Topic 10 Header Slide |

e Topic 10. Usefulness of the exact and approximate normal linear regression model

(NLRM and ANLRM respectively)

Let us briefly recap our list of estimators so far:

Estimator | Notation
1. Bors

2. Brap

3. BLstar
4. Banm
5a. Biars
5. Brars
6. BrrLe




Recap from Topic 7: what is the NLRM?

We previously noted in Topic 7 that...

e The assumptions Al, A2linear, > A3Rmz, and some A4 are collectively referred to as a
“linear regression model”, or the LRM.

e If we have specifically A4GM (iid), the above assumptions comprise the “classical” LRM;
and if we have A4(), they comprise the “generalised” LRM.

e If we leave A4 as general, but add ASGaussian, the assumptions are said to collectively
comprise the “normal” LRM, or the NLRM hereafter.

In the next slide, we recall the key result available (for inference) under the NLRM.




Recap from Topic 7: key result available under the NLRM

Suppose we have Al, A2linear,> A3Rmi, and either A4Q) or A4G M (iid), and consider any
of the linear in y methods previously encountered, generically denoted by

6method - CXy,

where C'y is a k X S matrix characterising the specific linear in y estimation method, so that:

For Cx = Ax = (X’X)71X’, we obtain the first estimator, Bmethod = BOLS.
For C'x = Bx where Bx X = I;, we obtain the third estimator, @nethod BLSmr.

For Cx = Ay, we also have the fourth estimator, Bmethod BGMM
For Cx = By, = (X' LX)71X’O71, we have the fifth estimator, Bmethod = B[GLS.

Let us add A5Gaussian whereby e"“|X ~ N(0,%) for ¥ = 0°Is under A4GM (iid) and

¥ = Q) under A4S). Since multivariate Gaussianity is preserved under linear transformation,

Bmethod‘X ~ N(E<Bmethod)aV(Bmethod‘X))a or more specifically,
Bunethod| X ~ N(B", Cx2C%),

under the NLRM, so long as the method considered is linear in y.




: Recap from Topic 7: some more specifics under the NLRM

Estimator Scenario 1 — A4GM (iid) and AbGaussian

1. RBors|X ~ | N(RS"™, o?R(X'X) 'R)

2. RBrap|X ~ 772(2,77)

3. RBrstar|X ~ | N(RB" 02RBxByR)

4. RBGMM\X ~ | see OLS

5. RBrars|X ~ | N(RA"™ o2R(X'Q'X) 1 X'QO QX (X'Q X)) 1R
6. RBwip|X ~|see OLS BUE
Estimator Scenario 2 — A4() and AbGaussian

1. RBors|X ~| N(RB"™, AR(X'X) ' X'QOX (X' X) 'R

2. RBrap|X ~ | 772(2,77)

3. RBraar|X ~ | N(RB" ?RBxQByR)

4. RBGMM\X ~ | see OLS

5. RBiars| X ~ | N(RA!"™e 2R(X'O1X) 'R

6. RByrp|X ~ | see IGLS BUE

(Above, R is some g X k matrix with full row rank equal to ¢ < k.)




'Recap from Topic 7: what is the ANLRM?

Suppose we are unwilling to assume AbGaussian, or in fact, any AbSspeci fic at all.

Obviously, this would scupper any inferential objectives we might have. However, rather than
give up, we can appeal to asymptotic theory. That is, we can develop inferential techniques that
are at least asymptotically valid as S — oc.

In practice, what this means is that we assume our sample size, .S, is sufficiently large to
justify our belief that limiting results hold at least approximately in our empirical context. (The
approximation is typically thought of as only improving as the sample size increases.)

So what is “A” in the acronym “ANLRM"? Depending on how one wishes to structure the
exposition, one can think of A as standing either for:

e “Asymptotic” (i.e., as the sample size passes to infinity); or
e “Approximate” (i.e., where the approximation is justified for “sufficiently large” samples).

To summarise, the ANLRM refers to the asymptotic (as S — oo) or approximate (for large 5)
normal linear regression model. (Asymptotic/approximate normality is ushered in by a CLT.)




Extensions from Topic 7: key result available under the ANLRM

Suppose we have Al, A2linear, > A3Rsru, AAGM (iid) or A4Q), and S — oo or S large.
Consider the linear-in-y estimators:

Estimator 1: BOLS where BOLS = Axy
Estimator 3: 514 Where Brgar = Bxy such that Bx X = Iy

Estimator 4: Baymv = Bors

Estimator 5: rqrs = Biy = (X'Q7'X)71X'Q 1y with BX X = Iy

Estimator 6linear: BMLE in special cases that give linear-in-y estimators (e.g., Gaussianity)
and the nonlinear-in-y estimator:

Estimator 6nonlinear: BnlMLE in other “regular” cases that give nonlinear-in-y MLE (e.g.,
Ab5Logistic)

The ANLRM will prevail in the sense that all listed estimators (some of which nonlinear-in-y)
will be distributed as:

approzx.

Bmethad‘X ~ N(ﬁtrue’ V(Bmethod’X» for Iarge Sa

where the expression for V(ﬁmethod\X) depends on method and specific form of A4 and A5,
the approximation becoming better the larger is the sample size S.




Statistical inference under the ANLRM

o |t follows under the ANLRM that we have

approx.

RBfmethod‘X ~ N(Rﬁtrue, RV(Bmeth0d|X>R/) for Iarge Sa
for some R, a ¢ X k matrix with full row rank equal to ¢ < k.

e As was the case with the exact NLRM, it is important to note that the inferential results
alluded to in the previous bullet only hold due to preservation of multivariate Gaussianity
under linear transformation. (Bear in mind that this is a special property of the multivariate
Gaussian.)

e The reason we focus on the distribution of Rﬁmethod]X is because the latter is what is
needed for all three fundamental aims of statistical inference (see Topic 8) including interval
estimation, out-of-sample prediction, and hypothesis testing.

e The distributional results about RﬁmethOd, that were exact for the NLRM for any finite sample
size S, now become approximate for very large S under weaker conditions (A3 Rsru instead
of A3Rmi, A5 non-Gaussian, unknown, but “regular’) and even for “regular” nonlinear
estimators (e.g., nonlinear MLE).




Four key facts about the ANLRM

Fact 1: Results hold even with weakest A3 and A5 unknown but “regular”

Recall the two fundamental distributional results we have already discussed:

Exact NLRM (for any finite S):
If A1, A2linear, > A3Rmi, A4GM (iid) or A4S}, and ASGaussian, then:

RBometnod| X)~N(RB" RV (Betnoa| X)R') for large S,

and
ANLRM (for large/infinite S):
If A1, A2linear, > A3Rsru, A4GM (iid) or A4S), and S — oo or S large, then:

RBmethod| X T N(RB™, RV (Brmernod| X)R') for large S,

When S — oo or S large, (a) Strong exogeneity (A3Rmi or stronger) is relaxed to Weak
exogeneity (A3Rsru) and (b) AbGaussian is relaxed to any “regular” A5, known or unknown.




Four key facts about the ANLRM

Fact 2: Results hold for MLE even with ASnonGaussian, provided “regular”

Suppose a linear regression model satisfies:
Al, A2linear, > A3Rsru, Ad.independent, and AbSnonGaussian ‘“regular’ with

pdf (ys| X;0) = f(ys, X, 0)
When S — oo or S large, the MLE satisfies:

Rl X 5 N(RB"™, RV (B X)R)

where:

g -1
A 0*In f(ys, X, 0)
\Y meX - - —
) = - (LS
It should be noted that in these circumstances:

1. The B, will be nonlinear in y. And:

2. An example of AbnonGaussian that is “regular” is AbLogistic.  In contrast,

AbDouble Exponential / Laplace or A5Uni form do not satisfy “regularity” conditions.




Four key facts about the ANLRM

Fact 3: The Delta method changes results to Approximate/Asymptotic, whether starting from
NLRM or ANLRM

Suppose we consider a particular estimator Bmethod that either satisfies the Exact NLRM:

Bmethod‘XNN(ﬁtruev V(Bmethod‘X»

for any finite S,
or it satisfies the ANLRM:

Bmethod|X CLPJQCOJ/’- N(Btrue’ V(Bmethod’X))

for large or infinite S.
Consider a continuous nonlinear function g(-). In both cases, the Delta method will imply that:

9(Bethoa X) T~ N (9(5tTue)> (ag—é)> V(Buethod X) (ag—é))/)
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Four key facts about the ANLRM

Fact 4: How to pass back and forth between the “A=Approximate for large S” and
“A=Asymptotic for S — o0" results

As an illustration of the steps involved, suppose that the (weaker) conditions are satisfied for

B, to satisfy the ANRLM, i.e.,
BOZS‘X approz. N (Btrue7 O_Q(X/X>—1)

for large S. Since the matrix X’ X is defined by the summation relationship:
S
X'X = Z T,
s=1

when the sample grows in size, the more and more data will mean bigger and bigger sum of
squares, and thus X’X will eventually blow up to infinity, which means its inverse will implode
to 0. Therefore the VCov matrix of the OLS estimator will collapse to zero, meaning that Bogs
will collapse to 37“¢ as S — oo — this is known as a Mean-Squared-Error-consistent estimator

Of 6757%6.

11



Four key facts about the ANLRM

Given that X’X explodes to infinity as the sample size grows bigger and bigger, and the inverse
(X’X)~! implodes to 0, this makes it very intractable to work with, both computationally and
theoretically. Therefore, we rewrite the matrix as:

(X'X)=S - (X'X/S)

and its inverse:

(X'X) = % (X'X/8)!

Therefore, we may rewrite the OLS ANLRM result as:

A approx. > 1 1
BOZS‘X pﬁ?_\/ N (5257&67 § . O_Q(EX/X)l)

Why did we do this? Because the averaged term X’'X/S will converge by a Law of Large
Numbers (LLN) to a well-defined, finite, non-singular probability limit:

1

S S
1 1
SX’X =3 g T Tl — plimg g r.x, = Bxgr,

when the DGP is identically distributed (either i.i.d. or ni.i.d.).
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Four key facts about the ANLRM

If S is sufficiently large, we can replace %X’X by its probability limit to get:

A approx. 1 1 1
60l5|X p]g\J N (5true’ g . O'2<pllm§X/X>1) — N (ﬁtrue’ g . O'Q(ECCSCC;)l)

If we subtract 5% from both sides, the mean changes to zero:
. 1
o APPTOL. 9 1
60[3 - ﬁtrue ~ N <07 g Y (Emswls) >

This illustrates the problem perfectly: as S — 0o, + — 0 and so the VCov will implode to 0.
To overcome this difficulty, we multiply both sides by /'S to obtain:

VS (s = B7) RN (0, 0% (Baa) )

since the VCov is multiplied by (v/'S)? = S, which cancels the 3.
In the limit when S — o0, the approximation will become perfect and thus the asymptotic result

will obtain: -
VS (B = ) N N (0, 0%(Bral) ™)
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When we mention “statistical tables” in the slides above, we are not always referring to the table for the
standard normal distribution. Indeed, the usual distributions that feature in statistical inference include
also the t, x? and F distributions. See a review note below (covering sampling distributions) from DrVH.

Related Distributions to the Gaussian (SKIM)
(Relevant for NLRM.A4G M (iid) and NLRM. A4 )

Preliminary Fact 1:

If n x 1 random vector z ~ N(u, ) (with VCov n x n non-singular matrix ¥), then the n x 1 random
vector
w=X"Y3z—p) ~N(0,1,)

because w will have VCov L-1/2912y9l/2'y-12 — 11— .

Preliminary Fact 2: If n x 1 random vector z ~ N(0, I,,) , then the scalar r.v.

¢= 2"z~ x*n)

Preliminary Fact 3: If n x 1 random vector z ~ N(0, [,,) and n x n matrix M is idempotent of
with p(M) = r < n, then
q=2Mz~ x*(r)

Preliminary Fact 4:  1f () rv. Z ~ N(0,1,), (i) r.v. X ~ x%(r), and (iii) Z and X are
statistically independent, then the r.v.
T=7Z/\/X/r

will be distributed as student — t(r)

Preliminary Fact b: If (i) r.v. Ry ~ x2(ry), (ii) r.v. Ry ~ x?(r2), and (iii) Ry and Ry are
statistically independent, then the r.v.
o Rl/Tl

f: RQ/TQ

will be distributed as F(ry,72)

Preliminary Fact 6: If r.v. 7 distributed as student — t(r), then the r.v. w = 7% ~ F(1,7)
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REVIEW QUI1zZ FOR TorIC 10

Question 1.

Question 2.

Question 3.

SIGNPOST 10

What are sampling distributions? Why are sampling distributions needed — i.e., from a
theoretical perspective? How do empiricists use sampling distributions —i.e., from a practical
perspective? Provide (one or more) example(s) of how you have personally used the standard
normal and/or the ¢, x* or F distribution in any data analysis exercise(s) that you have
undertaken previously. How did you decide, in your example, that your choice of sampling
distribution was the right choice?

Suppose we have the NLRM with A4G M (iid) and our OofS prediction is given by

~ / A
Ys+1 = Tgy1PoLs-

Show that the (conditional) prediction error variance of §g.1 — ysy1, given S X k matrix X
and a k x 1 vector of new observations zg,1, is:

V(QSH - yS+1|X, $S+1) = (1 + 93{9+1(X/X)_1$s+1)0§

In Question 2. above, we focussed on predicting ys.1. Now, suppose we wish to predict
msy1 = ]E(?JSJA‘X, IL’SH)-
Consider mg1 = g, BO s and show that its (conditional) prediction error variance is:
V(g1 — msi1| X, ws41) = (11 (X'X) wgi)o?.

Provide intuition for the differences in the (conditional) prediction error variance expressions
obtained under Questions 2 and 3.

[To be confirmed.|
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