
Topic 11 Header Slide

� Topic 11. Asymptotic and large sample results

Asymptotic results: refer to theoretical results (about the probabilistic behaviour of our

estimator) that hold only in the limit as S passes to ∞.

Large sample results: refer to asymptotic results that are thought to hold approximately

for sufficiently large (albeit finite) S.

Estimator Notation

1. β̂OLS

2. β̂LAD
3. β̂Lstar
4. β̂GMM

5a. β̂IGLS

5b. β̂FGLS

6. β̂MLE

For any method, generically denoted θ̂method, we define

SEV (θ̂method) = θ̂method − θtrue.
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Common form of SEV for analytic methods

Consider analytic methods for estimation (i.e., whereby the objective function is twice continu-

ously differentiable). We summarise the common structure/form of the SEV for such estimators:

� Summary 1. For analytic methods that are linear in y and εtrue, there exists a k × k

matrix, Bs, and a k × 1 vector, as, such that

SEV (β̂method) = β̂method − βtrue=

(
S∑

s=1

Bs

)−1 S∑
s=1

as.

Example: We saw, for OLS, the definitions: Bs = xsx
′
s, and as = xsε

true.

� Summary 2. For analytic methods that are non-linear, there exists a k × k matrix, Bs,

and a k × 1 vector, as, such that

SEV (β̂method) = β̂method − βtrue≈

(
S∑

s=1

Bs

)−1 S∑
s=1

as,

where the approximation (“≈”) is reasonable for sufficiently large S, and the approximation

in fact becomes exact in the limit as S passes to ∞.

Example: We will see, for MLE in the general linear/non-linear case, the definitions:

Bs = −ℓββ
′

s (βtrue), and as = ℓβs (β
true), where ℓβs denotes the score contribution (vector) by

the s-th observation and ℓββ
′

s denotes the corresponding second-order derivative (matrix).

2



Sample averages and normalised sample averages (1 of 2)

In each case above (linear/non-linear), we consider algebraic structures involving sample averages:

� Summary 1. For analytic methods that are linear in y and εtrue, there exists a k × k

matrix, Bs, and a k × 1 vector, as, such that

SEV (β̂method) = β̂method − βtrue=

(
1

S

S∑
s=1

Bs

)−1

1

S

S∑
s=1

as.

Example: We saw, for OLS, the definitions: Bs = xsx
′
s, and as = xsε

true.

Above, by scaling throughout by (1/S), we compute sample averages in both the inverse and

non-inverse term of the SEV. This formulation of the SEV will be extremely useful to us for

consistency proofs (convergence in probability).

In contrast, for asymptotic normality proofs (convergence in distribution), it is useful to consider

the SEV in terms of normalised sample averages as follows:

√
SSEV (β̂method) =

√
S(β̂method − βtrue)=

(
1

S

S∑
s=1

Bs

)−1

1√
S

S∑
s=1

as.
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Sample averages and normalised sample averages (2 of 2)

� Summary 2. For analytic methods that are non-linear, there exists a k × k matrix, Bs,

and a k × 1 vector, as, such that

SEV (β̂method) = β̂method − βtrue≈

(
1

S

S∑
s=1

Bs

)−1

1

S

S∑
s=1

as,

where the approximation (“≈”) is reasonable for sufficiently large S, and the approximation

in fact becomes exact in the limit as S passes to ∞.

Example: We will see, for MLE in the general linear/non-linear case, the definitions:

Bs = −ℓββ
′

s (βtrue), and as = ℓβs (β
true), where ℓβs denotes the score contribution (vector) by

the s-th observation and ℓββ
′

s denotes the corresponding second-order derivative (matrix).

Above, by scaling throughout by (1/S), we compute sample averages in both the inverse and

non-inverse term of the approximate SEV. This formulation of the approximate SEV will be

extremely useful to us for consistency proofs (convergence in probability).

In contrast, for asymptotic normality proofs (convergence in distribution), it is useful to consider

the approximate SEV in terms of normalised sample averages as follows:

√
S(SEV (β̂method)) =

√
S(β̂method − βtrue)≈

(
1

S

S∑
s=1

Bs

)−1

1√
S

S∑
s=1

as.
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Building blocks of the SEV

Our interest, broadly speaking, is in analysing what happens to SEV (β̂method) as S → ∞. We

will do so by considering each of the following sample averages or normalised sample averages:

1

S

S∑
s=1

as,

1

S

S∑
s=1

Bs,

1√
S

S∑
s=1

as,(
1

S

S∑
s=1

Bs

)−1

,(
1

S

S∑
s=1

Bs

)−1

1

S

S∑
s=1

as = SEV (β̂method),(
1

S

S∑
s=1

Bs

)−1

1√
S

S∑
s=1

as =
√
S(SEV (β̂method)).
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Extremely important remarks about the previous slide

� Remark 1. Recall that 1
S

∑S
s=1(·) is the first sample moment (or sample average).

� Remark 2. We define 1√
S

∑S
s=1(·) to be the first normalised sample moment (or nor-

malised sample average).

� Remark 3. Inverses of matrices (unless singular) and products of matrices (unless unde-

fined) are examples of continuous functions (or mappings) of their arguments.

� Remark 4. We will evaluate the behaviour of first sample moments using laws of large

numbers (LLNs).

� Remark 5. We will evaluate the behaviour of first normalised sample moments using the

central limit theorem (CLT).

� Remark 6. We will evaluate the behaviour of continuous functions (or mappings) of sam-

ple averages using Slutsky’s theorem (i.e., our first continuous mapping theorem, CMT1).

� Remark 7. We will evaluate the behaviour of continuous functions (or mappings) of

sample averages and normalised sample averages using Cramér’s theorem (i.e., our second

continuous mapping theorem, CMT2).
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Specific SEVs for various analytic methods

� For method 1 (OLS) and method 4 (GMM with A2linear), we have

SEV (β̂OLS) = β̂OLS − βtrue = (X ′X)−1X ′εtrue =

(
S∑

s=1

xsx
′
s

)−1 S∑
s=1

xsε
true
s .

� Method 2 (LAD) is not analytic; and the SEV for method 3 (Lstar) is not useful to consider.

� For method 5a (IGLS), suppose (for convenience) that we have A4Ω with a diagonal Ω.

Then, we have

SEV (β̂IGLS) = β̂IGLS − βtrue = (X ′Ω−1X)−1X ′Ω−1εtrue

=

(
S∑

s=1

xsωssx
′
s

)−1 S∑
s=1

xsωssε
true
s ,

where weight ωst =
[
Ω−1
]
st
is the (s, t)-th element of Ω−1, for s, t = 1, ..., S.

The exact weights, ωst, are unimportant; what is important is that the SEV of the IGLS

estimator can be expressed in the same common form as other analytic estimators.

� We consider method 6 (MLE) in a lot of detail in the next slides.
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Specific SEV for MLE (whether linear/non-linear in y)

Recall that for a parametric estimation problem for p-dimensional parameter vector θtrue,

in the generalised LRM, via maximum likelihood estimation, we impose the assumptions

A1, A2linear,≥ A3Rmi,A4Ω.independent, and some A5specific.

In the previous sentence, A4Ω.independent refers to the A4Ω assumption with the addition of

independence imposed across the s dimension (so that Ω is necessarily diagonal). Recall that

this assumption makes MLE more manageable since we can thereby obtain the overall likelihood

as the product of the marginal contributions to the overall likelihood by each observation.

Under the given specification, and denoting {y,X} as data, we have

θ̂MLE = argmax ℓ(θ; data) = argmax

S∑
s=1

ℓs(θ; data),

where ℓs(θ; data) = log fs(ys|X ; θ) for s = 1, ..., S, are the marginal contributions of each

observation to the overall log likelihood.

We need to maximise an objective function but FOCs/SOCs can only be defined if the likelihood

function is twice continuously differentiable. In the absence of twice continuous differentiability

– e.g., under A5LAD or A5LDE – no analytic solution to the maximisation problem exists.

Let us suppose, for the moment, that the likelihood does admit a continuous second derivative.

Now consider the maximisation procedure as outlined in the following slides.
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FOC and SOC for MLE (whether linear/non-linear in y)

Under twice continuous differentiability of the likelihood function, and under the given model

specification (on the previous slide), the ML estimator is (at least implicitly) defined by the

following first and second order conditions (FOCs/SOCs):

FOC:

∂ℓ(θ; data)

∂θ

∣∣∣
θ=θ̂MLE

=

S∑
s=1

ℓθs(θ; data)
∣∣∣
θ=θ̂MLE

=

S∑
s=1

∂ log fs(ys|X ; θ)

∂θ

∣∣∣
θ=θ̂MLE

= 0.

SOC:
∂2ℓ(θ; data)

∂θ∂θ′

∣∣∣
θ=θ̂MLE

=

S∑
s=1

ℓθθ
′

s (θ; data)
∣∣∣
θ=θ̂MLE

=

S∑
s=1

∂ log fs(ys|X ; θ)

∂θ

∣∣∣
θ=θ̂MLE

is negative definite.

Note above that first order derivative of the log of the likelihood (also called the “score function”)

is a p× 1 vector; and the second order derivative of the log of the likelihood is a p× p matrix.
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Approximate SEV for MLE (whether linear/non-linear in y)

Focussing on the FOCs for a moment, we had under twice continuous differentiability of the

likelihood function and the given model specification, that the ML estimator is defined by the

following system of p equations in p unknowns:

FOC:
S∑

s=1

ℓθs(θ; data)
∣∣∣
θ=θ̂MLE

= 0.

Now, under A5Gaussian for example, we can solve explicitly for θ̂MLE. But what if we have a

different A5specific, which although twice continuously differentiable, does not admit a closed-

form expression for the ML estimator? In other words, what if the score function is non-linear in

θ? (Ans: We find a linear approximation to the score function at θtrue and set that to zero!)

Consider the first order Taylor expansion of
∑S

s=1 ℓ
θ
s(θ; data) at θ

true given by

LHS =

S∑
s=1

ℓθs(θ̂MLE; data) ≈
S∑

s=1

ℓθs(θ
true; data)+

S∑
s=1

ℓθθ
′

s (θtrue; data)(θ̂MLE−θtrue) = RHS

The simple intuition is that since we cannot directly set LHS to zero and solve, we set a first

order approximation of the LHS – i.e., the RHS – to zero and solve that instead.
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Approximate SEV for MLE (whether linear/non-linear in y)

Continuing the analysis on the previous slide, we have that

S∑
s=1

ℓθs(θ
true; data) +

S∑
s=1

ℓθθ
′

s (θtrue; data)(θ̂MLE − θtrue) ≈ 0,

so that by rearranging, we obtain(
θ̂MLE − θtrue

)
≈ −

(
S∑

s=1

ℓθθ
′

s (θtrue; data)

)−1 S∑
s=1

ℓθs(θ
true; data),

as the approximate SEV for ML estimator where the approximation is considered reasonable for

sufficiently large sample size, S.
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Asymptotic results for the OLS estimator in the ANLRM – scenario 1

Let us end this topic on asymptotics by summarising the asymptotic results available for the OLS

estimator under the ANLRM. Notice that we are able to weaken our exogeneity assumption to

“≥ A3Rsru” when considering results that are available only asymptotically as S → ∞
(i.e., results that are not necessarily “exact”).

Suppose we have ANLRM.A4GM(iid) where A1, A2linear,≥ A3Rsru,A4GM(iid). Then,

we can/will prove (by LLNs, CLT and CMT2) that

√
S(SEV (β̂OLS)) =

√
S(β̂OLS − βtrue)|X d→ N

(
0, σ2

ε

(
p lim
S→∞

X ′X

S

)−1
)

as S → ∞.

Alternatively, for inferential purposes, the previous statement is taken as justification to say

β̂OLS|X
approx∼ N

(
βtrue, σ2

ε(X
′X)−1

)
for sufficiently large S.
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Asymptotic results for the OLS estimator in the ANLRM – scenario 2

Suppose we have ANLRM.A4Ω where A1, A2linear,≥ A3Rsru,A4Ω. Then, we can/will prove

(by LLNs, CLT and CMT2) that
√
S(SEV (β̂OLS)) =

√
S(β̂OLS − βtrue)|X d→ N

(
0, c2Q

)
where

Q =

(
p lim
S→∞

X ′X

S

)−1(
p lim
S→∞

X ′ΩX

S

)(
p lim
S→∞

X ′X

S

)−1

as S → ∞.

Alternatively, for inferential purposes, the previous statement is taken as justification to say

β̂OLS|X
approx∼ N

(
βtrue, c2(X ′X)−1X ′ΩX(X ′X)−1

)
for sufficiently large S.
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Appreciating the distinction between different types of results

� Suppose we have NLRM.A4GM(iid) where A1, A2linear,≥ A3Rmi,A4GM(iid), and

A5Gaussian hold. Then, we can prove (due to preservation of multivariate Gaussianity)

that

β̂OLS|X∼N
(
βtrue, σ2

ε(X
′X)−1

)
,

which is true for any S (even finite). This is an exact or finite-sample result true for any S.

� Suppose we have ANLRM.A4GM(iid) where A1, A2linear,≥ A3Rsru,A4GM(iid).

Then, we can/will prove (by LLNs, CLT and CMT2) that

√
S(SEV (β̂OLS)) =

√
S(β̂OLS − βtrue)|X d→ N

(
0, σ2

ε

(
p lim
S→∞

X ′X

S

)−1
)

as S → ∞. This is an asymptotically valid result true only as S → ∞.

� Alternatively, for inferential purposes, the previous statement is taken as justification to say

β̂OLS|X
approx∼ N

(
βtrue, σ2

ε(X
′X)−1

)
for sufficiently large S. This is an approximate result that is appropriate for large S.
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