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e Topic 12. Trinity of hypothesis testing for nested parametric models in linear regression

Preliminary discussion: Advanced (i.e., MSc-level) considerations about hypothesis tests

Main discussion: Wald, Likelihood ratio (LR), and Lagrange multiplier (LM) principles
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: Key concept 1: null vs. alternative vs. maintained hypotheses

e Null hypothesis, denoted Hy:
This is the hypothesis that is being tested; the one that is under scrutiny.

e Alternative hypothesis, denoted H; (or sometimes H 4):
This is the “fall-back” position in the event that the data are incompatible with the null.

e Maintained hypothesis
(Careful: this is a term with which students are typically not familiar!)

— This refers to the set of features of the underlying data-generating process that are
believed to be true and simply just taken for granted.

— In other words, the maintained hypothesis consists of all those assumptions that are
not under question; at least not for the purpose of the given hypothesis test.

— For example, if we were to conduct a standard test (e.g., as reported by default in
Stata) for significance of an estimated regression coefficient, say Bl,OLS, in the classical
NLRM, then A2linear inter alia would be part of the maintained hypothesis, whereas
Hy : 81 = 0 would be the null, and H; : 81 # 0 the alternative.

— Notice that the maintained hypothesis allows either the null or the alternative to be true
(i.e., it contains them as logical possibilities.)




Examples for key concept 1

e Let us look at a couple of examples:

Example 1: The null consists of a single linear restriction on a single parameter. Moreover,
the null is simple (i.e., not composite) and so is the alternative. The maintained hypothesis
is not specified explicitly.

H() . Bgrue = 7
H1 . Bgrue = 9

Example 2: The null consists of multiple linear restrictions on multiple parameters. The
null is still simple but the alternative is now composite. Again, the maintained hypothesis
is not specified explicitly.

HO : 3657"11,6 + 96§rue — 11
and 8" =9

Hy - 385 + 9B > 11

and/or 5} =10




f Key concept 2: restricted (“R”) vs. unrestricted (“U”) models L

e The “U" version of the model is the one corresponding to the maintained hypothesis, while
completely disregarding both the null and the alternative (i.e., either of which could be taken
to be true by the end of the test).

e The “R" version of the model is the one corresponding to the maintained hypothesis wherein
the null is taken for granted (i.e., imposed to be true).

e Let us consider an example:

Example: Suppose the “U” model is y, = By+ B X + S5 X+l fors =1, ..., S,
and suppose Hy : 31 = P5. Then, the “R" model is obtained as

Us true 6 rueX 4+ BtrueX 4+ gtrue
true + B?UGX 1+ BirueX i 8true
true 4 Btrue( s1 4+ XSQ) 1+ 8?“716’

which can be estimated via a regression of y, on a constant and Z; where Z, = X + Xy
for all s.




[ Key concept 3: nested vs. non-nested hypotheses

e |t is worth appreciating the logical distinction between nested and non-nested hypotheses.

e This is because there exist optimality theorems (concerning hypothesis testing procedures)
that only apply to nested sets of hypotheses.

e For a setup to be (parametrically) nested, it must be the case that the competing (sets of)
hypotheses, Hy vs. H, are special cases of the wider/over-arching maintained hypothesis
through restrictions on parameters.

e To understand this, note that:

— If Hy is false, it must follow that we should fall back to H;. That is, logically speaking,
the scope of the alternative should be more general than (or at least as wide as) the
restricted (or narrow) scope of the null.

— The maintained hypothesis must be a valid model in its own right; and one that can be

shown to logically encompass both possibilities (i.e., whether the true state of the world
is Hy or Hy).




Nested example for key concept 3

e Let us look at a couple of examples.
Example (nested): Suppose the maintained hypothesis includes the assumption:
A2linear 1y = X 64" + XpBy"e + &'

and the null is
HQ . Bgue = O

— This setup is clearly nested because the “R" version of the model is a logical parametric
special case of the “U" version of the model.

— Indeed, the “U" model includes
A2linear -y = X 64" + XpBHte + '™
whereby 57"¢ and B%"¢ are permitted to take any value in the parameter space.
— As regards the “R" model, it includes
Alinear.Hy : y = X 485" + &'

and 3'7"¢ can take any value in the parameter space.




i Non-nested example for key concept 3

e In sharp contrast, the following two competing theories (i.e., versions of the model) are not
logically ranked. They are instead, from a logical perspective, on a comparable footing.

Example (non-nested):
Suppose our competing theories both include the A2ltnear assumption as per:

A2linear.Theoryl : y = X 484" + &',
where 3¢ can take any value in the parameter space, and

A2linear.Theory2 : y = Xpfhte + "™,

where (3%} can take any value in the parameter space.




Remark about key concept 3

e There do also exist non-nested testing approaches but these are typically not as philosophi-
cally/economically interesting.

e One example of a non-nested approach is to define a so-called “encompassing model” that
is a convex combination of the two theories (i.e., the two competing versions of the model).

e That is, to introduce a parameter A € [0, 1] such that the encompassing model is given by

AA2linear. Theoryl + (1 — A) A2linear. T heory?

e The intuition is that the parameter A artificially nests the two competing theories since
for A = 1, the encompassing model reduces to A2linear.Theoryl, and for A = 0, the
encompassing model reduces to A2ltnear.T heory?.

e The main difficulty with this approach is that for A € (0,1) (i.e., where the endpoints of
the interval are excluded) the implied version of the obtained model may be philosophical-
ly /economically invalid.

e That is, economic theory may well be agnostic between the two competing theories; but this
does not necessarily allow for “half of T'heoryl” and “half of T'heory2” to jointly constitute
a sensible way to explain the behaviour of economic agents!




Key concept 4: general knowledge from prior studies

This fourth and final key concept slide is ostensibly here to serve as a concept review but, in
reality, it is a gentle reminder that you should ensure you are up-to-speed with basic concepts in
statistical inference such as:

e Type | and Type Il erors
e Significance level of a test
e Power of a test

We will refer to these terms either explicitly or implicitly at various points in the next few weeks.
(If you do not know them well, you may struggle to understand, for instance, the next slide.)




: Optimality theorems

The main message of this particular slide is that there exist three general procedures for devising
hypothesis tests that are optimal and, in fact, equally so. These are the Wald, LR and LM
procedures (which we will study in detail next). We refer to them collectively as the trinity of
classical hypothesis testing procedures.

e Theorem 1. (Exact) Under quite restrictive conditions, the procedures that make up the
trinity are equally powerful (for a given significance level) against any given alternative.

e Theorem 2. (Asymptotic) Under much less restrictive conditions, asymptotically as S —
00, the procedures that make up the trinity are equally powerful (for a given significance
level) against a sequence of local alternatives (i.e, alternatives that get increasingly close to

Hj at rate v/S).

(The intuition behind the phrase “a sequence of local alternatives at rate VS is as follows.
Any sensible test statistic will be based on some CUAN estimator that converges to the
truth at benchmark rate /'S, meaning that its variance converges to 0 at rate S. Such a
test statistic will trivially reject any null eventually as the sample size grows without bound
so long as H; differs from H, by any fixed, non-zero amount. To overcome this obvious
problem for asymptotic analysis, we make instead the alternative H; differ from Hj by an
ever-shrinking amount as S grows to infinity. Specifically, we make the fixed, non-zero
amount between Hj and H; decay as v/S.)
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~Useful analytical framework to study the trinity

e The first message of this particular slide is that there exist three general procedures for
devising hypothesis tests that are optimal and, in fact, equally so. These are the Wald, LR
and LM procedures (which we will study in detail next). We refer to them collectively as
the trinity of optimal hypothesis testing procedures.

e The second message is that a very useful schematic to analyse the trinity is the likelihood
function of a parameter, say L£(0), plotted on the vertical axis of a graph, against its
argument, 6, plotted on the horizontal axis along with the following quantities identified on
the plot:

élﬁst and él()]est
log £(A% ) and log £(0Y )

0log L(0)
00  lg=ak

best

0log L(0)
00  lg=6Y

best

and

The exercise alluded to above is helpful in making apparent the interpretations for each of
the three testing principles.

11



Trinity I: Wald (pronounced ‘Vald’)

Key idea: requires best estimation of only the unrestricted model (i.e., ébUest)
e Step 1. Estimate efficiently the “U" model and obtain ét%st

e Step 2. Consider the restrictions on 0"% under H, and evaluate in-sample violations
of those restrictions at 67 . with the ultimate aim of checking whether these in-sample
violations are (collectively) significantly different from zero.

— Case A. Suppose all restrictions are linear. Then, we have:

Theoretical: Estimated:
Hy: RO — q = 0,1 RQbUest — ¢ to be compared against 0,1
R is real, known r X p matrix with rank r

— Case B. Suppose at least one restriction is non-linear. Then, we have:

Theoretical: Estimated:

Hy : g(0""¢) = 0,1 g(AY ) to be compared against 0,

Vg(.) is 7 X p matrix with rank r

e Step 3. Use the distributional properties of Réb(ést — ¢ for Case A and of g(égest) for Case
B under H; (and the maintained hypothesis) to decide the outcome of the test.
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Trinity 11: LR

Key idea: requires best estimation of unrestricted and restricted models (i.e., él?c;st and ébRest)

e Step 1. Estimate efficiently the “U” model and save the achieved summary metric
i.e., maximised £(6\ .), or maximised log L(67 ), or minimised RSS(6} )

e Step 2. Estimate efficiently the “R" model and save the achieved summary metric
i.e., maximised £(0f ), or maximised log L(6} ), or minimised RSS(0f )

e Step 3. Use the distributional properties of

Option 1: £00Y )/ LOF,) >1 and/or
Option 2: log £(6Y ) —log L(OF ) > 0 and /or
Option 3: RSS(AF ) — RSS(6V.,) >0

to decide the outcome of the test.

Note that the reason these quantities have distributional properties is because they are
random variables since they are functions of the (random) estimators.
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:Trinity "n: LM

Key idea: requires efficient estimation of only the restricted model (i.e., éb]ist)

e Step 1. Estimate efficiently the “R" model. Since, for so-called “regular’ parametric
problems, the Best CUAN method is MLE, we define 6 by the restricted optimisation
problem given by

o, =08, . . . —=arg max log L£(0) s.t. RO = q when all restrictions are linear;
o =08, . . . =arg m@axlog L(0) s.t. g(8) =0 when 3 > 1 non-linear restriction

Note 1:  The log £(f) that needs to be maximised is of the unrestricted model. The
restricted estimator 6% . is obtained by maximising subject to the set of constraints in Hj.

Note 2: Under Gaussianity, the problem given by

arg max log L£(6) subject to the restrictions in H

is equivalent to the problem given by

arg m@in RSS(6) subject to the restrictions in H
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:Trinity "n: LM

e Step 2 (LM perspective). Consider the Lagrangean function that defines the restricted
optimisation problem:

Lagrange(6,\) = log L(#) + X' (RO — q) when all restrictions are linear
log L(0) + +X g(0) when there is > 1 non-linear restriction

Lagrange (0, \)

The parameter vector A is a set of r “shadow values” or “Lagrange multipliers”, which
characterise how binding is the corresponding restriction.

The restricted optimum is defined by the simultaneous conditions given by:

N R /
( 0f AL ) = arg max, mAin Lagrange(6,\).

best

The further are the elements of A from 0, the “more binding” are the constraints Rf = ¢
or g(f) = 0 at the restricted solution 67 . Conversely, if the elements of A\ . are close to
0 (collectively measured), that would be evidence in support of the restrictions in H,.
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:Trinity "n: LM

e Step 2 (score perspective). The LM test is (synonymously) also referred to as a “score
test”, where the word “score” refers to the first derivative of the log of the likelihood
function. Thus, we now consider an alternative way to understand the LM test.

Evidence in favour or against the restrictions in H( can be assessed according to the score
criteria by considering the p x 1 vector of first derivatives as per:

0log L(0)

50 for the “U”" model

and evaluating it at § = éﬁst:
0log L(0)
00 lg=ok

best

The further away from 0 are the elements of this vector (collectively measured), the stronger
would be the evidence against the restrictions in Hj).

The intuition here is that we are investigating just how badly the first-order conditions for
fully unfettered maximisation are being violated (collectively measured) in the presence of
the given constraints.
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:Trinity "n: LM

e Step 3 (LM perspective). Use the distributional properties of the vector of Lagrange
multipliers (shadow values), A’ | to assess evidence for/against Hy. We have:

N / N -1 /.
<>‘l?est) (V(Aﬁst)) (Agzest) i X?Q“ as S — 0.

e Step 3 (score perspective). Use the distributional properties of the score vector (con-
taining first derivatives of the log of the likelihood function) evaluated at 6, to assess
evidence for/against Hy. We have:

1 / 1 )
aogc<e>| (v aog£<9>‘ | é’og£<9>| )4 asS o
00 lo=ip 6 lo=of, 90 =L,

e Remark. We end with a brief note to say that the LM/score test can sometimes be
implemented via means of an auxiliary regression. This implementation is convenient for
practical applications. We will delay exploring this “shortcut” method until the next topic
(purely for expositional purposes).
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