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� Topic 16. Extensions to A2 (non-linearities), A4/A3 (infinite moments), A3 (endogeneity)

Estimator Notation Under Complications Extends to

1. β̂OLS A2Nonlinear.additiveError → β̂NLLS

2. β̂LAD
3. β̂Lstar
4. β̂GMM A3EndogenousX/ExogenousW → β̂IV E

5a. β̂IGLS

5b. β̂FGLS

6. β̂MLE Multiple → β̂FIMLE

7. β̂IV E A2Nonlinear.AdditiveError → β̂NLIV E
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A2 extensions: A2additively.nonlinear

Suppose we have A2linear along with A3Rsru.

� In this setting, we can avail the population orthogonality conditions (by A3Rsru).

� We know (due to the LLN) that we can estimate population moments consistently via

sample moments. This motivates the use of sample orthogonality conditions for the purpose

of GMM estimation of any unknown model parameters.

� The moment equations we obtain turn out to be equivalent to the first-order conditions for

minimising the OLS objective function (up to scale).

Now suppose we have A2.additively.nonlinear along with A3Rsru.

� In this setting, we can still avail the population orthogonality conditions (by A3Rsru).

� But now the moment equations we obtain turn out to be equivalent to the first-order

conditions for minimising the NLLS objective function (up to scale).

� We have:

β̂NLLS = argmin
b

S∑
s=1

(ys − g(xs, b))
2 ,

where g(·, ·) represents a non-linear link function between E(ys|X) and the regressors.
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A2 and A3 extensions: A3Rsru.W

Suppose we have A2linear along with A3Rsru.W whereby regressors may well be endogenous

but there exists a weakly exogenous matrix of candidate instruments W .

� In this setting, we can avail the W matrix and undertake IVE (which applies the GMM

principle to the endogenous regressor case).

Now suppose we have A2additively.nonlinear along with A3Rsru.W

� In this setting, we can avail the W matrix and undertake NLIV (which applies the GMM

principle to the endogenous regressor case with a nonlinear link function).
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A2 and A3 extensions: joint consideration

Suppose we have:
* A2linear or A2additively.nonlinear or A2nonadditively.nonlinear

* A3Rsru or A3Rsru.W

* and convenient A4.(n)i.i.d.
� We can then avail (full information) maximum likelihood — FIMLE. To achieve this, we

employ all five classes of assumptions (including distributional family) and specify the full

conditional density of all the endogenous variables, y and Xbad, given all the exogenous vari-

ables (regressors Xgood and additional instrument variables Z) and the unknown parameter

vector θtrue:

f (y,Xbad|Xgood, Z; θtrue)

Taking the (natural) log of the joint density as a function of any arbitrary θ defines the

Loglikelihood Function and thus the FIMLE:

LLF (θ; all endogenous and exogenous data) ≡ ln f (y,Xbad|Xgood, Z; θ)

θFIMLE = argmax
θ

LLF (θ; all data)

� The FIMLE in general requires the iterative solution of the FOCs, which will be a set of

non-linear equations. If all five assumptions are correctly specified, the FIMLE will be the

best CUAN estimator in that its asymptotic variance will achieve the Cramér-Rao lower

bound, asymptotically with the sample size S → ∞.
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A4 extensions: infinite moments

Suppose we have A1-A5iid.Cauchy

� We can avail (full information) maximum likelihood given the following marginal PDF:

f (z) =
1

πb
(
1 +

(
z−a
b

)2)
where a and b are the parameters governing the Cauchy distribution.

� In this case writing ϵs = z − a = ys − x′sβ, would allow us to define the likelihood

contribution of data point s. Combining it with the independence assumption would give us

the Likelihood function and the Loglikelihood function, thus allowing us to define the MLE

for β and the scale parameter b.

� Despite the fact that all the even moments of the Cauchy distribution are infinite and all the

odd moments are undefined, the first and second derivatives of the Loglikelihood function

are well defined. Hence, the resulting MLE will be the best CUAN estimator for this case,

asymptotically with the sample size S → ∞.
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