
Topic 12 Header Slide

� Topic 12. Trinity of hypothesis testing for nested parametric models in linear regression

Preliminary discussion: Advanced (i.e., MSc-level) considerations about hypothesis tests

Main discussion: Wald, Likelihood ratio (LR), and Lagrange multiplier (LM) principles

Estimator Notation

1. β̂OLS

2. β̂LAD = MLE with LDE errors

3. β̂Lstar needed for optimality results

4. β̂GMM = OLS

5a. β̂IGLS

5b. β̂FGLS

6. β̂MLE
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Key concept 1: null vs. alternative vs. maintained hypotheses

� Null hypothesis, denoted H0:

This is the hypothesis that is being tested; the one that is under scrutiny.

� Alternative hypothesis, denoted H1 (or sometimes HA):

This is the “fall-back” position in the event that the data are incompatible with the null.

� Maintained hypothesis

(Careful: this is a term with which students are typically not familiar!)

– This refers to the set of features of the underlying data-generating process that are

believed to be true and simply just taken for granted.

– In other words, the maintained hypothesis consists of all those assumptions that are

not under question; at least not for the purpose of the given hypothesis test.

– For example, if we were to conduct a standard test (e.g., as reported by default in

Stata) for significance of an estimated regression coefficient, say β̂1,OLS, in the classical

NLRM, then A2linear inter alia would be part of the maintained hypothesis, whereas

H0 : β1 = 0 would be the null, and H1 : β1 ̸= 0 the alternative.

– Notice that the maintained hypothesis allows either the null or the alternative to be true

(i.e., it contains them as logical possibilities.)
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Examples for key concept 1

� Let us look at a couple of examples:

Example 1: The null consists of a single linear restriction on a single parameter. Moreover,

the null is simple (i.e., not composite) and so is the alternative. The maintained hypothesis

is not specified explicitly.

H0 : β
true
5 = 7

H1 : β
true
5 = 9

Example 2: The null consists of multiple linear restrictions on multiple parameters. The

null is still simple but the alternative is now composite. Again, the maintained hypothesis

is not specified explicitly.

H0 : 3β
true
2 + 9βtrue

3 = 11

and βtrue
4 = 9

H1 : 3β
true
2 + 9βtrue

3 > 11

and/or βtrue
4 = 10
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Key concept 2: restricted (“R”) vs. unrestricted (“U”) models

� The “ U” version of the model is the one corresponding to the maintained hypothesis, while

completely disregarding both the null and the alternative (i.e., either of which could be taken

to be true by the end of the test).

� The “ R” version of the model is the one corresponding to the maintained hypothesis wherein

the null is taken for granted (i.e., imposed to be true).

� Let us consider an example:

Example: Suppose the “U” model is ys = β0+βtrue
1 Xs1+βtrue

2 Xs2+εtrues for s = 1, ..., S;

and suppose H0 : β1 = β2. Then, the “R” model is obtained as

ys = βtrue
0 + βtrue

1 Xs1 + βtrue
2 Xs2 + εtrues

= βtrue
0 + βtrue

1 Xs1 + βtrue
1 Xs2 + εtrues

= βtrue
0 + βtrue

1 (Xs1 +Xs2) + εtrues ,

which can be estimated via a regression of ys on a constant and Zs where Zs ≡ Xs1 +Xs2

for all s.
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Key concept 3: nested vs. non-nested hypotheses

� It is worth appreciating the logical distinction between nested and non-nested hypotheses.

� This is because there exist optimality theorems (concerning hypothesis testing procedures)

that only apply to nested sets of hypotheses.

� For a setup to be (parametrically) nested, it must be the case that the competing (sets of)

hypotheses, H0 vs. H1, are special cases of the wider/over-arching maintained hypothesis

through restrictions on parameters.

� To understand this, note that:

– If H0 is false, it must follow that we should fall back to H1. That is, logically speaking,

the scope of the alternative should be more general than (or at least as wide as) the

restricted (or narrow) scope of the null.

– The maintained hypothesis must be a valid model in its own right; and one that can be

shown to logically encompass both possibilities (i.e., whether the true state of the world

is H0 or H1).
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Nested example for key concept 3

� Let us look at a couple of examples.

Example (nested): Suppose the maintained hypothesis includes the assumption:

A2linear : y = XAβ
true
A +XBβ

true
B + εtrue

and the null is

H0 : β
true
B = 0.

– This setup is clearly nested because the “R” version of the model is a logical parametric

special case of the “U” version of the model.

– Indeed, the “U” model includes

A2linear : y = XAβ
true
A +XBβ

true
B + εtrue

whereby βtrue
A and βtrue

B are permitted to take any value in the parameter space.

– As regards the “R” model, it includes

A2linear.H0 : y = XAβ
true
A + εtrue

and βtrue
A can take any value in the parameter space.

6



Non-nested example for key concept 3

� In sharp contrast, the following two competing theories (i.e., versions of the model) are not

logically ranked. They are instead, from a logical perspective, on a comparable footing.

Example (non-nested):
Suppose our competing theories both include the A2linear assumption as per:

A2linear.Theory1 : y = XAβ
true
A + εtrue,

where βtrue
A can take any value in the parameter space, and

A2linear.Theory2 : y = XBβ
true
B + εtrue,

where βtrue
B can take any value in the parameter space.
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Remark about key concept 3

� There do also exist non-nested testing approaches but these are typically not as philosophi-

cally/economically interesting.

� One example of a non-nested approach is to define a so-called “encompassing model” that

is a convex combination of the two theories (i.e., the two competing versions of the model).

� That is, to introduce a parameter λ ∈ [0, 1] such that the encompassing model is given by

λA2linear.Theory1 + (1− λ)A2linear.Theory2

� The intuition is that the parameter λ artificially nests the two competing theories since

for λ = 1, the encompassing model reduces to A2linear.Theory1, and for λ = 0, the

encompassing model reduces to A2linear.Theory2.

� The main difficulty with this approach is that for λ ∈ (0, 1) (i.e., where the endpoints of

the interval are excluded) the implied version of the obtained model may be philosophical-

ly/economically invalid.

� That is, economic theory may well be agnostic between the two competing theories; but this

does not necessarily allow for “half of Theory1” and “half of Theory2” to jointly constitute

a sensible way to explain the behaviour of economic agents!
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Key concept 4: general knowledge from prior studies

This fourth and final key concept slide is ostensibly here to serve as a concept review but, in

reality, it is a gentle reminder that you should ensure you are up-to-speed with basic concepts in

statistical inference such as:

� Type I and Type II erors

� Significance level of a test

� Power of a test

We will refer to these terms either explicitly or implicitly at various points in the next few weeks.

(If you do not know them well, you may struggle to understand, for instance, the next slide.)
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Optimality theorems

The main message of this particular slide is that there exist three general procedures for devising

hypothesis tests that are optimal and, in fact, equally so. These are the Wald, LR and LM

procedures (which we will study in detail next). We refer to them collectively as the trinity of

classical hypothesis testing procedures.

� Theorem 1. (Exact) Under quite restrictive conditions, the procedures that make up the

trinity are equally powerful (for a given significance level) against any given alternative.

� Theorem 2. (Asymptotic) Under much less restrictive conditions, asymptotically as S →
∞, the procedures that make up the trinity are equally powerful (for a given significance

level) against a sequence of local alternatives (i.e, alternatives that get increasingly close to

H0 at rate
√
S).

(The intuition behind the phrase “a sequence of local alternatives at rate
√
S” is as follows.

Any sensible test statistic will be based on some CUAN estimator that converges to the

truth at benchmark rate
√
S, meaning that its variance converges to 0 at rate S. Such a

test statistic will trivially reject any null eventually as the sample size grows without bound

so long as H1 differs from H0 by any fixed, non-zero amount. To overcome this obvious

problem for asymptotic analysis, we make instead the alternative H1 differ from H0 by an

ever-shrinking amount as S grows to infinity. Specifically, we make the fixed, non-zero

amount between H0 and H1 decay as
√
S.)
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Useful analytical framework to study the trinity

� The first message of this particular slide is that there exist three general procedures for

devising hypothesis tests that are optimal and, in fact, equally so. These are the Wald, LR

and LM procedures (which we will study in detail next). We refer to them collectively as

the trinity of optimal hypothesis testing procedures.

� The second message is that a very useful schematic to analyse the trinity is the likelihood

function of a parameter, say L(θ), plotted on the vertical axis of a graph, against its

argument, θ, plotted on the horizontal axis along with the following quantities identified on

the plot:

θ̂Rbest and θ̂Ubest

logL(θ̂Rbest) and logL(θ̂Ubest)

∂ logL(θ)
∂θ

∣∣∣
θ=θ̂Rbest

and
∂ logL(θ)

∂θ

∣∣∣
θ=θ̂Ubest

The exercise alluded to above is helpful in making apparent the interpretations for each of

the three testing principles.
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Trinity I: Wald (pronounced ‘Vald’)

Key idea: requires best estimation of only the unrestricted model (i.e., θ̂Ubest)

� Step 1. Estimate efficiently the “U” model and obtain θ̂Ubest

� Step 2. Consider the restrictions on θtrue under H0 and evaluate in-sample violations

of those restrictions at θ̂Ubest with the ultimate aim of checking whether these in-sample

violations are (collectively) significantly different from zero.

– Case A. Suppose all restrictions are linear. Then, we have:

Theoretical: Estimated:

H0 : Rθtrue − q = 0r×1 Rθ̂Ubest − q to be compared against 0r×1

R is real, known r × p matrix with rank r

– Case B. Suppose at least one restriction is non-linear. Then, we have:

Theoretical: Estimated:

H0 : g(θ
true) = 0r×1 g(θ̂Ubest) to be compared against 0r×1

∇g(.) is r × p matrix with rank r

� Step 3. Use the distributional properties of Rθ̂Ubest − q for Case A and of g(θ̂Ubest) for Case

B under H0 (and the maintained hypothesis) to decide the outcome of the test.
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Trinity II: LR

Key idea: requires best estimation of unrestricted and restricted models (i.e., θ̂Ubest and θ̂Rbest)

� Step 1. Estimate efficiently the “U” model and save the achieved summary metric

i.e., maximised L(θ̂Ubest), or maximised logL(θ̂Ubest), or minimised RSS(θ̂Ubest)

� Step 2. Estimate efficiently the “R” model and save the achieved summary metric

i.e., maximised L(θ̂Rbest), or maximised logL(θ̂Rbest), or minimised RSS(θ̂Rbest)

� Step 3. Use the distributional properties of

Option 1: L(θ̂Ubest)/L(θ̂Rbest) ≥ 1 and/or

Option 2: logL(θ̂Ubest)− logL(θ̂Rbest) ≥ 0 and/or

Option 3: RSS(θ̂Rbest)−RSS(θ̂Ubest) ≥ 0

to decide the outcome of the test.

Note that the reason these quantities have distributional properties is because they are

random variables since they are functions of the (random) estimators.
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Trinity III: LM

Key idea: requires efficient estimation of only the restricted model (i.e., θ̂Rbest)

� Step 1. Estimate efficiently the “R” model. Since, for so-called “regular” parametric

problems, the Best CUAN method is MLE, we define θ̂Rbest by the restricted optimisation

problem given by

θ̂Rbest = θ̂Rrestricted mle = argmax
θ

logL(θ) s.t. Rθ = q when all restrictions are linear;

θ̂Rbest = θ̂Rrestricted mle = argmax
θ

logL(θ) s.t. g(θ) = 0 when ∃ ≥ 1 non-linear restriction

Note 1: The logL(θ) that needs to be maximised is of the unrestricted model. The

restricted estimator θ̂Rbest is obtained by maximising subject to the set of constraints in H0.

Note 2: Under Gaussianity, the problem given by

argmax
θ

logL(θ) subject to the restrictions in H0

is equivalent to the problem given by

argmin
θ

RSS(θ) subject to the restrictions in H0
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Trinity III: LM

� Step 2 (LM perspective). Consider the Lagrangean function that defines the restricted

optimisation problem:

Lagrange(θ, λ) ≡ logL(θ) + λ′(Rθ − q) when all restrictions are linear

Lagrange(θ, λ) ≡ logL(θ) + +λ′g(θ) when there is ≥ 1 non-linear restriction

The parameter vector λ is a set of r “shadow values” or “Lagrange multipliers”, which

characterise how binding is the corresponding restriction.

The restricted optimum is defined by the simultaneous conditions given by:(
θ̂Rbest, λ̂

R
best

)′
= argmax

θ
,min

λ
Lagrange(θ, λ).

The further are the elements of λ from 0, the “more binding” are the constraints Rθ = q

or g(θ) = 0 at the restricted solution θ̂Rbest. Conversely, if the elements of λ̂
R
best are close to

0 (collectively measured), that would be evidence in support of the restrictions in H0.
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Trinity III: LM

� Step 2 (score perspective). The LM test is (synonymously) also referred to as a “score

test”, where the word “score” refers to the first derivative of the log of the likelihood

function. Thus, we now consider an alternative way to understand the LM test.

Evidence in favour or against the restrictions in H0 can be assessed according to the score

criteria by considering the p× 1 vector of first derivatives as per:

∂ logL(θ)
∂θ

for the “U” model

and evaluating it at θ = θ̂Rbest:
∂ logL(θ)

∂θ

∣∣∣
θ=θ̂Rbest

The further away from 0 are the elements of this vector (collectively measured), the stronger

would be the evidence against the restrictions in H0.

The intuition here is that we are investigating just how badly the first-order conditions for

fully unfettered maximisation are being violated (collectively measured) in the presence of

the given constraints.
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Trinity III: LM

� Step 3 (LM perspective). Use the distributional properties of the vector of Lagrange

multipliers (shadow values), λ̂R
best, to assess evidence for/against H0. We have:(

λ̂R
best

)′ (
V(λ̂R

best)
)−1 (

λ̂R
best

)
d→ χ2

r as S → ∞.

� Step 3 (score perspective). Use the distributional properties of the score vector (con-

taining first derivatives of the log of the likelihood function) evaluated at θ̂Rbest to assess

evidence for/against H0. We have:

(
∂ logL(θ)

∂θ

∣∣∣
θ=θ̂Rbest

)′(
V
(
∂ logL(θ)

∂θ

∣∣∣
θ=θ̂Rbest

))−1(
∂ logL(θ)

∂θ

∣∣∣
θ=θ̂Rbest

)
d→ χ2

r as S → ∞.

� Remark. We end with a brief note to say that the LM/score test can sometimes be

implemented via means of an auxiliary regression. This implementation is convenient for

practical applications. We will delay exploring this “shortcut” method until the next topic

(purely for expositional purposes).
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