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� Topic 14. Logical relations between regression assumptions A1 through A5

First part of discussion:
Logical relations between A2 and A3 assumptions specifically. (This part of the discussion

also includes an interesting historical example to motivate Topic 14.)

Second part of discussion:
Synthesis of all five assumptions. (This is the core of Topic 14.)

Estimator Notation Remark

1. β̂OLS

2. β̂LAD
3. β̂Lstar
4. β̂GMM

5a. β̂IGLS

5b. β̂FGLS

6. β̂MLE

7. β̂IV E (upcoming in Topic 18)
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Joint consideration of A2 and A3

� Recall that A2linear was such that it specified the following relationships between our

vectors of random variables:y1
...

yS

 =

x′1
...

x′S

βtrue
1
...

βtrue
k

 +

εtrue1
...

εtrueS

 ,

where x′s represents the s-th row of S × k regressor matrix X , for s = 1, ..., S and

E

εtrue1
...

εtrueS

 =

0
...

0

 .

� The many different versions of A3 notwithstanding, the assumption goes hand-in-hand with

A2. Indeed, the assumptions A2 and A3 are directly interrelated because making a mistake

about one necessarily will imply that the other assumption is mis-specified.

� We explain by way of two examples below.
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Theoretical Example

� Suppose the true data-generating process is

A2linear : y = XAβ
true
A +XBβ

true
B + εtrue and E(εtrue) = 0,

and

A3Rmi : E(εtrue|XA, XB) = E(εtrue).

� But we are guilty of mis-specification as per

A2linear.misspecified : y = XAβ
true
A + η

� In other words, in our mis-specified estimating model, we have a composite error given by:

η = XBβ
true
B + εtrue.

� It is clear that unless βtrue
B = 0 or X ′

AXB = 0 or both, we will be unable to disentangle the

error from the regressor, and no A3 can hold.
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Real-life example

� French physician and anatomist, Paul Broca (1824–1880) collected around S = 200 corpses

and performed autopsies (s = 1, ..., 200).

� He recorded brain weight of corpse s in grams, Ws, for men, gender dummy Gs = 1, and

women, gender dummy Gs = 0, and found a 16% higher average brain weight for men with

a t statistic of around 20.

� The estimated specification can be expressed as

Ws = β̂1,OLS + β̂2,OLSGs,

where β̂2,OLS = 0.16 and t ≈ 20.

� In terms of A2 and A3, we express the estimating model as

Ws = βtrue
1 + βtrue

2 Gs + ηs

where ηs violates A3 because it includes important regressors left out by Paul Broca – some

would say intentionally so!
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Real-life example

� In particular, we have

ηs = βtrue
3 Ms + βtrue

4 As + ... + εtrues ,

where Ms is body mass/weight and As is age at death. The interpretation of βtrue
3 is as a

“dinosaur effect” (positive) and βtrue
4 is as a “drying out effect” (negative)!

� Clearly, A3 (as applied with respect to ηs) is violated in multiple ways since:

– Corr(Gs,Ws) > 0 (men are typically heavier than women); and

– Corr(Gs, As) < 0 (men typically die younger).

Synthesis of all five assumptions

Below, we will consider five examples of settings, or “situations”, in which what we assume (or

do not assume) in one category (e.g., in the Broca example, A2) has consequences for what we

are able to assume (or not able to assume) in another category (e.g., in the Broca example, A3).
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Situation 1: Perfect collinearity

Causes:
� Suppose we have a ‘dummy variable trap’ situation. This leads to rank-deficiency in X ′X .

� An example would be the inclusion of 4 quarterly dummies, say {Q1, Q2, Q3, Q4}, as

regressors along with a constant in the regression specification. This leads to a perfect

linear relationship among the regressors, which is the source of the rank-deficiency.

Consequences:
� (X ′X)−1 does not exist, and accordingly neither does β̂OLS = (X ′X)−1X ′y.

Solutions:
� Think carefully before being over-zealous with dummies. Either drop the constant or choose

a dummy to drop. (If you are judicious about choice of which dummy to drop, you might

be able to facilitate easy interpretation of the remaining coefficients.)

Of course, if you drop regressor variables (intercept? dummies?) then you redefine the X

matrix and hence you will change the A2 specification.
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Situation 2: Near-perfect collinearity

Causes:
� Suppose X ′X is non-singular, but such that its minimum eigenvalue is very small (i.e., only

very slightly larger than 0).

� An example would be where there is an extremely high correlation between two regressors.

Consequences:
� Inversion of (X ′X) is numerically unstable because computation of (X ′X)−1 involves di-

vision by a determinant (product of eigenvalues) that is very close to zero. β̂OLS will be

estimated with high variance, as evidenced by V(β̂OLS) = σ2(X ′X)−1 (under A4GM).

Solutions:
� One cannot do much, since the specific form of X ′X is usually a property of the data and

typically beyond our control in observational (rather than experimental) settings.
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Situation 3.benign: A2 where E(εtrue) ̸= 0 but A3Rsru holds

Causes:
� Suppose we have

A2 : ys = βtrue
1 + βtrue

2 xs2 + ... + βtrue
k xsk + εtrues , E(εtrues ) = c ̸= 0

Consequences:
� Defining us = εtrues − c and substituting, we have

A2∗ : ys = β∗
1 + βtrue

2 xs2 + ... + βtrue
k xsk + us, E(us) = 0

where β∗
1 = βtrue

1 + c. Hence, the starred model satisfies all assumptions and OLS will thus

be BLUE for all parameters of the starred model.

� To summarise, the estimated intercept β̂∗
1,OLS will be biased for βtrue

1 but estimators of all

other coefficients, βtrue
2 , ..., βtrue

k , should be unbiased.

Solutions:
� Always include an intercept.
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Situation 4.Benign: Non-normality of errors

Causes:
� This arises when for some reasons, empirical or theoretical, we cannot assume A5Gaussian;

perhaps we are more willing to assume some other distribution denoted by A5specific. (For

example, LDE, Logistic, etc.)

Consequences:
� As long as the error distribution has finite moments, OLS will still be unbiased. But OLS will

only be BLUE under A1, A2linear,≥ A3Rmi,A4GM(iid), but not BUE. Furthermore,

as S → ∞ the OLS will be consistent and asympotically normally distributed provided the

error distribution is “regular” (hence(it will be CUAN). However, it will not be the best

CUAN — that optimality being reserved for the correctly specified MLE.

� MLE can be obtained from deriving and maximising the likelihood function under

A1, A2linear,≥ A3Rmi,A4GMiid and A5specific. MLE will be BUE if it can be

shown to be unbiased in finite samples.

� If we are not able to show that MLE is unbiased for any S, then we can try to check if it

is asymptotically unbiased as S → ∞. Indeed, this will typically be true for all “regular”

estimation problems.

� With In this case the MLE will be the best CUAN, linear or nonlinear, in that it will attain the

CRLB. In fact, this optimality of MLE will hold even with relaxation of A3Rmi to A3Rsru.

Solutions:
� Use MLE or OLS, as appropriate, with our choice between the two estimators depending on

how credible is our A5specific assumption and how large is our sample size, S.
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Situation 4.Serious: Non-normality of errors

Causes:
� Much greater problems arise in regression estimation if there are reasons to believe that

the disturbances follow distributions with “thick tails” like the t-distribution with very few

degrees of freedom (say less than 4); or the Cauchy distribution — (which is the t-distribution

with a single degree of freedom); or the Pareto distribution with tail parameter λ taking

certain problematic values. For example, in financial econometrics certain asset returns have

been found to be t-distributed with fewer than four degrees of freedom.

Consequences:
� Consider the extreme case of the Cauchy distribution as an illustration. Then the population

odd moments of the disturbances, E(ϵs)
2p−1, p positive integer, are undefined and the even

moments E(ϵs)
2p, are infinite. Consequently, A2, A3, and A4GM/Ω all fail because of the

undefinedness/infiniteness of moments. In such case, OLS will be biased, inconsistent, and

not CUAN. Consequently, OLS should be avoided in this situation.

To see this, recall the SEV analysis of OLS:

SEV (OLS) =

(∑
s

Bs

)−1

·
∑
s

as =

(
1

S

∑
s

xsx
′
s

)−1

· 1
S

∑
s

xsϵs

Laws of Large numbers will fail on the Eas = Exsϵs term since Eϵs is undefined and Eϵ2s
is infinite for Cauchy distributed errors.

Solutions:
� Use appropriate MLE or other estimators that are “robust” to non-existence of finite mo-

ments. Examples are LAD or other “quantile regression” methods.

� OLS should be avoided irrespective of the sample size.
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Situation 5.benign: A4Ω instead of A4GM (other assumptions holding)

Causes:
� Conditional heteroskedasticity in εtrues (e.g., Marylebone cond. heteroskedasticity model).

� Alternatively, autocorrelation in εtrues (e.g., stable AR(1), or MA(2) model).

Consequences:
� Non-sphericity of errors – i.e., E(εε′|X) = c2Ω ̸= σ2

εIS. OLS is a LUE but not the BLUE.

IGLS is BLUE according to the Aitken/GM2 theorem.

Solutions:
� Option 1. Use OLS and estimate consistently V(β̂OLS|X) = (X ′X)−1X ′ΩX(X ′X)−1.

This would be called the use of OLS with “robust SEs”. For example, in the conditional

heteroskedasticity case, we could use the Huber-White-Eicker estimator of standard errors;

in the autocorrelation case, we could use the Newey-West estimator of standard errors.

� Option 2. Use IGLS (if Ω is known), whereby V(β̂IGLS|X) = c2(X ′Ω−1X)−1. In practice,

Ω is unknown, so we are forced to use FGLS using consistent estimators of the parameters on

which Ω = Ω(λ) depends. Since the FGLS estimator will typically be a non-linear function

of εtrue, it will not be unbiased for finite S. Indeed, FGLS is only asymptotically BLUE.

� To summarise, use Option 2 in case of large S, and Option 1 in case of small S. In the

latter case, our estimator will not be BLUE but at least it will be unbiased.
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Situation 5.serious — Endogeneity: A4Ω instead of A4GM

Causes:
� The presence of true state dependence in our model (e.g., inclusion of a lagged dependent

variable on the RHS) alongside error persistence (e.g., AR(1) autocorrelation in εtrues ).

� For example, consider ys = βtrueys−1 + εtrues , where Cov(εtrues−1 , ε
true
s ) ̸= 0. We have

Cov(ys−1, ε
true
s ) = Cov(βtrueys−2 + εtrues−1 , ε

true
s ) ̸= 0 even if εtrues is news w.r.t. ys−1.

� Endogeneity = forced failure of A3Rsru.

Consequences:
� OLS/GLS will be inconsistent. The reason is that our error, εtrues is correlated with our

regressor, ys−1, since both are affected by an omitted (unobserved) variable εtrues−1 .

We have forced a violation of A3Rsru.

� The intuition is that, in this situation, there exist two sources of linkage between the present

and the past. The first is true state dependence whereby ys depends on ys−1. The second is

error persistence whereby εtrues depends on εtrues−1 . Since errors are unobserved, we will never

be able to disentangle these two sources of dynamics from each other.

Solutions:
� Instrumental variable methods (which we will study soon) may provide a consistent estimator

(feasible forMA(q) processes but not for AR(p) processes. Alternative estimation strategies

may include Quasi MLE methods.
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Situation 6.serious.OV — Endogeneity: omitted variables

Causes:
� Suppose we have

A2 : y = Xβtrue + Zγtrue + εtrue,

but we mistakenly only run y on X (i.e., we omit the Z regressors). This implies that the

estimating model is given by the starred version:

A2∗ : y = Xβtrue + u, where u = Zγtrue + εtrue

� Endogeneity = forced failure of A3Rsru.

Consequences:
� A3Rsru will be violated and OLS and (GLS) will be inconsistent.

Solutions:
� We need to think. One option is to find the missing variables and include them. Another

is to trade omitted variable bias off for measurement error bias by including a proxy for Z.

Yet another option is to find an instrument for X and use IV methods instead of OLS.

� A third option is to try to sign (i.e., ±) the bias of the OLS estimator (though this may not

always be possible). To understand this point, let us return to the Broca example (see the

next two slides).
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Situation 6.serious.OV — Endogeneity: (cont’d.): the Broca example

Going by the Broca example, we have

x′s = (1, Gs); z′s = (Ms, As),

where (as a reminder), we had Gs ,an identifier for male gender dummy, Gs, the body weight/-

mass, and As, the age at death.

� The bias vector (i.e., the systematic component of the sampling error of our estimator that

remains non-zero in expectation over hypothetical repeated experiments) is given by

E(β̂OLS|X,Z)− βtrue = (X ′X)−1X ′Zγtrue.

� Let δ̂W,OLS denote the OLS estimator of the slope coefficient obtained from a regression

of Ws on xs = (1, Gs)
′, and let δ̂A,OLS arise analogously from a regression of As on

xs = (1, Gs)
′. Further let γtrue = (γtrue

W , γtrue
A )′. We can then visualise the bias as:

E(β̂OLS|X,Z)− βtrue = (X ′X)−1X ′Zγtrue

=

(
· ·

δ̂W,OLS δ̂A,OLS

)(
γtrue
W

γtrue
A

)
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Situation 6.serious.OV (cont’d.): the Broca example

� The bias, which is a 2×1 vector, is such that the first element relates to bias in the intercept;

but the second element, bias in the coefficient of interest, is

δ̂W,OLS × γtrue
W + δ̂A,OLS × γtrue

A .

Recall what we know about the signs:

– δ̂W,OLS > 0 (men are typically heavier than women)

– γtrue
W > 0 (the “dinosaur effect”)

– δ̂A,OLS < 0 (men typically die younger than women)

– γtrue
A < 0 (the “drying out effect”)

� The upshot is that overall bias in the estimated coefficient on Gs will be upwards/positive.
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Situation 7.serious.ONL — Endogeneity: omitted non-linearities

Causes:
� The true model is A2 : y = g(X, βtrue) + εtrue, but the estimating model is

A2∗ : y = Xβtrue + u, where u = g(X, βtrue)−Xβtrue + εtrue

� Endogeneity = forced failure of A3Rsru.

Consequences:
� We have in general that E(u) ̸= 0 and, more crucially, E(u|X) ̸= E(u). In other words,

A3Rsru is violated.

Solutions:
� We need to identify the correct g(X, βtrue) function and apply suitable non-linear least

squares (NLLS) methods.
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Situation 8.serious.ME — Endogeneity: regressor measurement errors

Causes:
� Suppose we have error-ridden versions of (a subset of) our regressors:

X1 = X∗
1 + V1,

where X1 is observed whereas X∗
1 and V1 are not.

� The true model is A2∗ : y = X∗
1β

true
1 +X2β

true
2 + εtrue, but the estimating model is

A2 : y = X1β
true
1 +X2β

true
2 + u, where u = εtrue − V1β

true
1 .

� Endogeneity = forced failure of A3Rsru.

Consequences:
� The problem in A2 is that both the error-ridden regressor, X1, and the model error, u,

contain V1, the measurement error, so that A3Rsru will be violated.

Solutions:
� Apply IVE if suitable instruments can be found for X1, which is seldom possible. Alternative

ad hoc methods exist in case additional imperfect measures of X∗
1 are available.
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Situation 9.serious.SE — Endogeneity: simultaneous equations

Causes:
� Consider the (dual-equation) structural model given by

y = Y1β1 + Z1γ1 + ε

Y1 = Z1π11 + Z2π12 + ν1,

where y or Y notation denotes an endogenous variable whereas Z notation denotes an

exogenous variable. Note that structural equations jointly describe the behaviour of economic

agents. There may be (as in the case above) both exogenous and endogenous variables on

the RHS of such equations. In contrast, equations in which all regressors are Z variables

are referred to as reduced form equations.

� Endogeneity = forced failure of A3Rsru.

Consequences:
� Since Y1s and ys are simultaneously determined through the two equations, it follows that

Y1s and εs are correlated as long as εs and ν1s are correlated. A3Rsru is violated.

� OLS is an appropriate unbiased and consistent estimation strategy for reduced form equa-

tions, but gives biased and inconsistent results when applied to a structural equation. So

the π parameters can be consistently estimated by OLS from the Y1 equation, but the β1
and γ1 parameters in the y equation will not be consistently estimated.
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Situation 9.serious.SE — Endogeneity: simultaneous equations (cont’d.)

Solutions:
� We can use IVE (see Topic 18 ahead), using Z1 and Z2 as instruments for Z1 and Y1.

� For IVE of β1 and γ1 to be feasible, a necessary (but not sufficient) condition is that the

y equation be identified, which requires that there be at least as many columns in Z2, our

excluded exogenous variables, as columns in Y1, our included endogenous regressors.
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Situation 10.serious.LDVexogenous: Probit etc.

See Case 6, Topic 15: Leading Causes of Endogeneity
� Omitted nonlinearity caused by Limited Dependent Variables

� Endogeneity = forced failure of A3Rsru.
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Situation 11.serious.LDVendog: Sample Selectivity

See Case 7, Topic 15: Leading Causes of Endogeneity
� Omitted nonlinearity plus Simultaneity caused by Endogenous Sample Selection

� Endogeneity = forced failure of A3Rsru.
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Review Quiz for Topic 14

Question 1. Describe the classical measurement error problem. Give a minimum working example.

Question 2. Consider the consumption function given by Ct = β0 + β1Yt + εt and the usual aggregate
income equation in a closed economy with no government, Yt = Ct + Zt, where Zt is invest-
ment expenditure. Explain why we cannot estimate the marginal propensity to consume,
β1, via OLS applied solely to the consumption function. Suggest an alternative estimator.

Question 3. Describe the selectivity problem in a regression context. Give a minimum working example.

Signpost 14

All “situations” can typically be found spread across chapters in any econometrics textbook. Greene, yet
again, would be a great choice. Verbeek might be slightly easier, especially for the selectivity problem,
for which the discussion can get a little technical.
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