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e Topic 16. Extensions to A2 (non-linearities), A4/A3 (infinite moments), A3 (endogeneity)
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A2 extensions: A2additively.nonlinear

Suppose we have A2linear along with A3Rsru.

e In this setting, we can avail the population orthogonality conditions (by A3Rsru).

e We know (due to the LLN) that we can estimate population moments consistently via

sample moments. This motivates the use of sample orthogonality conditions for the purpose
of GMM estimation of any unknown model parameters.

e The moment equations we obtain turn out to be equivalent to the first-order conditions for
minimising the OLS objective function (up to scale).

Now suppose we have A2.additively.nonlinear along with A3Rsru.

e In this setting, we can still avail the population orthogonality conditions (by A3Rsru).

e But now the moment equations we obtain turn out to be equivalent to the first-order
conditions for minimising the NLLS objective function (up to scale).

e We have: .
ByiLs = arg min 2 (ys — 9z, b)),
S=

where ¢g(-,-) represents a non-linear link function between [E(y,|X) and the regressors.




A2 and A3 extensions: A3Rsru.W

Suppose we have A2linear along with A3Rsru.WW whereby regressors may well be endogenous
but there exists a weakly exogenous matrix of candidate instruments .

e In this setting, we can avail the W matrix and undertake IVE (which applies the GMM
principle to the endogenous regressor case).

Now suppose we have A2additively.nonlinear along with A3Rsru.W

e In this setting, we can avail the W matrix and undertake NLIV (which applies the GMM
principle to the endogenous regressor case with a nonlinear link function).




A2 and A3 extensions: joint consideration

Suppose we have:
* A2linear or  A2additively.nonlinear or  A2nonadditively.nonlinear
* A3Rsru or  A3Rsru.W
* and convenient A4.(n)i.i.d.
e We can then avail (full information) maximum likelihood — FIMLE. To achieve this, we

employ all five classes of assumptions (including distributional family) and specify the full
conditional density of all the endogenous variables, y and X%, given all the exogenous vari-
ables (regressors X9°° and additional instrument variables Z) and the unknown parameter

vector Qirue:

f(y, Xbad‘Xgood’ Z; Qtrue)
Taking the (natural) log of the joint density as a function of any arbitrary 6 defines the
Loglikelihood Function and thus the FIMLE:
LLF(6;all endogenous and exogenous data) = In f(y, X"| X9 7.0)

Orivie = arg mHaXLLF(Q, all data)

e The FIMLE in general requires the iterative solution of the FOCs, which will be a set of
non-linear equations. If all five assumptions are correctly specified, the FIMLE will be the
best CUAN estimator in that its asymptotic variance will achieve the Cramér-Rao lower
bound, asymptotically with the sample size S — oo.




A4 extensions: infinite moments |

Suppose we have Al-A5iid.Cauchy
e We can avail (full information) maximum likelihood given the following marginal PDF:

B 1
b (14 (52)°)

where a and b are the parameters governing the Cauchy distribution.

f(2)

e In this case writing ¢, = 2 — a = ys — x.0, would allow us to define the likelihood
contribution of data point s. Combining it with the independence assumption would give us
the Likelihood function and the Loglikelihood function, thus allowing us to define the MLE
for 5 and the scale parameter b.

e Despite the fact that all the even moments of the Cauchy distribution are infinite and all the
odd moments are undefined, the first and second derivatives of the Loglikelihood function
are well defined. Hence, the resulting MLE will be the best CUAN estimator for this case,
asymptotically with the sample size S — o0.




