Topic 13 Header Slide

e Topic 13. Six illustrative cases of hypothesis testing in linear regression
Preliminary discussion: Auxiliary regression procedure for the LM /score test

Main discussion: Examining each of the six cases one-by-one

Estimator | Notation

L. BoLs

2. Brap = M LFE with LDE errors
3. Brsiar | needed for optimality results
4, Beyum | = OLS

5a. Brars

5. BraLs

6. BuLE




‘Summary of the six leading cases

e Case 1: NLRM.A4G M (7id) or NLRM. A4S plus linear restrictions on 57
— Note 1: “U" model is NLRM

— Note 2: Given all restrictions are linear, we can re-write “R" model to also be NLRM

o Case 2: NLRM.A4G M (iid) or NLRM. A4S} plus non-linear restrictions on 3"
— Note: “U" model is NLRM

e Case 3: NLRM.A4Q.CondHeterosk vs. NLRM.A4G M (#id)
— Note: “R" model is NLRM

e Case 4: NLRM.A4Q.AR2 vs. NLRM.A4G M (iid)
— Note: “R” model is NLRM

e Case 5: Al, A2Linear, A3.ExogEndog, AAGM (iid)orS2, and A5Gaussian vs. same
assumptions except we swap in A3.S5tronglyExog

— Note: “R” model is NLRM

e Case 6: Al, A2Linear, A3.StronglyExog, A4G Miid, and
AbLinear Exponential FamilyIndexed By vs. AbGaussian (corresponding to A = 2)
— Note: “R” model is NLRM




Trinity 11l: LM (aux.reg.)

Consider any inferential case wherein the “R" model is NLRM.A4G M (iid) (in which case,
obviously OLS is the best estimation strategy). In such a case, a major shortcut exists for
implementing the LM test. This is typically referred to as the “auxiliary regression” approach:

e Step 1: Estimate the “R" Model via OLS using X%, the regressor matrix that is appro-
priate for the “R” model and thus obtain 6%, .. Save the vector of OLS residuals, €%, ..

e Step 2: Consider the auxiliary regression (to be also estimated by OLS) as follows:

— Dependent variable (LHS): €7, ¢ or a suitable function of the residuals (to be explained
when we discuss the six leading cases in detail).

— Explanatory variables (RHS): X! and additional variables appearing in the “U” model
over and above the “R" model.

— Save the R? from this auxiliary regression as 12, .

e Step 3: Calculate S - R?,, (where S is sample size) and use the result that under H:

SR?

auxr

d
5 x2 as S — oo.




‘Summary of the six leading cases

e Case 1: NLRM.A4G M (7id) or NLRM. A4S plus linear restrictions on 57
— Note 1: “U” model is NLRM
— Note 2: Given all restrictions are linear, we can re-write “R” model to also be NLRM,
and aux.reg. approach for LM test should work

e Case 2: NLRM.A4G M (itd) or NLRM. A4S} plus non-linear restrictions on 3%
— Note: “U"” model is NLRM, but “R" model is not NRLM, so aux.reg. approach for LM
test will not work

e Case 3: NLRM.A4Q.CondHeterosk vs. NLRM.A4G M (iid)
— Note: “R" model is NLRM, and aux.reg. approach for LM test should work

e Case 4: NLRM.A4Q.AR2 vs. NLRM.A4G M (iid)
— Note: “R" model is NLRM, and aux.reg. approach for LM test should work

e Case 5: Al, A2Linear, A3.ExogEndog, A4G M (iid)orS), and ASGaussian vs. same
assumptions except we swap in A3.StronglyExog
— Note: “R" model is NLRM, and aux.reg. approach for LM test should work

o Case 6: Al, A2Linear, A3.StronglyFEzrog, A4G Miid, and
A5 Linear Exponential FamilyIndexed By vs. AbGaussian (corresponding to A = 2)
— Note: “R" model is NLRM, and aux.reg. approach for LM test should work




Case 1: NLRM with linear restrictions on 3¢

“R" model (Maintained plus H) “U” model (Maintained)
Maintained: | A1, A2linear, > A3Rmi, AAGM (iid), A5Gaussian | < same
Null/Alt.: | Hy: RB"™= g H, : RB" ="
Best estim.: | RLS: min(RSS) s.t. R = q (e.g., Xpurtp are 0) | OLS for (374¢, 52
Notes: We could impose restrictions and do OLS (not RLS)

Wald: work with RBors — g

LR: consider RSSirg vs. RSSors or likelihoods

LM: shortcut “aux.reg.” is possible

e Note: Since OLS is best for the “R" model, the aux.reg. shortcut is possible.
— Step 1: Reg. y on restricted set of X variables, say X,,+4, and save residuals egLS.

— Step 2: Reg. egLS on original X . That is, both Xparta and X4, the latter of which
was omitted from the “R" model.

— Step 3: Calculate S - R?,, which under Hj, converges (in dist.) as S — oo to a

aux?

x> random variable (e.g., here r = kp). Thus, we reject Hy if the auxiliary regression
exhibits a good fit.




Case 2: NLRM with non-linear restrictions on 5"" |

“R" model (Maintained plus H) “U" model (Maintained)
Maintained: | A1, A2linear, > A3Rmi, AAGM (iid), A5Gaussian | < same
Null /Alt.: | Hy: g(87")= ¢ H, : g(Blre)="
Best estim.: | RLS: min(RSS) s.t. g(5""¢) =0 OLS for (B'rue o2
Notes: In general, not possible to impose restrictions

Wald: work with g(Bors)

LR: consider RSSkrg vs. RSSors or likelihoods

LM: shortcut “aux.reg.” not possible

All final results are asymptotic (non-linearity)

e Note: Since OLS is not best for the “R" model, the aux.reg. shortcut is not possible.




Case 3: Conditional heteroskedasticity tests in NLRM |

“R" model (Maintained plus Hy)

“U” model (Maintained)

Maintained: | A1, A2linear, > A3Rmi, ... [see next] < swap in A4Q.CondHeterosk
A4GM (iid), and ASGaussian E(e4X) = &y + o122 + dax?y
Null /Alt.: | Hy: g(87")= ¢ Hy : 61=", 05="
Best estim.: | OLS FGLS or MLE for... [see next]
(B4, 8y, 51, 5s)'
Notes: Wald: work with (517FGL5/MLE,527FGLS/MLE)

LR: consider log Lrars vs. log Lors

LM: shortcut “aux.reg.” is possible

All final results are asymptotic (FGLS)

e Note: Since OLS is best for the “R" model, the aux.reg. shortcut is possible.

— Step 1: Reg. y on X and save residuals, egLSVS fors=1,...,5.

— Step 2: Use (eﬁLS’S)2 as the LHS for estimating the given skedastic equation via OLS.

— Step 3: Calculate S - R%, ., which under Hy, converges (in dist.) as S — oo to a x?

random variable (e.g., here r = 2). Thus, we reject Hy if the auxiliary regression exhibits
a good fit.




Case 4: Autocorrelation tests in NLRM

“R" model (Maintained plus H) “U” model (Maintained)
Maintained: | A1, A2linear, > A3Rmi, ... < swap in A4 AR2
AAG M (iid), and A5Gaussian Es = V1Es-1 + YoEs—2 + Vs, ...
v| X ~ N(0,0%15)
Null/Alt.: | Hy:y1=72=0 Hy =7, 7="
Best estim.: | OLS FGLS or MLE for...

(6757“1&67 0-37 Y1, /72)/

Notes: Wald: work with (%1 rars/vpe: Yo.rcrLs/viLE)

LR: consider log Lrars vs. log Lors

LM: shortcut “aux.reg.” is possible

All final results are asymptotically valid only

e Note: Since OLS is best for the “R" model, the aux.reg. shortcut is possible.
— Step 1: Reg. y on X and save residuals, egLSVS fors=1,...,5.
— Step 2: Use (eﬁLS’S)2 as the LHS for estimating the given AR(2) equation via OLS.

— Step 3: Calculate S - R%, ., which under Hy, converges (in dist.) as S — oo to a x?

random variable (e.g., here r = 2). Thus, we reject Hy if the auxiliary regression exhibits
a good fit.




"Cases b and 6

For these two final cases, please see slides below (which have been re-used from past years).




12.5 Case 5: Regressor Erogeneity

R Model (Maintained plus #,)

U Model (Maintained)

Maintained:

A1+A2linear+A3RZsru +A4GM+ 5 very large

same

A2: y= XB8% 1 X9BS + cppue = XBBE + Z18T + €1ruse,

XB=ZIgl 4 7P 7E

A3RZsru: Bzl =0 and Fzu, =0

for z' and z*

H, and H;: Hy: ABRXBsru: ExBelrve =0 r=kp EzBetrue£ (0 possibly
Best estim: | OLS of y on all x (e, X? and 27) IVE/2SLS using RF of x* on all Z (i.
to get s,, s/, »!, and =*
Notes: Wald: (2B, erve) VS. 04y
LR: LLF,./00, VS. LLF,,
LM: Shortcut “Auxiliary Reg” possible:
significance of a,, in OLS of y on x and 7’
All final results are Asymptotic due to IV/2SLS
N]Sl;:1 Since best R model estimation is OLS, LM-Auxiliary Regression shortcut is
possible

Step 1: Run OLS of y on original X (i.e., X"B and X"G=Z"I) and save the
residuals e ols

Step 2: Regress e ols on X (i.e., X"B and X"G=Z"I) *and* Z"E. Equivalently,
on X (i.e., X"B and X"G=Z"I) *and* the OLS RF residuals u_ols

Step 3: Calculate SxRsquared from Aux regression. For very large sample size S,
under H_ 0 SxRsquared will be chi-squared(r) degrees of freedom — here r=k B.
Thus, we reject H 0 if the Aux regression has a good fit.
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12.6 Case 6:

Nonnormality of the Errors

R Model (Maintained plus #,)
AT1+A2linear+A3Rmi or > +A4GM-+A5Stable distrn

U Model (Maintained)

Maintained: with parameter A"
Hy and H;: Hy : A5Gaussian which is equivalent to A\ =2 Afrue—9
Best estim | OLS MLE to get 3,. and A
Notes: Wald: work with A, —2

LR: LLFyip VS. LLFrovs

LM: shortcut “Auxiliary Reg” possible

using higher order polynomials of errors

N]%l Since best R model estimation is OLS, LM-Auxiliary Regression shortcut is

possible:

Step 1: Run OLS of y on X and save the residuals e ols

Step 2: Regress e ols on X and higher order polynomials of e ols.

Step 3: Calculate SxRsquared from Aux regression. For very large sample size
S, under H 0 SxRsquared will be chi-squared(r) degrees of freedom — here r=1.
Thus, we reject H 0 if the Aux regression has a good fit.
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