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� Topic 13. Six illustrative cases of hypothesis testing in linear regression

Preliminary discussion: Auxiliary regression procedure for the LM/score test

Main discussion: Examining each of the six cases one-by-one

Estimator Notation

1. β̂OLS

2. β̂LAD = MLE with LDE errors

3. β̂Lstar needed for optimality results

4. β̂GMM = OLS

5a. β̂IGLS

5b. β̂FGLS

6. β̂MLE
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Summary of the six leading cases

� Case 1: NLRM.A4GM(iid) or NLRM.A4Ω plus linear restrictions on βtrue

– Note 1: “U” model is NLRM

– Note 2: Given all restrictions are linear, we can re-write “R” model to also be NLRM

� Case 2: NLRM.A4GM(iid) or NLRM.A4Ω plus non-linear restrictions on βtrue

– Note: “U” model is NLRM

� Case 3: NLRM.A4Ω.CondHeterosk vs. NLRM.A4GM(iid)

– Note: “R” model is NLRM

� Case 4: NLRM.A4Ω.AR2 vs. NLRM.A4GM(iid)

– Note: “R” model is NLRM

� Case 5: A1, A2Linear,A3.ExogEndog,A4GM(iid)orΩ, and A5Gaussian vs. same

assumptions except we swap in A3.StronglyExog

– Note: “R” model is NLRM

� Case 6: A1, A2Linear,A3.StronglyExog,A4GMiid, and

A5LinearExponentialFamilyIndexedByλ vs. A5Gaussian (corresponding to λ = 2)

– Note: “R” model is NLRM
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Trinity III: LM (aux.reg.)

Consider any inferential case wherein the “R” model is NLRM.A4GM(iid) (in which case,

obviously OLS is the best estimation strategy). In such a case, a major shortcut exists for

implementing the LM test. This is typically referred to as the “auxiliary regression” approach:

� Step 1: Estimate the “R” Model via OLS using XR, the regressor matrix that is appro-

priate for the “R” model and thus obtain θ̂ROLS. Save the vector of OLS residuals, ε̂ROLS.

� Step 2: Consider the auxiliary regression (to be also estimated by OLS) as follows:

– Dependent variable (LHS): ϵ̂ROLS or a suitable function of the residuals (to be explained

when we discuss the six leading cases in detail).

– Explanatory variables (RHS): XR and additional variables appearing in the “U” model

over and above the “R” model.

– Save the R2 from this auxiliary regression as R2
aux.

� Step 3: Calculate S ·R2
aux (where S is sample size) and use the result that under H0:

SR2
aux

d→ χ2
r as S →∞.
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Summary of the six leading cases

� Case 1: NLRM.A4GM(iid) or NLRM.A4Ω plus linear restrictions on βtrue

– Note 1: “U” model is NLRM

– Note 2: Given all restrictions are linear, we can re-write “R” model to also be NLRM,

and aux.reg. approach for LM test should work

� Case 2: NLRM.A4GM(iid) or NLRM.A4Ω plus non-linear restrictions on βtrue

– Note: “U” model is NLRM, but “R” model is not NRLM, so aux.reg. approach for LM

test will not work

� Case 3: NLRM.A4Ω.CondHeterosk vs. NLRM.A4GM(iid)

– Note: “R” model is NLRM, and aux.reg. approach for LM test should work

� Case 4: NLRM.A4Ω.AR2 vs. NLRM.A4GM(iid)

– Note: “R” model is NLRM, and aux.reg. approach for LM test should work

� Case 5: A1, A2Linear,A3.ExogEndog,A4GM(iid)orΩ, and A5Gaussian vs. same

assumptions except we swap in A3.StronglyExog

– Note: “R” model is NLRM, and aux.reg. approach for LM test should work

� Case 6: A1, A2Linear,A3.StronglyExog,A4GMiid, and

A5LinearExponentialFamilyIndexedByλ vs. A5Gaussian (corresponding to λ = 2)

– Note: “R” model is NLRM, and aux.reg. approach for LM test should work
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Case 1: NLRM with linear restrictions on βtrue

“R” model (Maintained plus H0) “U” model (Maintained)

Maintained: A1, A2linear,≥ A3Rmi,A4GM(iid), A5Gaussian ← same

Null/Alt.: H0: Rβtrue= q H1 : Rβtrue=?

Best estim.: RLS: min(RSS) s.t. Rβtrue = q (e.g., XpartB are 0) OLS for (βtrue, σ2
ε)
′

Notes: We could impose restrictions and do OLS (not RLS)

Wald: work with Rβ̂OLS − q

LR: consider RSSRLS vs. RSSOLS or likelihoods

LM: shortcut “aux.reg.” is possible

� Note: Since OLS is best for the “R” model, the aux.reg. shortcut is possible.

– Step 1: Reg. y on restricted set of X variables, say XpartA, and save residuals eROLS.

– Step 2: Reg. eROLS on original XR. That is, both XpartA and XpartB, the latter of which

was omitted from the “R” model.

– Step 3: Calculate S · R2
aux, which under H0, converges (in dist.) as S → ∞ to a

χ2
r random variable (e.g., here r = kB). Thus, we reject H0 if the auxiliary regression

exhibits a good fit.
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Case 2: NLRM with non-linear restrictions on βtrue

“R” model (Maintained plus H0) “U” model (Maintained)

Maintained: A1, A2linear,≥ A3Rmi,A4GM(iid), A5Gaussian ← same

Null/Alt.: H0: g(β
true)= q H1 : g(β

true)=?

Best estim.: RLS: min(RSS) s.t. g(βtrue) = 0 OLS for (βtrue, σ2
ϵ )
′

Notes: In general, not possible to impose restrictions

Wald: work with g(β̂OLS)

LR: consider RSSRLS vs. RSSOLS or likelihoods

LM: shortcut “aux.reg.” not possible

All final results are asymptotic (non-linearity)

� Note: Since OLS is not best for the “R” model, the aux.reg. shortcut is not possible.
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Case 3: Conditional heteroskedasticity tests in NLRM

“R” model (Maintained plus H0) “U” model (Maintained)

Maintained: A1, A2linear,≥ A3Rmi, ... [see next] ← swap in A4Ω.CondHeterosk

A4GM(iid), and A5Gaussian E(ε2s|X) = δ0 + δ1x
2
s3 + δ2x

2
s5

Null/Alt.: H0: g(β
true)= q H1 : δ1=?, δ2=?

Best estim.: OLS FGLS or MLE for... [see next]

(βtrue, δ0, δ1, δ2)
′

Notes: Wald: work with (δ̂1,FGLS/MLE, δ̂2,FGLS/MLE)

LR: consider logLFGLS vs. logLOLS

LM: shortcut “aux.reg.” is possible

All final results are asymptotic (FGLS)

� Note: Since OLS is best for the “R” model, the aux.reg. shortcut is possible.

– Step 1: Reg. y on X and save residuals, eROLS,s for s = 1, ..., S.

– Step 2: Use (eROLS,s)
2 as the LHS for estimating the given skedastic equation via OLS.

– Step 3: Calculate S · R2
aux, which under H0, converges (in dist.) as S → ∞ to a χ2

r

random variable (e.g., here r = 2). Thus, we reject H0 if the auxiliary regression exhibits

a good fit.
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Case 4: Autocorrelation tests in NLRM

“R” model (Maintained plus H0) “U” model (Maintained)

Maintained: A1, A2linear,≥ A3Rmi, ... ← swap in A4Ω.AR2

A4GM(iid), and A5Gaussian εs = γ1εs−1 + γ2εs−2 + νs, ...

ν|X ∼ N(0, σ2
νIS)

Null/Alt.: H0 : γ1 = γ2 = 0 H1 : γ1=?, γ2=?

Best estim.: OLS FGLS or MLE for...

(βtrue, σ2
ν, γ1, γ2)

′

Notes: Wald: work with (γ̂1,FGLS/MLE, γ̂2,FGLS/MLE)

LR: consider logLFGLS vs. logLOLS

LM: shortcut “aux.reg.” is possible

All final results are asymptotically valid only

� Note: Since OLS is best for the “R” model, the aux.reg. shortcut is possible.

– Step 1: Reg. y on X and save residuals, eROLS,s for s = 1, ..., S.

– Step 2: Use (eROLS,s)
2 as the LHS for estimating the given AR(2) equation via OLS.

– Step 3: Calculate S · R2
aux, which under H0, converges (in dist.) as S → ∞ to a χ2

r

random variable (e.g., here r = 2). Thus, we reject H0 if the auxiliary regression exhibits

a good fit.
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Cases 5 and 6

For these two final cases, please see slides below (which have been re-used from past years).
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12.5 Case 5: Regressor Exogeneity

R Model (Maintained plus H0) U Model (Maintained)
Maintained: A1+A2linear+A3RZsru +A4GM+ S very large same

A2: y = XBβBx +X
GβGx + ϵtrue = X

BβBx + Z
IβIz + ϵtrue, XB= ZIπI+ZEπE+u

A3RZsru : Ezsϵ
true
s = 0 and Ezsus = 0 for ZI and ZE

H0 and H1: H0 : A3RX
Bsru : ExBs ϵ

true
s = 0 r = kB ExBs ϵ

true
s 6= 0 possibly

Best estim: OLS of y on all X (i.e., XB and ZI) IVE/2SLS using RF of XB on all Z (i.e., ZI and ZE)
to get βx, βIz, πI , and πE

Notes: Wald: dcorr(xBs , ϵtrues ) vs. 0kB×1
LR: LLFive/2sls vs. LLFols
LM: Shortcut “Auxiliary Reg” possible:
significance of ûols in OLS of y on X and ZI
All final results are Asymptotic due to IV/2SLS

NB: Since best R model estimation is OLS, LM-Auxiliary Regression shortcut is
possible
Step 1: Run OLS of y on original X (i.e., X^B and X^G=Z^I) and save the

residuals e_ols
Step 2: Regress e_ols on X (i.e., X^B and X^G=Z^I) *and* Z^E. Equivalently,

on X (i.e., X^B and X^G=Z^I) *and* the OLS RF residuals u_ols
Step 3: Calculate SxRsquared from Aux regression. For very large sample size S,

under H_0 SxRsquared will be chi-squared(r) degrees of freedom – here r=k_B.
Thus, we reject H_0 if the Aux regression has a good fit.
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12.6 Case 6: Nonnormality of the Errors

R Model (Maintained plus H0) U Model (Maintained)
Maintained: A1+A2linear+A3Rmi or > +A4GM+A5Stable distrn with parameter λtrue
H0 and H1: H0 : A5Gaussian which is equivalent to λ

true = 2 λtrue=?

Best estim OLS MLE to get βtrue and λ
Notes: Wald: work with λ̂mle − 2

LR: LLFU :MLE vs. LLFR:OLS
LM: shortcut “Auxiliary Reg” possible
using higher order polynomials of errors

NB: Since best R model estimation is OLS, LM-Auxiliary Regression shortcut is
possible:
Step 1: Run OLS of y on X and save the residuals e_ols
Step 2: Regress e_ols on X and higher order polynomials of e_ols.
Step 3: Calculate SxRsquared from Aux regression. For very large sample size

S, under H_0 SxRsquared will be chi-squared(r) degrees of freedom – here r=1.
Thus, we reject H_0 if the Aux regression has a good fit.

c⃝ Vassilis Hajivassiliou, LSE 2012—2023
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