

(
x′itβ√
σ2α + σ2ν

)

and of failure:

Pr(yit = 0|X, params) = Pr(x′itβ + εit ≤ 0)

= 1− Φ

(
x′itβ√
σ2α + σ2ν

)

Therefore, the two probabilities can be summarized in the single
statement:

Pr(yit = 1|X, params) =


Φ

(
x′itβ√
σ2α+σ

2
ν

)
if yit = 1

1− Φ

(
x′itβ√
σ2α+σ

2
ν

)
if yit = 0

= Φ

(
(2yit − 1) · x′itβ√

σ2α + σ2ν

)
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This simplification is possible because when yit = 1 then (2yit−1) =

1 so the probability equals Φ

(
x′itβ√
σ2α+σ

2
ν

)
and when yit = 0 then

(2yit − 1) = −1 and hence the probability equals Φ

(
− x′itβ√

σ2α+σ
2
ν

)
=

1− Φ

(
x′itβ√
σ2α+σ

2
ν

)
as required.

Pooling the data amounts to assuming that the errors εit are indepen-
dent over both i (which they are) and over t (which they are not), in
view of the presence of the persistent αi in all the errors of individual
i. So the Pooled Binary Probit uses the likelihood contribution:

`it(yit|X, parameters) =

T∏
t=1

Φ

(
(1− 2yit) ·

x′itβ√
σ2α + σ2ν

)

which is incorrect – the different Phees cannot be multiplied together
since the errors of individual i are serially correlated and dependent.
Because of this mis-specification error, the Pooled BP cannot be
shown to be CUAN.

(d) Describe the approach of Heckman (1981) for estimating the Random
Effects Binary Probit model and explain how his approach improves
on the Pooled method of (c). Discuss the order of integration nec-
essary for implementing the Heckman estimation approach.
ANSWER:
Heckman pointed out that conditionally on the heterogeneity term
αi,

Pr(yit = 1|αi, X, params) = Pr(x′itβ+αi+νit ≤ 0) = Φ

(
x′itβ + αi√

σ2ν

)

giving the conditional probability and likelihood contribution:

`it(yit|αi, X, parameters) = Φ

(
(1− 2yit) ·

x′itβ + αi
σν

)
But now the only stochastic term is νit. As long as this component is
assumed to be i.i.d. over both i and t, the T terms of individual i can
be multiplied together to give the conditional likelihood contribution
for all periods of individual i as:

`i(yi1, · · · , yit, · · · , yiT |αi, X, parameters)

= `i(yi|αi, X, parameters) =

T∏
t=1

Φ

(
(1− 2yit) ·

x′itβ + αi
σν

)
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To get the joint density of yi and ai, we multiply the conditional by
the pdf of ai to obtain:

`i(yi1, · · · , yit, · · · , yiT , αi|X, parameters)

= `i(yi, αi|X, parameters) =
1

σα
φ

(
αi
σα

)
·
T∏
t=1

Φ

(
(1− 2yit) ·

x′itβ + αi
σν

)

To obtain the final likelihood contribution without αi, namely `i(yi|X, parameters),
we must "integrate out" or "marginalize out" αi from the above for-
mula, i.e.,

`i(yi|X, parameters) =

+∞∫
−∞

`i(yi, αi|X, parameters)dαi

=

+∞∫
−∞

1

σα
φ

(
αi
σα

)
·
T∏
t=1

Φ

(
(1− 2yit) ·

x′itβ + αi
σν

)
dαi

Since Heckman’s work, other researchers have shown that the inte-
grand is a non-linear function (the product of the Φs) times the nor-
mal density φ, the properties of the so-called "Hermite Polynomials"
can be exploited to give extremely accurate numerical approxima-
tions by so called "Quadrature Rules".

(e) For an individual i, characterize the vector of their conditional ex-
pectations of each binary choice given the observed data

E(yi|X) ≡


Eyi1|X
Eyi2|X
Eyi3|X
Eyi4|X
Eyi5|X


Hence show how the unknown parameters of the model can be es-
timated through the Generalized Method of Moments approach of
Avery, Hansen, and Hotz (1983). Discuss the order of integration
necessary for implementing the AHH approach. Outline the proper-
ties of the AHH estimation approach.
ANSWER:
As discussed in the lecture, the marginal expectation functions of
Bernoullis are equal to the probability of success, i.e.,

E(yit|X) = Pr(yit = 1|X, params) = 1− Φ

(
x′itβ√
σ2α + σ2ν

)
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This, of course, is a univariate integral – Φ(z) is the cdf of a N(0,1),
i.e., the probability of a value less than or equal to z, meaning the
integral from −∞ up to point z.
Also as explained in the lecture, the optimal instruments and weights
will involve the Bernoulli variance

V (yit|X) =

[
1− Φ

(
x′itβ√
σ2α + σ2ν

)]
· Φ
(

x′itβ√
σ2α + σ2ν

)

and the derivatives of E(yit|X) and V (yit|X). All these terms will
be univariate integrals.

(f) Now suppose that instead of i.i.d. over t and i, the error component
νit follows an ARMA(1,1) process with autoregressive parameter γ
and moving average parameter λ. How does the expression for the
probability of the observed sequences of binary choices change in
this case? I.e., you must characterize the probability Pr(yi|X) and
explain in which ways it differs from that probability under the one-
factor error-components model of Heckman (1981). Discuss the order
of integration necessary for the evaluation of Pr(yi|X).
ANSWER:
The approach of Heckman (1981) will not work in this case. This
is because if we condition on αi we would again get the expression
where the only randomness is in νit, i.e.:

`it(yit|αi, X, parameters) = Φ

(
(1− 2yit) ·

x′itβ + αi
σν

)
But now the νit are *dependent* across the different time-periods
for individual i because νit ∼ ARMA(1, 1) and hence it is serially
correlated/dependent across t. Therefore, to get the likelihood con-
tribution we canot multiply together these terms (whether we do it
conditionally on αi and then marginalize it out or directly).
The correct calculation would be to write:

Pr(yi1, yi2, yi3, yi4, yi5|X, parameters)

=

b5∫
a5

b5∫
a5

b5∫
a5

b5∫
a5

b5∫
a5

pdf(y∗i1, y
∗
i2, y

∗
i3, y

∗
i4, y

∗
i5|X, parameters)dy∗i1dy∗i2dy∗i3dy∗i4dy∗i5

where y∗it = x′itβ + εit and the limits of integration at and bt are
defined as follows:

if yit = 1 : (at = 0, bt = +∞)

if yit = 0 : (at = −∞, bt = 0)
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(g) Show how probability of the observed choices Pr(yi|X) can be char-
acterized through a set of linear inequality constraints on a set of cor-
related unobserved random variables. Use this framework to explain
the Simulation-Based estimation approaches of Boersch-Supan and
Hajivassiliou (1993) and Hajivassiliou and McFadden (1997). Dis-
cuss the properties of these estimation approaches.
NB: Show how your answer to this part can handle both the original
error-component-only specification, as well as the error-components-
plus-ARMA(1,1) error structure of part 1(g).
ANSWER:
As explained in the previous part:

Pr(yi1, yi2, yi3, yi4, yi5|X, parameters)

=

b5∫
a5

b5∫
a5

b5∫
a5

b5∫
a5

b5∫
a5

pdf(y∗i1, y
∗
i2, y

∗
i3, y

∗
i4, y

∗
i5|X, parameters)dy∗i1dy∗i2dy∗i3dy∗i4dy∗i5

= Pr(a1 < y∗i1 < b1, a2 < y∗i2 < b2, a3 < y∗i3 < b3,

a4 < y∗i4 < b4, a5 < y∗i5 < b5|X, parameters)

where again as explained in the previous part the lower limits at and
the upper limits bt are defined by:

if yit = 1 : (at = 0, bt = +∞)

if yit = 0 : (at = −∞, bt = 0)

Boersch-Supan and Hajivassiliou defined the "Smooth Recursive Con-
ditioning" simulator based on the Cholesky factorization of the VCov
matrix of the total ε errors – subsequently known as the GHK simu-
lator. Their simulation-based estimation method is thus "Maximum
Smoothly Simulated Likelihood" (or MSL with GHK).
Hajivassiliou and McFadden proposed the "Gibbs Resampling Simu-
lator" for approximating the Likelihood Scores:

∂`i/∂θ

`i

Their estimation method was thus the "Method of Simulated Scores"
(or MSS with Gibbs Resampling).
Both simulation strategies can be formulated as generating draws
from (latent) distributions that are restricted over regions defined by
a set of linear inequalties – as illustrated above.
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2. Consider the Multiperiod Autoregressive Binary Probit model defined by:

yit =

{
1 iff δyi,t−1 + x′itβ + εit > 0
0 otherwise

Suppose that the errors ε are fully independent from all regressor variables.
They are also independent across individuals, but have the one-factor
error-components structure:

εit = αi + νit ∼ N(0, σ2α + σ2ν)

where αi ∼ N(0, σ2α) i.i.d. over i; νit ∼ N(0, σ2ν) i.i.d. over both i and ν;
and αi, νit fully mutually independent for all i and t.

Consider the 5× 1 sequence of binary choices for individual i

yi ≡


yi1
yi2
yi3
yi4
yi5


and denote the stacked vector of the sequenes of the binary choices of all
individuals by the 5N × 1 vector y. The regressors are similarly stacked
into the 5N ×k matrix X, where k is the number of explanatory variables
in the model. Our aim is to estimate the unknown parameters using the
observed data set (y,X).

(a) What additional problems are caused by the presence of the lagged
dependent variable as regressor, i.e., by δ 6= 0? How did Heckman
(1981) propose to handle these extra problems?
ANSWER:
To incorporate the presence of the lagged dependent discrete response
term yi,t−1 as an extra regressor, Heckman modified his approach as
follows: First conditionally on the heterogeneity term αi,

Pr(yit = 1|αi, X, params)
= Pr(δyi,t−1 + x′itβ + αi + νit ≤ 0)

= Φ

(
δyi,t−1 + x′itβ + αi√

σ2ν

)
giving the conditional probability and likelihood contribution:

`it(yit|αi, X, parameters) = Φ

(
(1− 2yit) ·

δyi,t−1 + x′itβ + αi
σν

)
This involves the additional assumption that the discrete response
yit follows a "Markov scheme" whereby conditional on its single past
value yi,t−1, the randomness left is only through the εit term.
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Again conditional on αi the only stochastic term is νit. As long as
this component is assumed to be i.i.d. over both i and t, the T terms
of individual i can be multiplied together to give the conditional
likelihood contribution for all periods of individual i as:

`i(yi1, · · · , yit, · · · , yiT |yi0, αi, X, parameters)
= `i(yi|yi0, αi, X, parameters)

=

T∏
t=1

Φ

(
(1− 2yit) ·

δyi,t−1 + x′itβ + αi
σν

)
NB: the formula now *conditions* also on the initial condition yi0
since for the first period t = 1, the RHS will have the lagged y in
period t = 0. Since there are N individuals each with their own
initial condition, and since N →∞, the number of initial conditions
grows to infinity as well.
To get the joint density of yi and ai, we multiply the conditional by
the pdf of ai to obtain:

`i(yi1, · · · , yit, · · · , yiT , αi|yi0, X, parameters)
= `i(yi, αi|yi0, X, parameters)

=
1

σα
φ

(
αi
σα

)
·
T∏
t=1

Φ

(
(1− 2yit) ·

δyi,t−1 + x′itβ + αi
σν

)
To obtain the final likelihood contribution without αi, namely `i(yi|X, parameters),
we must "integrate out" or "marginalize out" αi from the above for-
mula, i.e.,

`i(yi|yi0, X, parameters)

=

+∞∫
−∞

`i(yi, αi|yi0, X, parameters)dαi

=

+∞∫
−∞

1

σα
φ

(
αi
σα

)
·
T∏
t=1

Φ

(
(1− 2yit) ·

δyi,t−1 + x′itβ + αi
σν

)
dαi

But the problem would still not be solved, however, because of the
N initial conditions that each of these contributions will depend on.
Heckman investigated this issue and found that it is *insurmountable*
to overcome it we would need to characterize the distribution of yi0
and marginalize it out – just like we did to take care of αi. The
problem, however, is that the distribution of yi0 is not known –
and in fact Heckman showed that (a) it *cannot* *be* a well-defined,
stable distribution like the distribution of yit because it will depend
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on the actual paths of all the yits in the past; and (b) whatever the
distribution of yi0 is, it *cannot* be the same as that of yit for
t = 1, · · · , T . This problem remains unresolved for the last 30 years.

(b) Explain the terms “State Dependence”and “Persistent Unobserved
Heterogeneity”and discuss how these two properties can be distin-
guished and tested formally.
ANSWER:
"State Dependence" refers to how significantly the probability of yit
today is affected by the observed discrete response in the previous
period, i.e., by yi,t−1. So this can be quantified by assessing the
significance of the δ parameter in front of the lagged discrete response
term on the RHS.
"Persistent Unobserved Heterogeneity" (or more generallay just "Un-
observed Persistence") refers to how important the term αi is relative
to the overall εit error. This can be quantified by assessing how large
σ2α relative to σ

2
ε = σ2α + σ2ν . More generally, "Unobserved Persis-

tence" overall can be quantified by the persistence in αi and possible
serial correlation in νit, if for example the latter folows ARMA-type
schemes.
Heckman’s fundamental point was that we need to model
explicitly for the *both* sources of temporal dependence to
get meaningful, reliable estimates:
If for example we left out the lagged dependent indicator and only
allowed for the persistent αi (and/or allow for νit to be serially corre-
lated – which we can only do through Simulation-Based Estimators),
the error autocorrelation would appear misleadingly strong because
it would try to capture the importance of the state-dependence term
we left out.
Conversely, if we included the yi,t−1 term but didn’t allow for the
error term to be serially correlated (either through αi and/or through
serial correlation in the νit), then the δ coeffi cient would be seriously
upwardly biased/inconsistent because it would try to capture the
error serial dependence/persistence we left out.

(c) Show how the probability of the observed choices Pr(yi|X) can be
characterized through a set of linear inequality constraints on a set of
correlated unobserved random variables. Use this framework to ex-
plain the Simulation-Based estimation approaches of Boersch-Supan
and Hajivassiliou (1993) and Hajivassiliou and McFadden (1997).
Discuss the properties of these estimation approaches for the more
complicated error specification that, in addition to the heterogeneity
term αi, the νit error component follows an ARMA(1,1) process with
autoregressive parameter γ and moving average parameter λ.
ANSWER:
This is entirely analogous to the discussion in 1.g above with
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one very major modification:

Pr(yi1, yi2, yi3, yi4, yi5|yi0, X, parameters)

=

b5∫
a5

b5∫
a5

b5∫
a5

b5∫
a5

b5∫
a5

pdf(y∗i1, y
∗
i2, y

∗
i3, y

∗
i4, y

∗
i5|X, parameters)dy∗i1dy∗i2dy∗i3dy∗i4dy∗i5

= Pr(a1 < y∗i1 < b1, a2 < y∗i2 < b2, a3 < y∗i3 < b3,

a4 < y∗i4 < b4, a5 < y∗i5 < b5|X, parameters)
(2) = Pr(a1 < δyi0 + x′itβ + εi1 < b1,

a2 < δyi1 + x′itβ + εi2 < b2,

a3 < δyi2 + x′itβ + εi3 < b3,

a4 < δyi3 + x′itβ + εi4 < b4,

a5 < δyi4 + x′itβ + εi5 < b5|X, parameters)
(3) = Pr(a1 − δyi0 < x′i1β + εi1 < b1 − δyi0,

a2 − δyi1 < x′i2β + εi2 < b2 − δyi1,
a3 − δyi2 < x′i3β + εi3 < b3 − δyi2,
a4 − δyi3 < x′i4β + εi4 < b4 − δyi3,
a5 − δyi4 < x′i5β + εi5 < b5 − δyi4|X, parameters)

(4) = Pr(a1 − δyi0 < ui1 < b1 − δyi0,
a2 − δyi1 < ui2 < b2 − δyi1,
a3 − δyi2 < ui3 < b3 − δyi2,
a4 − δyi3 < δyi3 + ui4 < b4 − δyi3,
a5 − δyi4 < ui5 < b5 − δyi4|X, parameters)

(5) = Pr(a1 − δyi0 < ui1 < b1 − δyi0,
a2 − δyi1 < ui2 < b2 − δyi1,
a3 − δyi2 < ui3 < b3 − δyi2,
a4 − δyi3 < δyi3 + ui4 < b4 − δyi3,
a5 − δyi4 < ui5 < b5 − δyi4|X, parameters)

where the latent random variables that are being limited are redefined
as:

uit ≡ x′itβ + εit

and the lower limits ct and the upper limits dt now have *four* cases,
depending on what happened to the discrete indicator in the previous
period:

if yit = 1, yi,t−1 = 1 : (ct = −δ, dt = +∞)
if yit = 1, yi,t−1 = 0 : (ct = 0, dt = +∞)
if yit = 0, yi,t−1 = 1 : (ct = −∞, dt = −δ)
if yit = 0, yi,t−1 = 0 : (ct = −∞, dt = 0)
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This is because the limits are defined by:

ct = at − δyi,t−1
dt = bt − δyi,t−1

In this fashion, we are able to charactarize in the same fashion to
joint probability Pr(yi1, yi2, yi3, yi4, yi5|yi0, X, parameters) as a set of
linear inequality constraints on (possibly heavily serially correlated)
latent random variables.

3. Consider the Simultaneous Binary Liquidity and Ordered Response Em-
ployment model of Hajivassiliou and Ioannides (2005). The model is
estimated using a Panel Data set on the Sit and Eit dependent discrete
variables and the matrix of explanatory factors for the two sides, XS and
XE respectively.
Dropping the i index for simplicity, define two latent dependent variables
y∗1t ≡ S∗t and y∗2t ≡ E∗t that are the underpinnings of St and Et according
to:

St =

{
1 iff S∗t > 0
0 otherwise

Et =


−1 iff E∗t < θ−

0 iff θ− < E∗t < θ+

+1 iff E∗t > θ+

Also dropping the t subscript for ease of notation, we consider the model
with spillover effects on both sides:

y∗1 ≡ S∗ = 1(y∗2 < θ−)δ01 + 1(y∗2 > θ+)δ02 + x1β1 + ε1

y∗2 ≡ E∗ = 1(y∗1 > 0)κ0 + x2β2 + ε2

The contemporaneous spillover effect δ0E on the RHS of S∗ into δ011(E = −1) + δ021(E = 1),
i.e., into separate terms for the overemployment and the under/unemployment
indicators.

Consider the observed sequence of discrete responses Sit and Eit for indi-
vidual i in period t. Stack these into their vector of choices for all periods:

(Si, Ei|XS , XE) ≡



Si1
Ei1
Si2
Ei2
...

Si,T−1
Ei,T−1
SiT
EiT


Define the joint probability of the observed discrete responses for all indi-
viduals:

Pr(S1, E1, S2, E2, · · · , SN−1, EN−1, SN , EN |XS , XE)
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Show how this probability can be characterized through a set of linear
inequality constraints on a set of correlated unobserved random variables
ε1it and ε2it for all i and t. Use this framework to explain the Simulation-
Based estimation approaches of Boersch-Supan and Hajivassiliou (1993)
and Hajivassiliou and McFadden (1997). Discuss the properties of these
estimation approaches for the more complicated error specifications for
ε1it and ε2it when they include both persistent heterogeneity terms like
αi, as well as error components which follow ARMA processes.

ANSWER:
In terms of the GHK simulator described above, the probability of a pair

(S,E) is equivalent to the probability:(
a1
a2

)
<

(
ε1
ε2

)
<

(
b1
b2

)
where (ε1, ε2)

′ ∼ N((µ1, µ2)
′,Σε), and a and b are:

*** TABLE 1 – see over ***
Define the 2 × 1 vectors ait, bit, and εit. Stacking all the Ti periods of

observation for individual i gives the 2 ·Ti×1 vectors ai, bi, and εi, where εi has
the 2 ·Ti× 2 ·Ti variance-covariance matrix with structure characterized by the
precise serial correlation assumptions made on the εits. In particular, one-factor
random effect assumptions will imply an equicorrelated block structure on Σε,
while our most general assumption of one-factor random effects combined with
an AR(1) process for each error implies that Σε combines equicorrelated and
Toeplitz-matrix features.
Through this representation, the probability of a complete sequence of the

observable (S,E) behaviour for individual household i, conditionally on the ini-
tial conditions Si0 and Ei0, is given by: P (S1, · · · , STi , E1, · · · , ETi) = Prob(ai <
εi < bi). Consequently, our approach incorporates fully: (a) the contempora-
neous correlations in εit; (b) the one-factor plus AR(1) serial correlations in εi;
and (c) the dependency of Sit on Eit, and vice versa. The possible endogeneity
of Si0 and Ei0 is handled by the approach described next.

c©Vassilis Hajivassiliou, LSE, 1998-2024
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