

- Topic 13. Six illustrative cases of hypothesis testing in linear regression

Preliminary discussion: Auxiliary regression procedure for the LM/score test

Main discussion: Examining each of the six cases one-by-one

Estimator	Notation	
1.	$\hat{\beta}_{OLS}$	
2.	$\hat{\beta}_{LAD}$	$= MLE$ with LDE errors
3.	$\hat{\beta}_{Lstar}$	needed for optimality results
4.	$\hat{\beta}_{GMM}$	$= OLS$
5a.	$\hat{\beta}_{IGLS}$	
5b.	$\hat{\beta}_{FGLS}$	
6.	$\hat{\beta}_{MLE}$	

Summary of the six leading cases

- Case 1: NLRM. $A4GM(iid)$ or NLRM. $A4\Omega$ plus linear restrictions on β^{true}
 - Note 1: “U” model is NLRM
 - Note 2: Given all restrictions are linear, we can re-write “R” model to also be NLRM
- Case 2: NLRM. $A4GM(iid)$ or NLRM. $A4\Omega$ plus non-linear restrictions on β^{true}
 - Note: “U” model is NLRM
- Case 3: NLRM. $A4\Omega.CondHeterosk$ vs. NLRM. $A4GM(iid)$
 - Note: “R” model is NLRM
- Case 4: NLRM. $A4\Omega.AR2$ vs. NLRM. $A4GM(iid)$
 - Note: “R” model is NLRM
- Case 5: $A1, A2Linear, A3.ExogEndog, A4GM(iid) or \Omega$, and $A5Gaussian$ vs. same assumptions except we swap in $A3.StronglyExog$
 - Note: “R” model is NLRM
- Case 6: $A1, A2Linear, A3.StronglyExog, A4GMiid$, and $A5LinearExponentialFamilyIndexedBy\lambda$ vs. $A5Gaussian$ (corresponding to $\lambda = 2$)
 - Note: “R” model is NLRM

Consider any inferential case wherein the “R” model is $\text{NLRM.}A4GM(iid)$ (in which case, obviously OLS is the best estimation strategy). In such a case, a major shortcut exists for implementing the LM test. This is typically referred to as the “auxiliary regression” approach:

- **Step 1:** Estimate the “R” Model via OLS using X^R , the regressor matrix that is appropriate for the “R” model and thus obtain $\hat{\theta}_{OLS}^R$. Save the vector of OLS residuals, $\hat{\varepsilon}_{OLS}^R$.
- **Step 2:** Consider the auxiliary regression (to be also estimated by OLS) as follows:
 - Dependent variable (LHS): $\hat{\varepsilon}_{OLS}^R$ or a suitable function of the residuals (to be explained when we discuss the six leading cases in detail).
 - Explanatory variables (RHS): X^R and additional variables appearing in the “U” model over and above the “R” model.
 - Save the R^2 from this auxiliary regression as R_{aux}^2 .
- **Step 3:** Calculate $S \cdot R_{aux}^2$ (where S is sample size) and use the result that under H_0 :

$$SR_{aux}^2 \xrightarrow{d} \chi_r^2 \text{ as } S \rightarrow \infty.$$

Summary of the six leading cases

- Case 1: $\text{NLRM}.A4GM(iid)$ or $\text{NLRM}.A4\Omega$ plus linear restrictions on β^{true}
 - Note 1: “U” model is NLRM
 - Note 2: Given all restrictions are linear, we can re-write “R” model to also be NLRM, and aux.reg. approach for LM test should work
- Case 2: $\text{NLRM}.A4GM(iid)$ or $\text{NLRM}.A4\Omega$ plus non-linear restrictions on β^{true}
 - Note: “U” model is NLRM, but “R” model is *not* NLRM, so aux.reg. approach for LM test will *not* work
- Case 3: $\text{NLRM}.A4\Omega.\text{CondHeterosk}$ vs. $\text{NLRM}.A4GM(iid)$
 - Note: “R” model is NLRM, and aux.reg. approach for LM test should work
- Case 4: $\text{NLRM}.A4\Omega.AR2$ vs. $\text{NLRM}.A4GM(iid)$
 - Note: “R” model is NLRM, and aux.reg. approach for LM test should work
- Case 5: $A1, A2Linear, A3.ExogEndog, A4GM(iid)or\Omega$, and $A5Gaussian$ vs. same assumptions except we swap in $A3.StronglyExog$
 - Note: “R” model is NLRM, and aux.reg. approach for LM test should work
- Case 6: $A1, A2Linear, A3.StronglyExog, A4GMiid$, and $A5LinearExponentialFamilyIndexedBy\lambda$ vs. $A5Gaussian$ (corresponding to $\lambda = 2$)
 - Note: “R” model is NLRM, and aux.reg. approach for LM test should work

Case 1: NLRM with linear restrictions on β^{true}

	“R” model (Maintained plus H_0)	“U” model (Maintained)
Maintained:	$A1, A2linear, \geq A3Rmi, A4GM(iid), A5Gaussian$	\leftarrow same
Null/Alt.:	$H_0: R\beta^{true} = q$	$H_1: R\beta^{true} = ?$
Best estim.:	RLS: $\min(RSS)$ s.t. $R\beta^{true} = q$ (e.g., X_{partB} are 0)	OLS for $(\beta^{true}, \sigma_\varepsilon^2)'$
Notes:	We could impose restrictions and do OLS (not RLS)	
	Wald: work with $R\hat{\beta}_{OLS} - q$	
	LR: consider RSS_{RLS} vs. RSS_{OLS} or likelihoods	
	LM: shortcut “aux.reg.” is possible	

- Note: Since OLS is best for the “R” model, the aux.reg. shortcut is possible.
 - Step 1: Reg. y on restricted set of X variables, say X_{partA} , and save residuals e_{OLS}^R .
 - Step 2: Reg. e_{OLS}^R on original X^R . That is, both X_{partA} and X_{partB} , the latter of which was omitted from the “R” model.
 - Step 3: Calculate $S \cdot R_{aux}^2$, which under H_0 , converges (in dist.) as $S \rightarrow \infty$ to a χ_r^2 random variable (e.g., here $r = k_B$). Thus, we reject H_0 if the auxiliary regression exhibits a good fit.

Case 2: NLRM with non-linear restrictions on β^{true}

	“R” model (Maintained plus H_0)	“U” model (Maintained)
Maintained:	$A1, A2linear, \geq A3Rmi, A4GM(iid), A5Gaussian$	\leftarrow same
Null/Alt.:	$H_0: g(\beta^{true}) = q$	$H_1: g(\beta^{true}) = ?$
Best estim.:	RLS: $\min(RSS)$ s.t. $g(\beta^{true}) = 0$	OLS for $(\beta^{true}, \sigma_\epsilon^2)'$
Notes:	In general, not possible to impose restrictions Wald: work with $\hat{g}(\hat{\beta}_{OLS})$ LR: consider RSS_{RLS} vs. RSS_{OLS} or likelihoods LM: shortcut “aux.reg.” not possible All final results are asymptotic (non-linearity)	

- Note: Since OLS is not best for the “R” model, the aux.reg. shortcut is not possible.

Case 3: Conditional heteroskedasticity tests in NLRM

	“R” model (Maintained plus H_0)	“U” model (Maintained)
Maintained:	$A1, A2linear, \geq A3Rmi, \dots$ [see next]	← swap in $A4\Omega.CondHeterosk$
	$A4GM(iid)$, and $A5Gaussian$	$\mathbb{E}(\varepsilon_s^2 X) = \delta_0 + \delta_1 x_{s3}^2 + \delta_2 x_{s5}^2$
Null/Alt.:	$H_0: g(\beta^{true}) = q$	$H_1: \delta_1 = ?, \delta_2 = ?$
Best estim.:	OLS	FGLS or MLE for... [see next]
		$(\beta^{true}, \delta_0, \delta_1, \delta_2)'$
Notes:	Wald: work with $(\hat{\delta}_{1,FGLS/MLE}, \hat{\delta}_{2,FGLS/MLE})$	
	LR: consider $\log \mathcal{L}_{FGLS}$ vs. $\log \mathcal{L}_{OLS}$	
	LM: shortcut “aux.reg.” is possible	
	All final results are asymptotic (FGLS)	

- Note: Since OLS is best for the “R” model, the aux.reg. shortcut is possible.
 - Step 1: Reg. y on X and save residuals, $e_{OLS,s}^R$ for $s = 1, \dots, S$.
 - Step 2: Use $(e_{OLS,s}^R)^2$ as the LHS for estimating the given skedastic equation via OLS.
 - Step 3: Calculate $S \cdot R_{aux}^2$, which under H_0 , converges (in dist.) as $S \rightarrow \infty$ to a χ_r^2 random variable (e.g., here $r = 2$). Thus, we reject H_0 if the auxiliary regression exhibits a good fit.

Case 4: Autocorrelation tests in NLRM

	“R” model (Maintained plus H_0)	“U” model (Maintained)
Maintained:	$A1, A2linear, \geq A3Rmi, \dots$	\leftarrow swap in $A4\Omega.AR2$
	$A4GM(iid)$, and $A5Gaussian$	$\varepsilon_s = \gamma_1\varepsilon_{s-1} + \gamma_2\varepsilon_{s-2} + \nu_s, \dots$
		$\nu X \sim N(0, \sigma_\nu^2 I_S)$
Null/Alt.:	$H_0 : \gamma_1 = \gamma_2 = 0$	$H_1 : \gamma_1 = ?, \gamma_2 = ?$
Best estim.:	OLS	FGLS or MLE for...
		$(\beta^{true}, \sigma_\nu^2, \gamma_1, \gamma_2)'$
Notes:	Wald: work with $(\hat{\gamma}_{1,FGLS/MLE}, \hat{\gamma}_{2,FGLS/MLE})$	
	LR: consider $\log \mathcal{L}_{FGLS}$ vs. $\log \mathcal{L}_{OLS}$	
	LM: shortcut “aux.reg.” is possible	
	All final results are asymptotically valid only	

- Note: Since OLS is best for the “R” model, the aux.reg. shortcut is possible.
 - Step 1: Reg. y on X and save residuals, $e_{OLS,s}^R$ for $s = 1, \dots, S$.
 - Step 2: Use $(e_{OLS,s}^R)^2$ as the LHS for estimating the given $AR(2)$ equation via OLS.
 - Step 3: Calculate $S \cdot R_{aux}^2$, which under H_0 , converges (in dist.) as $S \rightarrow \infty$ to a χ_r^2 random variable (e.g., here $r = 2$). Thus, we reject H_0 if the auxiliary regression exhibits a good fit.

Cases 5 and 6

For these two final cases, please see slides below (which have been re-used from past years).

12.5 Case 5: Regressor Exogeneity

	R Model (Maintained plus H_0)	U Model (Maintained)
Maintained:	A1+A2linear+A3RZsru+A4GM+ S very large	same
	A2: $y = X^B \beta_x^B + X^G \beta_x^G + \epsilon_{true} = X^B \beta_x^B + Z^I \beta_z^I + \epsilon_{true}$,	$X^B = Z^I \pi^I + Z^E \pi^E + u$
	$A3RZsru: E z_s \epsilon_s^{true} = 0$ and $E z_s u_s = 0$	for Z^I and Z^E
H_0 and H_1 :	$H_0: A3RX^B sru: E x_s^B \epsilon_s^{true} = 0 \quad r = k_B$	$E x_s^B \epsilon_s^{true} \neq 0$ possibly
Best estim:	OLS of y on all X (i.e., X^B and Z^I)	IVE/2SLS using RF of X^B on all Z (i.e., Z^I and Z^E) to get β_x , β_z , π^I , and π^E
Notes:	Wald: $\widehat{corr}(x_s^B, \epsilon_s^{true})$ vs. $0_{k_B \times 1}$ LR: $LLF_{ive/2sls}$ vs. LLF_{ols} LM: Shortcut “Auxiliary Reg” possible: significance of \hat{u}_{ols} in OLS of y on X and Z^I All final results are Asymptotic due to IV/2SLS	

NB: Since best R model estimation is OLS, LM-Auxiliary Regression shortcut is possible

Step 1: Run OLS of y on original X (i.e., X^B and $X^G = Z^I$) and save the residuals e_{ols}

Step 2: Regress e_{ols} on X (i.e., X^B and $X^G = Z^I$) *and* Z^E . Equivalently, on X (i.e., X^B and $X^G = Z^I$) *and* the OLS RF residuals u_{ols}

Step 3: Calculate SxRsquared from Aux regression. For very large sample size S , under H_0 SxRsquared will be chi-squared(r) degrees of freedom — here $r = k_B$. Thus, we reject H_0 if the Aux regression has a good fit.

12.6 Case 6: Nonnormality of the Errors

	R Model (Maintained plus H_0)	U Model (Maintained)
Maintained:	$A1+A2\text{linear}+A3\text{Rmi}$ or $> +A4\text{GM}+A5\text{Stable distrn}$	with parameter λ^{true}
H_0 and H_1 :	$H_0 : A5\text{Gaussian which is equivalent to } \lambda^{true} = 2$	$\lambda^{true}=?$
Best estim	OLS	MLE to get β_{true} and λ
Notes:	Wald: work with $\hat{\lambda}_{mle} - 2$ LR: $LLF_{U:MLE}$ vs. $LLF_{R:OLS}$ LM: shortcut “Auxiliary Reg” possible using higher order polynomials of errors	

NB: Since best R model estimation is OLS, LM-Auxiliary Regression shortcut is possible:

Step 1: Run OLS of y on X and save the residuals e_{ols}

Step 2: Regress e_{ols} on X and higher order polynomials of e_{ols} .

Step 3: Calculate $SxRsquared$ from Aux regression. For very large sample size S , under H_0 $SxRsquared$ will be chi-squared(r) degrees of freedom — here $r=1$. Thus, we reject H_0 if the Aux regression has a good fit.