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e Topic 14. Logical relations between regression assumptions Al through A5

First part of discussion:
Logical relations between A2 and A3 assumptions specifically. (This part of the discussion
also includes an interesting historical example to motivate Topic 14.)

Second part of discussion:
Synthesis of all five assumptions. (This is the core of Topic 14.)

Estimator | Notation | Remark

L. Bors

2. Brap

3. BLstar

4. Banm

ba. BraLs

5. Brars

6. BrLE

7. Brve (upcoming in Topic 18)




Joint consideration of A2 and A3

e Recall that A2linear was such that it specified the following relationships between our
vectors of random variables:
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where 2, represents the s-th row of S x k regressor matrix X, for s = 1,...,.S and
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e The many different versions of A3 notwithstanding, the assumption goes hand-in-hand with
A2. Indeed, the assumptions A2 and A3 are directly interrelated because making a mistake
about one necessarily will imply that the other assumption is mis-specified.

e We explain by way of two examples below.




Theoretical Example

e Suppose the true data-generating process is
Alinear 1y = X640 + XpBy" + " and E(g""¢) = 0,

and
A3Rmi : E(e""| X 4, Xp) = E(g"°).

e But we are guilty of mis-specification as per

true

A2linear.misspecified : y = Xa04" +n

e |n other words, in our mis-specified estimating model, we have a composite error given by:

n= XBBgue i 8true.

e It is clear that unless %" = 0 or X/, X = 0 or both, we will be unable to disentangle the

error from the regressor, and no A3 can hold.




“Real-life example

e French physician and anatomist, Paul Broca (1824-1880) collected around S = 200 corpses
and performed autopsies (s = 1, ...,200).

e He recorded brain weight of corpse s in grams, W, for men, gender dummy G, = 1, and
women, gender dummy G, = 0, and found a 16% higher average brain weight for men with
a t statistic of around 20.

e The estimated specification can be expressed as
W, = Brors + Br.o15Gs,
where BZOLS = 0.16 and t =~ 20.
e In terms of A2 and A3, we express the estimating model as
Wy = 81" + By "G5 + s

where 7, violates A3 because it includes important regressors left out by Paul Broca — some
would say intentionally so!




“Real-life example

e In particular, we have
true true true
ns =03 ““Ms+ B,/ Ag+ ... + &,
true

where M, is body mass/weight and A; is age at death. The interpretation of 35" is as a

“dinosaur effect” (positive) and 37 is as a “drying out effect” (negative)!

e Clearly, A3 (as applied with respect to 7)) is violated in multiple ways since:
— Corr(Gg, W5) > 0 (men are typically heavier than women); and

— Corr(Gy, As) < 0 (men typically die younger).

Synthesis of all five assumptions

Below, we will consider five examples of settings, or “situations”, in which what we assume (or
do not assume) in one category (e.g., in the Broca example, A2) has consequences for what we
are able to assume (or not able to assume) in another category (e.g., in the Broca example, A3).




‘Situation 1: Perfect collinearity

Causes:
e Suppose we have a ‘dummy variable trap’ situation. This leads to rank-deficiency in X’ X.

e An example would be the inclusion of 4 quarterly dummies, say {Q1,Q2,Q3,Q4}, as
regressors along with a constant in the regression specification. This leads to a perfect
linear relationship among the regressors, which is the source of the rank-deficiency.

Consequences:
e (X'X)~! does not exist, and accordingly neither does Bors = (X' X) 1 Xy.

Solutions:
e Think carefully before being over-zealous with dummies. Either drop the constant or choose
a dummy to drop. (If you are judicious about choice of which dummy to drop, you might
be able to facilitate easy interpretation of the remaining coefficients.)
Of course, if you drop regressor variables (intercept? dummies?) then you redefine the X
matrix and hence you will change the A2 specification.




Situation 2: Near-perfect collinearity

Causes:
e Suppose X' X is non-singular, but such that its minimum eigenvalue is very small (i.e., only
very slightly larger than 0).

e An example would be where there is an extremely high correlation between two regressors.

Consequences:
e Inversion of (X’X) is numerically unstable because computation of (X’'X)~! involves di-

vision by a determinant (product of eigenvalues) that is very close to zero. Bors will be
estimated with high variance, as evidenced by V(Bo1s) = 0*(X'X )~ (under A4GM).

Solutions:
e One cannot do much, since the specific form of X’X is usually a property of the data and
typically beyond our control in observational (rather than experimental) settings.




‘Situation 3.benign: A2 where E(¢"") # 0 but A3Rsru holds

Causes:
e Suppose we have

A2 LYy = {Tue 4+ 6§rue$82 4o+ Blimexsk 4+ 8?”6, E((girue) —c # 0

Consequences:

e Defining u, = gi"e

"¢ — ¢ and substituting, we have

A2% yy = B+ 557"“69052 + ...+ B,imexsk +us, E(ug) =0

where 3; = B¢ + c. Hence, the starred model satisfies all assumptions and OLS will thus
be BLUE for all parameters of the starred model.

e To summarise, the estimated intercept Bf ors Will be biased for 3¢ but estimators of all
other coefficients, 85", ..., 5i""¢, should be unbiased.
Solutions:

e Always include an intercept.




‘Situation 4.Benign: Non-normality of errors

Causes:

e This arises when for some reasons, empirical or theoretical, we cannot assume A5Gaussian;
perhaps we are more willing to assume some other distribution denoted by A5speci fic. (For
example, LDE, Logistic, etc.)

Consequences:

e As long as the error distribution has finite moments, OLS will still be unbiased. But OLS will
only be BLUE under Al, A2linear,> A3Rmi, AAGM (iid), but not BUE. Furthermore,
as S — oo the OLS will be consistent and asympotically normally distributed provided the
error distribution is “regular’ (hence(it will be CUAN). However, it will not be the best
CUAN — that optimality being reserved for the correctly specified MLE.

e MLE can be obtained from deriving and maximising the likelihood function under
Al, A2linear, > A3Rmu, AAGMuid and Abspecific. MLE will be BUE if it can be
shown to be unbiased in finite samples.

e If we are not able to show that MLE is unbiased for any .S, then we can try to check if it
is asymptotically unbiased as S — o0. Indeed, this will typically be true for all “regular”
estimation problems.

e With In this case the MLE will be the best CUAN, linear or nonlinear, in that it will attain the
CRLB. In fact, this optimality of MLE will hold even with relaxation of A3Rm: to A3Rsru.

Solutions:

e Use MLE or OLS, as appropriate, with our choice between the two estimators depending on

how credible is our AbSspeci fic assumption and how large is our sample size, S.
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‘Situation 4.Serious: Non-normality of errors

Causes:

e Much greater problems arise in regression estimation if there are reasons to believe that
the disturbances follow distributions with “thick tails” like the t-distribution with very few
degrees of freedom (say less than 4); or the Cauchy distribution — (which is the t-distribution
with a single degree of freedom); or the Pareto distribution with tail parameter )\ taking
certain problematic values. For example, in financial econometrics certain asset returns have
been found to be t-distributed with fewer than four degrees of freedom.

Consequences:

e Consider the extreme case of the Cauchy distribution as an illustration. Then the population
odd moments of the disturbances, E(es)Qp_l, p positive integer, are undefined and the even
moments F(e,)?, are infinite. Consequently, A2, A3, and A4G M /) all fail because of the
undefinedness/infiniteness of moments. In such case, OLS will be biased, inconsistent, and
not CUAN. Consequently, OLS should be avoided in this situation.

To see this, recall the SE'V analysis of OLS:

-1 -1
SEV(OLS) = (ZB) °Za’5: (%waé) -%szes

Laws of Large numbers will fail on the Ea, = Exe, term since Ee¢, is undefined and E¢?
is infinite for Cauchy distributed errors.
Solutions:
e Use appropriate MLE or other estimators that are “robust” to non-existence of finite mo-
ments. Examples are LAD or other “quantile regression” methods.
e OLS should be avoided irrespective of the sample size.
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; Situation 5.benign: A4() instead of A4GM (other assumptions holding) L

Causes:

e Conditional heteroskedasticity in /"¢

S

(e.g., Marylebone cond. heteroskedasticity model).
e Alternatively, autocorrelation in /¢ (e.g., stable AR(1), or M A(2) model).

Consequences:
e Non-sphericity of errors — i.e., E(ge'| X) = ¢*Q2 # 02I5. OLS is a LUE but not the BLUE.
IGLS is BLUE according to the Aitken/GM2 theorem.

Solutions:

e Option 1. Use OLS and estimate consistently V(Gors|X) = (X'X) 1 X'QX (X' X)L
This would be called the use of OLS with “robust SEs”. For example, in the conditional
heteroskedasticity case, we could use the Huber-White-Eicker estimator of standard errors;
in the autocorrelation case, we could use the Newey-West estimator of standard errors.

e Option 2. Use IGLS (if Q2 is known), whereby V(8;c15|X) = A(X’Q1X) L. In practice,
(2 is unknown, so we are forced to use FGLS using consistent estimators of the parameters on
which 2 = () depends. Since the FGLS estimator will typically be a non-linear function
of £ it will not be unbiased for finite S. Indeed, FGLS is only asymptotically BLUE.

e To summarise, use Option 2 in case of large S, and Option 1 in case of small S. In the

latter case, our estimator will not be BLUE but at least it will be unbiased.
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‘Situation 5.serious — Endogeneity: A4(} instead of A4GM |

Causes:
e The presence of true state dependence in our model (e.g., inclusion of a lagged dependent
variable on the RHS) alongside error persistence (e.g., AR(1) autocorrelation in £/7¢).

e For example, consider y, = [y, | + "¢ where Cov(el" &™) £ (0. We have
Cov(ys_1,em1¢) = Cov(ﬁm‘eys_ + glrue glruey =£ () even if €1 is news w.r.t. 4, 1.

e Endogeneity = forced failure of A3Rsru.

Consequences:
e OLS/GLS will be inconsistent. The reason is that our error, €
regressor, ys_1, since both are affected by an omitted (unobserved) variable /"¢
We have forced a violation of A3Rsru.

true is correlated with our

e The intuition is that, in this situation, there exist two sources of linkage between the present
and the past. The first is true state dependence whereby v, depends on y,_1. The second is

true

error persistence whereby /"¢ depends on £“¢. Since errors are unobserved, we will never

be able to disentangle these two sources of dynamlcs from each other.

Solutions:
e Instrumental variable methods (which we will study soon) may provide a consistent estimator
(feasible for M A(q) processes but not for AR(p) processes. Alternative estimation strategies
may include Quasi MLE methods.
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‘Situation G.serious.OV — Endogeneity: omitted variables

Causes:

e Suppose we have
A2 Ly = Xﬁt'r’ue i Z,ytrue + éjrue

but we mistakenly only run y on X (i.e., we omit the Z regressors). This implies that the
estimating model is given by the starred version:

A"y = XB"" +u, where u = Z4" 4 g"e
e Endogeneity = forced failure of A3Rsru.

Consequences:
e A3Rsru will be violated and OLS and (GLS) will be inconsistent.

Solutions:
e We need to think. One option is to find the missing variables and include them. Another
is to trade omitted variable bias off for measurement error bias by including a proxy for Z.
Yet another option is to find an instrument for X and use IV methods instead of OLS.

e A third option is to try to sign (i.e., £) the bias of the OLS estimator (though this may not
always be possible). To understand this point, let us return to the Broca example (see the
next two slides).
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; Situation G.serious.OV — Endogeneity: (cont’d.): the Broca example L

Going by the Broca example, we have
xls - (17 Gs)Q Z; - (M37A5)7

where (as a reminder), we had G, ,an identifier for male gender dummy, G, the body weight /-
mass, and A, the age at death.

e The bias vector (i.e., the systematic component of the sampling error of our estimator that
remains non-zero in expectation over hypothetical repeated experiments) is given by

E(BOLS’X; Z) . Btrue _ (X/X)_leZ’)/true.

o Let 5W0LS denote the OLS estimator of the slope coefficient obtained from a regression
of Wi on z, = (1,G,)", and let d40Ls arise analogously from a regression of A, on
x5 = (1,Gy) . Further let 4" = (~{7"¢, 4'7"¢)". We can then visualise the bias as:

E(Bors| X, Z) — B¢ = (X' X)L X' Z~tre

true
(o dumas) ()
dwoLs OaoLns) \ V1"
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Situation G.serious.OV (cont’d.): the Broca example L

e The bias, which is a 2 x 1 vector, is such that the first element relates to bias in the intercept;
but the second element, bias in the coefficient of interest, is

5W,OLS X V%ue -+ SA,OLS X e
Recall what we know about the signs:

— 5W7OL5 > () (men are typically heavier than women)

— 1€ > 0 (the “dinosaur effect”)

— 5A7OLS < 0 (men typically die younger than women)

— AT < 0 (the “drying out effect”)

e The upshot is that overall bias in the estimated coefficient on G will be upwards/positive.
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‘Situation 7.serious.ONL — Endogeneity: omitted non-linearities

Causes:
e The true model is A2 : y = g(X, B"¢) + &'"¢, but the estimating model is
A2* - y = Xﬁtrue + u, where u = g(X, 6true) . Xﬁtrue + <€true
e Endogeneity = forced failure of A3Rsru.

Consequences:

e We have in general that E(u) # 0 and, more crucially, E(u|X) # E(u). In other words,
A3Rsru is violated.

Solutions:

e We need to identify the correct g(X, 31“¢) function and apply suitable non-linear least
squares (NLLS) methods.
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‘Situation 8.serious.ME — Endogeneity: regressor measurement errors

Causes:
e Suppose we have error-ridden versions of (a subset of ) our regressors:

Xl — Xf + ‘/17
where X is observed whereas X7 and V] are not.

e The true model is A2* : y = X} 81" + X, 05¢ + '€ but the estimating model is
A2y = X 8" + X80 4 u, where u = "¢ — V; girue,
e Endogeneity = forced failure of A3Rsru.

Consequences:
e The problem in A2 is that both the error-ridden regressor, X7, and the model error, wu,
contain V7, the measurement error, so that A3Rsru will be violated.

Solutions:
e Apply IVE if suitable instruments can be found for X, which is seldom possible. Alternative
ad hoc methods exist in case additional imperfect measures of X7 are available.
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: Situation 9.serious.SE — Endogeneity: simultaneous equations

Causes:
e Consider the (dual-equation) structural model given by

y=Y151+ 2171 +¢€
Y| = Zym + Zomo + 1y,

where y or Y notation denotes an endogenous variable whereas Z notation denotes an
exogenous variable. Note that structural equations jointly describe the behaviour of economic
agents. There may be (as in the case above) both exogenous and endogenous variables on
the RHS of such equations. In contrast, equations in which all regressors are Z variables
are referred to as reduced form equations.

e Endogeneity = forced failure of A3Rsru.

Consequences:

e Since Yi, and y, are simultaneously determined through the two equations, it follows that
Y1, and &, are correlated as long as 4 and 1/, are correlated. A3Rsru is violated.

e OLS is an appropriate unbiased and consistent estimation strategy for reduced form equa-
tions, but gives biased and inconsistent results when applied to a structural equation. So
the m parameters can be consistently estimated by OLS from the Y; equation, but the 3;
and ~; parameters in the y equation will not be consistently estimated.
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‘Situation 9.serious.SE — Endogeneity: simultaneous equations (cont’d.) L

Solutions:
e We can use IVE (see Topic 18 ahead), using Z; and Z as instruments for Z; and Y.

e For IVE of 51 and 7 to be feasible, a necessary (but not sufficient) condition is that the
y equation be identified, which requires that there be at least as many columns in Z5, our
excluded exogenous variables, as columns in Y7, our included endogenous regressors.
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: Situation 10.serious.LDVexogenous: Probit etc.

See Case 6, Topic 15: Leading Causes of Endogeneity
e Omitted nonlinearity caused by Limited Dependent Variables
e Endogeneity = forced failure of A3Rsru.
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‘Situation 11.serious.LDVendog: Sample Selectivity

See Case 7, Topic 15: Leading Causes of Endogeneity
e Omitted nonlinearity plus Simultaneity caused by Endogenous Sample Selection
e Endogeneity = forced failure of A3Rsru.
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