Topic 13 Header Slide

• Topic 13. Six illustrative cases of hypothesis testing in linear regression

Preliminary discussion: Auxiliary regression procedure for the LM/score test

Main discussion: Examining each of the six cases one-by-one

Estimator	Notation	
1.	\hat{eta}_{OLS}	
2.	\hat{eta}_{LAD}	= MLE with LDE errors
3.	\hat{eta}_{Lstar}	needed for optimality results
4.	\hat{eta}_{GMM}	= OLS
5a.	\hat{eta}_{IGLS}	
5b.	\hat{eta}_{FGLS}	
6.	\hat{eta}_{MLE}	

Summary of the six leading cases

- Case 1: NLRM.A4GM(iid) or NLRM. $A4\Omega$ plus linear restrictions on β^{true}
 - Note 1: "U" model is NLRM
 - Note 2: Given all restrictions are linear, we can re-write "R" model to also be NLRM
- Case 2: NLRM.A4GM(iid) or NLRM. $A4\Omega$ plus non-linear restrictions on β^{true}
 - Note: "U" model is NLRM
- Case 3: $NLRM.A4\Omega.CondHeterosk$ vs. NLRM.A4GM(iid)
 - Note: "R" model is NLRM
- Case 4: NLRM. $A4\Omega.AR2$ vs. NLRM.A4GM(iid)
 - Note: "R" model is NLRM
- Case 5: $A1, A2Linear, A3.ExogEndog, A4GM(iid)or\Omega$, and A5Gaussian vs. same assumptions except we swap in A3.StronglyExog
 - Note: "R" model is NLRM
- Case 6: A1, A2Linear, A3.StronglyExog, A4GMiid, and $A5LinearExponentialFamilyIndexedBy\lambda$ vs. A5Gaussian (corresponding to $\lambda=2$)
 - Note: "R" model is NLRM

Trinity III: LM (aux.reg.)

Consider any inferential case wherein the "R" model is NLRM.A4GM(iid) (in which case, obviously OLS is the best estimation strategy). In such a case, a major shortcut exists for implementing the LM test. This is typically referred to as the "auxiliary regression" approach:

- Step 1: Estimate the "R" Model via OLS using X^R , the regressor matrix that is appropriate for the "R" model and thus obtain $\hat{\theta}_{OLS}^R$. Save the vector of OLS residuals, $\hat{\varepsilon}_{OLS}^R$.
- Step 2: Consider the auxiliary regression (to be also estimated by OLS) as follows:
 - Dependent variable (LHS): $\hat{\epsilon}_{OLS}^R$ or a suitable function of the residuals (to be explained when we discuss the six leading cases in detail).
 - Explanatory variables (RHS): X^R and additional variables appearing in the "U" model over and above the "R" model.
 - Save the \mathbb{R}^2 from this auxiliary regression as \mathbb{R}^2_{aux} .
- Step 3: Calculate $S \cdot R_{aux}^2$ (where S is sample size) and use the result that under H_0 :

$$SR_{aux}^2 \stackrel{d}{\to} \chi_r^2 \text{ as } S \to \infty.$$

Summary of the six leading cases

- Case 1: NLRM.A4GM(iid) or NLRM. $A4\Omega$ plus linear restrictions on β^{true}
 - Note 1: "U" model is NLRM
 - Note 2: Given all restrictions are linear, we can re-write "R" model to also be NLRM,
 and aux.reg. approach for LM test should work
- Case 2: NLRM.A4GM(iid) or NLRM. $A4\Omega$ plus non-linear restrictions on β^{true}
 - Note: "U" model is NLRM, but "R" model is not NRLM, so aux.reg. approach for LM test will not work
- Case 3: $NLRM.A4\Omega.CondHeterosk$ vs. NLRM.A4GM(iid)
 - Note: "R" model is NLRM, and aux.reg. approach for LM test should work
- Case 4: NLRM. $A4\Omega.AR2$ vs. NLRM.A4GM(iid)
 - Note: "R" model is NLRM, and aux.reg. approach for LM test should work
- Case 5: $A1, A2Linear, A3.ExogEndog, A4GM(iid)or\Omega$, and A5Gaussian vs. same assumptions except we swap in A3.StronglyExog
 - Note: "R" model is NLRM, and aux.reg. approach for LM test should work
- Case 6: A1, A2Linear, A3.StronglyExog, A4GMiid, and $A5LinearExponentialFamilyIndexedBy\lambda$ vs. A5Gaussian (corresponding to $\lambda=2$)
 - Note: "R" model is NLRM, and aux.reg. approach for LM test should work

Case 1: NLRM with linear restrictions on β^{true}

	"R" model (Maintained plus H_0)	"U" model (Maintained)
Maintained:	$A1, A2 linear, \geq A3Rmi, A4GM(iid), A5Gaussian$	← same
Null/Alt.:	$H_0: R\beta^{true} = q$	$H_1: R\beta^{true} = ?$
Best estim.:	RLS: $\min(RSS)$ s.t. $R\beta^{true}=q$ (e.g., X_{partB} are 0)	OLS for $(eta^{true}, \sigma_{arepsilon}^2)'$
Notes:	We could impose restrictions and do OLS (not RLS)	
	Wald: work with $R\hat{eta}_{OLS}-q$	
	LR: consider RSS_{RLS} vs. RSS_{OLS} or likelihoods	
	LM: shortcut "aux.reg." is possible	

- Note: Since OLS is best for the "R" model, the aux.reg. shortcut is possible.
 - Step 1: Reg. y on restricted set of X variables, say X_{partA} , and save residuals e^R_{OLS} .
 - Step 2: Reg. e_{OLS}^R on original X^R . That is, both X_{partA} and X_{partB} , the latter of which was omitted from the "R" model.
 - Step 3: Calculate $S \cdot R_{aux}^2$, which under H_0 , converges (in dist.) as $S \to \infty$ to a χ_r^2 random variable (e.g., here $r = k_B$). Thus, we reject H_0 if the auxiliary regression exhibits a good fit.

Case 2: NLRM with non-linear restrictions on β^{true}

	"R" model (Maintained plus H_0)	"U" model (Maintained)
Maintained:	$A1, A2 linear, \geq A3Rmi, A4GM(iid), A5Gaussian$	← same
Null/Alt.:	$H_0: g(\beta^{true}) = q$	$H_1: g(\beta^{true})=?$
Best estim.:	RLS: $\min(RSS)$ s.t. $g(\beta^{true}) = 0$	OLS for $(eta^{true}, \sigma^2_\epsilon)'$
Notes:	In general, not possible to impose restrictions	
	Wald: work with $g(\hat{eta}_{OLS})$	
	LR: consider RSS_{RLS} vs. RSS_{OLS} or likelihoods	
	LM: shortcut "aux.reg." not possible	
	All final results are asymptotic (non-linearity)	

• Note: Since OLS is not best for the "R" model, the aux.reg. shortcut is not possible.

Case 3: Conditional heteroskedasticity tests in NLRM

	"R" model (Maintained plus H_0)	"U" model (Maintained)
Maintained:	$A1, A2 linear, \geq A3 Rmi, \dots$ [see next]	$\leftarrow swap \ in\ A4\Omega.CondHeterosk$
	$A4GM(iid), \ {\it and} \ A5Gaussian$	$\mathbb{E}(\varepsilon_s^2 X) = \delta_0 + \delta_1 x_{s3}^2 + \delta_2 x_{s5}^2$
Null/Alt.:	$H_0: g(\beta^{true}) = q$	$H_1: \delta_1 =?, \delta_2 =?$
Best estim.:	OLS	FGLS or MLE for [see next]
		$(eta^{true}, \delta_0, \delta_1, \delta_2)'$
Notes:	Wald: work with $(\hat{\delta}_{1,FGLS/MLE},\hat{\delta}_{2,FGLS/MLE})$	
	LR: consider $\log \mathcal{L}_{FGLS}$ vs. $\log \mathcal{L}_{OLS}$	
	LM: shortcut "aux.reg." is possible	
	All final results are asymptotic (FGLS)	

- Note: Since OLS is best for the "R" model, the aux.reg. shortcut is possible.
 - Step 1: Reg. y on X and save residuals, $e^R_{OLS,s}$ for s=1,...,S.
 - Step 2: Use $(e^R_{OLS,s})^2$ as the LHS for estimating the given skedastic equation via OLS.
 - Step 3: Calculate $S \cdot R_{aux}^2$, which under H_0 , converges (in dist.) as $S \to \infty$ to a χ_r^2 random variable (e.g., here r=2). Thus, we reject H_0 if the auxiliary regression exhibits a good fit.

Case 4: Autocorrelation tests in NLRM

	"R" model (Maintained plus H_0)	"U" model (Maintained)
Maintained:	$A1, A2 linear, \geq A3 Rmi, \dots$	\leftarrow swap in $A4\Omega.AR2$
	$A4GM(iid), \ {\it and} \ A5Gaussian$	$\varepsilon_s = \gamma_1 \varepsilon_{s-1} + \gamma_2 \varepsilon_{s-2} + \nu_s, \dots$
		$\nu X \sim N(0, \sigma_{\nu}^2 I_S)$
Null/Alt.:	$H_0: \gamma_1 = \gamma_2 = 0$	$H_1: \gamma_1 =?, \gamma_2 =?$
Best estim.:	OLS	FGLS or MLE for
		$(\beta^{true}, \sigma_{\nu}^2, \gamma_1, \gamma_2)'$
Notes:	Wald: work with $(\hat{\gamma}_{1,FGLS/MLE},\hat{\gamma}_{2,FGLS/MLE})$	
	LR: consider $\log \mathcal{L}_{FGLS}$ vs. $\log \mathcal{L}_{OLS}$	
	LM: shortcut "aux.reg." is possible	
	All final results are asymptotically valid only	

- Note: Since OLS is best for the "R" model, the aux.reg. shortcut is possible.
 - Step 1: Reg. y on X and save residuals, $e^R_{OLS,s}$ for s=1,...,S.
 - Step 2: Use $(e^R_{OLS,s})^2$ as the LHS for estimating the given AR(2) equation via OLS.
 - Step 3: Calculate $S \cdot R_{aux}^2$, which under H_0 , converges (in dist.) as $S \to \infty$ to a χ_r^2 random variable (e.g., here r=2). Thus, we reject H_0 if the auxiliary regression exhibits a good fit.

Cases 5 and 6

For these two final cases, please see slides below (which have been re-used from past years).

12.5 Case 5: Regressor Exogeneity

	$ R \text{ Model (Maintained plus } H_0) $	U Model (Maintained)
Maintained:	A1+A2linear+A3RZsru +A4GM+ s very large	same
	A2: $y = X^B \beta_x^B + X^G \beta_x^G + \epsilon_{true} = X^B \beta_x^B + Z^I \beta_z^I + \epsilon_{true}$,	$X^B = Z^I \pi^I + Z^E \pi^E + u$
	$A3RZsru: Ez_s\epsilon_s^{true} = 0 \text{ and } Ez_su_s = 0$	for Z^I and Z^E
	$H_0: A3RX^B sru: Ex_s^B \epsilon_s^{true} = 0 r = k_B$	$Ex_s^B \epsilon_s^{true} \neq 0$ possibly
Best estim:	OLS of y on all X (i.e., X^B and Z^I)	IVE/2SLS using RF of X^B on all Z (i.e.
		to get β_x , β_z^I , π^I , and π^E
Notes:	Wald: $\widehat{corr}(x_s^B, \epsilon_s^{true})$ VS. $0_{k^B \times 1}$	
	LR: $LLF_{ive/2sls}$ vs. LLF_{ols}	
	LM: Shortcut "Auxiliary Reg" possible:	
	significance of \hat{u}_{ols} in OLS of y on X and Z^I	
	All final results are Asymptotic due to IV/2SLS	

NB: Since best R model estimation is OLS, LM-Auxiliary Regression shortcut is possible

Step 1: Run OLS of y on original X (i.e., X^B and X^G=Z^I) and save the residuals e ols

Step 2: \overline{R} egress e_ols on X (i.e., X^B and X^G=Z^I) *and* Z^E. Equivalently, on X (i.e., X^B and X^G=Z^I) *and* the OLS RF residuals u_ols

Step 3: Calculate SxRsquared from Aux regression. For very large sample size S, under H_0 SxRsquared will be chi-squared(r) degrees of freedom — here r=k_B. Thus, we reject H_0 if the Aux regression has a good fit.

12.6 Case 6: Nonnormality of the Errors

	$R \text{ Model (Maintained plus } H_0)$	U Model (Maintained)
Maintained:	A1+A2linear+ $A3$ Rmi or $> +A4$ GM+ $A5$ Stable distri	with parameter λ^{true}
H_0 and H_1 :	$H_0: A5Gaussian \ which \ is \ equivalent \ to \ \lambda^{true}=2$	$\lambda^{true} = ?$
		MLE to get β_{true} and λ
Notes:	Wald: work with $\hat{\lambda}_{mle} - 2$	
	$ \text{LR: } \textit{LLF}_{\textit{U:MLE}} \text{ vs. } \textit{LLF}_{\textit{R:OLS}} $	
	LM: shortcut "Auxiliary Reg" possible	
	using higher order polynomials of errors	

NB: Since best R model estimation is OLS, LM-Auxiliary Regression shortcut is possible:

Step 1: Run OLS of y on X and save the residuals e_ols

Step 2: Regress e ols on X and higher order polynomials of e ols.

Step 3: Calculate SxRsquared from Aux regression. For very large sample size S, under H_0 SxRsquared will be chi-squared(r) degrees of freedom — here r=1. Thus, we reject H_0 if the Aux regression has a good fit.

Review Quiz for Topic 13 _____

Question 1. What is the auxiliary regression approach for implementing a LM/score test?

Question 2. [To be confirmed perhaps at a later date.]

Question 3. [To be confirmed perhaps at a later date.]

Signpost 13 _____

[To be confirmed perhaps at a later date.]