
Topic 10 Header Slide

� Topic 10. Usefulness of the exact and approximate normal linear regression model

(NLRM and ANLRM respectively)

Let us briefly recap our list of estimators so far:

Estimator Notation

1. β̂OLS

2. β̂LAD
3. β̂Lstar
4. β̂GMM

5a. β̂IGLS

5b. β̂FGLS

6. β̂MLE
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Recap from Topic 7: what is the NLRM?

We previously noted in Topic 7 that...

� The assumptions A1, A2linear,≥ A3Rmi, and some A4 are collectively referred to as a

“linear regression model”, or the LRM.

� If we have specifically A4GM(iid), the above assumptions comprise the “classical” LRM;

and if we have A4Ω, they comprise the “generalised” LRM.

� If we leave A4 as general, but add A5Gaussian, the assumptions are said to collectively

comprise the “normal” LRM, or the NLRM hereafter.

In the next slide, we recall the key result available (for inference) under the NLRM.
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Recap from Topic 7: key result available under the NLRM

Suppose we have A1, A2linear,≥ A3Rmi, and either A4Ω or A4GM(iid), and consider any

of the linear in y methods previously encountered, generically denoted by

β̂method = CXy,

where CX is a k × S matrix characterising the specific linear in y estimation method, so that:

For CX ≡ AX ≡ (X ′X)−1X ′, we obtain the first estimator, β̂method = β̂OLS.

For CX ≡ BX where BXX = Ik, we obtain the third estimator, β̂method = β̂Lstar.

For CX ≡ AX , we also have the fourth estimator, β̂method = β̂GMM .

For CX ≡ B∗
X ≡ (X ′Ω−1X)−1X ′Ω−1, we have the fifth estimator, β̂method = β̂IGLS.

Let us add A5Gaussian whereby εtrue|X ∼ N(0,Σ) for Σ ≡ σ2IS under A4GM(iid) and

Σ ≡ c2Ω under A4Ω. Since multivariate Gaussianity is preserved under linear transformation,

β̂method|X ∼ N(E(β̂method),V(β̂method|X)), or more specifically,

β̂method|X ∼ N(βtrue, CXΣC
′
X),

under the NLRM, so long as the method considered is linear in y.
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Recap from Topic 7: some more specifics under the NLRM

Estimator Scenario 1 – A4GM(iid) and A5Gaussian

1. Rβ̂OLS|X ∼ N(Rβtrue, σ2R(X ′X)−1R′)

2. Rβ̂LAD|X ∼ ???(?, ??)

3. Rβ̂Lstar|X ∼ N(Rβtrue, σ2RBXB
′
XR

′)

4. Rβ̂GMM |X ∼ see OLS

5. Rβ̂IGLS|X ∼ N(Rβtrue, σ2R(X ′Ω−1X)−1X ′Ω−1ISΩ
−1X(X ′Ω−1X)−1R′)

6. Rβ̂MLE|X ∼ see OLS BUE

Estimator Scenario 2 – A4Ω and A5Gaussian

1. Rβ̂OLS|X ∼ N(Rβtrue, c2R(X ′X)−1X ′ΩX(X ′X)−1R′)

2. Rβ̂LAD|X ∼ ???(?, ??)

3. Rβ̂Lstar|X ∼ N(Rβtrue, c2RBXΩB
′
XR

′)

4. Rβ̂GMM |X ∼ see OLS

5. Rβ̂IGLS|X ∼ N(Rβtrue, c2R(X ′Ω−1X)−1R′)

6. Rβ̂MLE|X ∼ see IGLS BUE

(Above, R is some q × k matrix with full row rank equal to q ≤ k.)
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Recap from Topic 7: what is the ANLRM?

Suppose we are unwilling to assume A5Gaussian, or in fact, any A5specific at all.

Obviously, this would scupper any inferential objectives we might have. However, rather than

give up, we can appeal to asymptotic theory. That is, we can develop inferential techniques that

are at least asymptotically valid as S → ∞.

In practice, what this means is that we assume our sample size, S, is sufficiently large to

justify our belief that limiting results hold at least approximately in our empirical context. (The

approximation is typically thought of as only improving as the sample size increases.)

So what is “A” in the acronym “ANLRM”? Depending on how one wishes to structure the

exposition, one can think of A as standing either for:

� “Asymptotic” (i.e., as the sample size passes to infinity); or

� “Approximate” (i.e., where the approximation is justified for “sufficiently large” samples).

To summarise, the ANLRM refers to the asymptotic (as S → ∞) or approximate (for large S)

normal linear regression model. (Asymptotic/approximate normality is ushered in by a CLT.)
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Extensions from Topic 7: key result available under the ANLRM

Suppose we have A1, A2linear,≥ A3Rsru,A4GM(iid) or A4Ω, and S → ∞ or S large.

Consider the linear-in-y estimators:

Estimator 1: β̂OLS where β̂OLS = AXy

Estimator 3: β̂Lstar where β̂Lstar = BXy such that BXX = IK
Estimator 4: β̂GMM = β̂OLS

Estimator 5: β̂IGLS = B∗
Xy = (X ′Ω−1X)−1X ′Ω−1y with B∗

XX = IK
Estimator 6linear: β̂MLE in special cases that give linear-in-y estimators (e.g., Gaussianity)

and the nonlinear-in-y estimator:

Estimator 6nonlinear: β̂nlMLE in other“regular” cases that give nonlinear-in-y MLE (e.g.,

A5Logistic)

The ANLRM will prevail in the sense that all listed estimators (some of which nonlinear-in-y)

will be distributed as:

β̂method|X
approx.∼ N(βtrue,V(β̂method|X)) for large S,

where the expression for V(β̂method|X) depends on method and specific form of A4 and A5,

the approximation becoming better the larger is the sample size S.
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Statistical inference under the ANLRM

� It follows under the ANLRM that we have

Rβ̂method|X
approx.∼ N(Rβtrue, RV(β̂method|X)R′) for large S,

for some R, a q × k matrix with full row rank equal to q ≤ k.

� As was the case with the exact NLRM, it is important to note that the inferential results

alluded to in the previous bullet only hold due to preservation of multivariate Gaussianity

under linear transformation. (Bear in mind that this is a special property of the multivariate

Gaussian.)

� The reason we focus on the distribution of Rβ̂method|X is because the latter is what is

needed for all three fundamental aims of statistical inference (see Topic 8) including interval

estimation, out-of-sample prediction, and hypothesis testing.

� The distributional results aboutRβ̂method, that were exact for the NLRM for any finite sample

size S, now become approximate for very large S under weaker conditions (A3Rsru instead

of A3Rmi, A5 non-Gaussian, unknown, but “regular”) and even for “regular” nonlinear

estimators (e.g., nonlinear MLE).
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Four key facts about the ANLRM

Fact 1: Results hold even with weakest A3 and A5 unknown but “regular”

Recall the two fundamental distributional results we have already discussed:

Exact NLRM (for any finite S):

If A1, A2linear, ≥ A3Rmi, A4GM(iid) or A4Ω, and A5Gaussian, then:

Rβ̂method|X)∼N(Rβtrue, RV(β̂method|X)R′) for large S,

and

ANLRM (for large/infinite S):

If A1, A2linear, ≥ A3Rsru, A4GM(iid) or A4Ω, and S → ∞ or S large, then:

Rβ̂method|X
approx.∼ N(Rβtrue, RV(β̂method|X)R′) for large S,

When S → ∞ or S large, (a) Strong exogeneity (A3Rmi or stronger) is relaxed to Weak

exogeneity (A3Rsru) and (b) A5Gaussian is relaxed to any “regular” A5, known or unknown.
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Four key facts about the ANLRM

Fact 2: Results hold for MLE even with A5nonGaussian, provided “regular”

Suppose a linear regression model satisfies:

A1, A2linear, ≥ A3Rsru, A4.independent, and A5nonGaussian “regular” with

pdf (ys|X ; θ) = f (ys, X, θ)

When S → ∞ or S large, the MLE satisfies:

Rβ̂mle|X
approx.∼ N(Rβtrue, RV(β̂mle|X)R′)

where:

V(β̂mle|X) = −

(
S∑

s=1

∂2 ln f (ys, X, θ)

∂θ · ∂θ′

)−1

It should be noted that in these circumstances:

1. The β̂mle will be nonlinear in y. And:

2. An example of A5nonGaussian that is “regular” is A5Logistic. In contrast,

A5DoubleExponential/Laplace or A5Uniform do not satisfy “regularity” conditions.
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Four key facts about the ANLRM

Fact 3: The Delta method changes results to Approximate/Asymptotic, whether starting from

NLRM or ANLRM

Suppose we consider a particular estimator β̂method that either satisfies the Exact NLRM:

β̂method|X∼N(βtrue,V(β̂method|X))

for any finite S,

or it satisfies the ANLRM:

β̂method|X
approx.∼ N(βtrue,V(β̂method|X))

for large or infinite S.

Consider a continuous nonlinear function g(·). In both cases, the Delta method will imply that:

g(β̂method|X)
approx.∼ N

(
g(βtrue),

(
∂g(·)
∂β

)
V(β̂method|X)

(
∂g(·)
∂β

)′)
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Four key facts about the ANLRM

Fact 4: How to pass back and forth between the “A=Approximate for large S” and

“A=Asymptotic for S → ∞” results

As an illustration of the steps involved, suppose that the (weaker) conditions are satisfied for

β̂ols to satisfy the ANRLM, i.e.,

β̂ols|X
approx.∼ N

(
βtrue, σ2(X ′X)−1

)
for large S. Since the matrix X ′X is defined by the summation relationship:

X ′X ≡
S∑

s=1

xsx
′
s

when the sample grows in size, the more and more data will mean bigger and bigger sum of

squares, and thus X ′X will eventually blow up to infinity, which means its inverse will implode

to 0. Therefore the VCov matrix of the OLS estimator will collapse to zero, meaning that β̂ols
will collapse to βtrue as S → ∞ — this is known as a Mean-Squared-Error-consistent estimator

of βtrue.
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Four key facts about the ANLRM

Given that X ′X explodes to infinity as the sample size grows bigger and bigger, and the inverse

(X ′X)−1 implodes to 0, this makes it very intractable to work with, both computationally and

theoretically. Therefore, we rewrite the matrix as:

(X ′X) ≡ S · (X ′X/S)

and its inverse:

(X ′X)−1 ≡ 1

S
· (X ′X/S)−1

Therefore, we may rewrite the OLS ANLRM result as:

β̂ols|X
approx.∼ N

(
βtrue,

1

S
· σ2(

1

S
X ′X)−1

)
Why did we do this? Because the averaged term X ′X/S will converge by a Law of Large

Numbers (LLN) to a well-defined, finite, non-singular probability limit:

1

S
X ′X =

1

S

S∑
s=1

xsx
′
s → plim

1

S

S∑
s=1

xsx
′
s = Exsx

′
s

when the DGP is identically distributed (either i.i.d. or ni.i.d.).
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Four key facts about the ANLRM

If S is sufficiently large, we can replace 1
SX

′X by its probability limit to get:

β̂ols|X
approx.∼ N

(
βtrue,

1

S
· σ2(plim

1

S
X ′X)−1

)
= N

(
βtrue,

1

S
· σ2(Exsx

′
s)

−1

)
If we subtract βtrue from both sides, the mean changes to zero:

β̂ols − βtrue approx.∼ N

(
0,

1

S
· σ2(Exsx

′
s)

−1

)
This illustrates the problem perfectly: as S → ∞, 1

S → 0 and so the VCov will implode to 0.

To overcome this difficulty, we multiply both sides by
√
S to obtain:

√
S · (β̂ols − βtrue)

approx.∼ N
(
0, σ2(Exsx

′
s)

−1
)

since the VCov is multiplied by (
√
S)2 = S, which cancels the 1

S .

In the limit when S → ∞, the approximation will become perfect and thus the asymptotic result

will obtain: √
S · (β̂ols − βtrue)

asymptotically∼ N
(
0, σ2(Exsx

′
s)

−1
)
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When we mention “statistical tables” in the slides above, we are not always referring to the table for the
standard normal distribution. Indeed, the usual distributions that feature in statistical inference include
also the t, χ2 and F distributions. See a review note below (covering sampling distributions) from DrVH.

Related Distributions to the Gaussian (SKIM)

(Relevant for NLRM.A4GM(iid) and NLRM.A4Ω )

Preliminary Fact 1:

If n × 1 random vector z ∼ N(µ,Σ) (with VCov n × n non-singular matrix Σ), then the n × 1 random
vector

w ≡ Σ−1/2(z − µ) ∼ N(0, In)

because w will have VCov Σ−1/2Σ1/2Σ1/2′Σ−1/2′ = InIn = In

Preliminary Fact 2: If n× 1 random vector z ∼ N(0, In) , then the scalar r.v.

q ≡ z′z ∼ χ2(n)

Preliminary Fact 3: If n× 1 random vector z ∼ N(0, In) and n× n matrix M is idempotent of
with ρ(M) = r < n, then

q ≡ z′Mz ∼ χ2(r)

Preliminary Fact 4: If (i) r.v. Z ∼ N(0, In), (ii) r.v. X ∼ χ2(r), and (iii) Z and X are
statistically independent, then the r.v.

τ ≡ Z/
√

X/r

will be distributed as student− t(r)

Preliminary Fact 5: If (i) r.v. R1 ∼ χ2(r1), (ii) r.v. R2 ∼ χ2(r2), and (iii) R1 and R2 are
statistically independent, then the r.v.

f ≡ R1/r1
R2/r2

will be distributed as F (r1, r2)

Preliminary Fact 6: If r.v. τ distributed as student− t(r), then the r.v. w ≡ τ 2 ∼ F (1, r)
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Review Quiz for Topic 10

Question 1. What are sampling distributions? Why are sampling distributions needed – i.e., from a
theoretical perspective? How do empiricists use sampling distributions – i.e., from a practical
perspective? Provide (one or more) example(s) of how you have personally used the standard
normal and/or the t, χ2 or F distribution in any data analysis exercise(s) that you have
undertaken previously. How did you decide, in your example, that your choice of sampling
distribution was the right choice?

Question 2. Suppose we have the NLRM with A4GM(iid) and our OofS prediction is given by

ŷS+1 = x′
S+1β̂OLS.

Show that the (conditional) prediction error variance of ŷS+1 − yS+1, given S × k matrix X
and a k × 1 vector of new observations xS+1, is:

V(ŷS+1 − yS+1|X, xS+1) = (1 + x′
S+1(X

′X)−1xS+1)σ
2
ε

Question 3. In Question 2. above, we focussed on predicting yS+1. Now, suppose we wish to predict

mS+1 = E(yS+1|X, xS+1).

Consider m̂S+1 = x′
S+1β̂OLS and show that its (conditional) prediction error variance is:

V(m̂S+1 −mS+1|X, xS+1) = (x′
S+1(X

′X)−1xS+1)σ
2
ε .

Provide intuition for the differences in the (conditional) prediction error variance expressions
obtained under Questions 2 and 3.

Signpost 10

[To be confirmed.]
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