
Topic 18 Header Slide

� Topic 18. Analysis of instrumental variable estimators

– Discussion point #1. Identification

– Discussion point #2. Instrument validity and relevance

– Discussion point #3. Statistical properties of instrumental variable estimators

Estimator Notation Under Complications Extends to

1. β̂OLS A2Nonlinear.additiveError → β̂NLLS

2. β̂LAD
3. β̂Lstar
4. β̂GMM A3EndogenousX/ExogenousW → β̂IV E

5a. β̂IGLS

5b. β̂FGLS

6. β̂MLE Multiple → β̂FIMLE

7. β̂IV E A2Nonlinear.AdditiveError → β̂NLIV E
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Basic Idea of Instrumental Variables

Consider A2linear with two sets of regressors, XG and XB:

y = XGβG +XBβB + ϵtrue

or, in observation-by-observation form:

ys = xG
′

s βG + xB
′

s βB + xB
′

s βB + ϵtrues = x′sβ + ϵtrues

Given A1 and A2, the Sampling Error Vector of OLS is:

SEV (β̂ols) =

(∑
s

Bs

)−1

·
∑
s

aolss =

(∑
s

xsx
′
s

)−1

·
∑
s

xsϵs

But:

Eaolss = E

[
xGs ϵs
xBs ϵs

]
=

[
ExGs ϵs
ExBs ϵs

]
=

[
= 0

̸= 0

]
because we are told that the ‘good’ variables satisfy the weak exogeneity condition ExGϵs = 0,

while the ‘bad’ variables do not (since they are endogenous w.r.t. to the error).

Therefore, OLS will be inconsistent for all the βs since in general XG and XB are correlated.
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Reverse Engineering the Instrumental Variables Estimator

Suppose we can find a data matrix W of the same dimension as the original X and of full rank

k. We then define:

W ′ϵtrue =
∑
s

wsϵ
true
s =

∑
s

aives

such that:

Eaives = 0

at the true parameter values.

We now use the GMM idea and rely on the true *population* orthogonality conditions implied

by the true model: A2 : y = Xβ + ϵtrue and

A3Rsru : W,XGEwsϵ
true = 0, ExG

′
s = 0

Therefore, we define the GMM=IVE by using the *sample* orthogonality conditions:

W ′ϵ̂ive = W ′(y −Xβ̂ive) = 0

to mimic the population OCs. Finally, solving for β̂ive we obtain:

β̂ive = (W ′X)−1W ′y

because W ′X is square and invertible given that rank(X) = rank(W ) = k.

In conclusion, the IVE will be consistent provided every column used to construct W is a weakly

exogenous variable w.r.t. the true error (i.e., satisfies A3Rsru).
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Overview/Discussion point #1.

� Discussion point #1. Identification

– Identification refers to the mathematical ability to solve uniquely for all parameters.

This is distinct from estimation, which aims to use statistical methods to learn about

unknown parameters given a sample.

– Parameter identification is a step in the theoretical analysis of the model given a speci-

fication; parameter estimation is a step in empirical analysis of the model given data.

– We must assess whether our model is identified (so as to subsequently permit consistent

estimation) in the presence of an exogenous-endogenous regressor dichotomy.

� Discussion point #2. Instrument validity and relevance (and feasibility)

– Validity and relevance are the names given to our identification conditions. These con-

ditions permit us to use IVE methods to consistently estimate parameters of interest.

� Discussion point #3. Statistical properties of instrumental variable estimators

– The IVE method typically yields analytic estimators. This permits us to use the standard

form of our (previously-seen) SEV in order to investigate exact and asymptotic properties.
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Analysis of the SEV – Discussion point #2.

� Recall any of the seven leading cases of endogeneity. In other words, suppose we have a

violation of even the weakest form of exogeneity (i.e. even A3Rsru does not hold).

� Recall analysis of SEV (β̂OLS). Under A2linear and with the definition of OLS, we have

β̂OLS − β =

(
1

S

S∑
s=1

xsx
′
s

)−1

1

S

S∑
s=1

xsεs,

so that by Slutsky’s theorem, we obtain

plim
S→∞

β̂OLS − β =

(
plim
S→∞

1

S

S∑
s=1

xsx
′
s

)−1

plim
S→∞

1

S

S∑
s=1

xsεs,

which by “suitable” LLNs evaluates to,

plim
S→∞

β̂OLS − β = (E(xsx′s))
−1E(xsεs),

a quantity that is only well-defined and equal to zero under the critical assumptions that:

1. There exists a finite non-singular matrix, B0
∞, such that E(xsx′s) = B0

∞

2.
(∑S

s=1 xsx
′
s

)−1

exists, or A1 holds (otherwise the first step of the proof fails)

3. E(xsεs) = E(aolss ) = 0, or A3Rsru holds (otherwise the final step of the proof fails)
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Considering the loss of A3Rsru – Discussion point #2.

� The loss of A3Rsru is clearly fatal as far as our OLS estimator is concerned.

� But suppose we could (in principle, or in practice, and ideally both!) avail of data on k-

dimensional vector ws (i.e. for s = 1, ..., S) that happened to exhibit weak exogeneity in

respect of εs. Let us denote this new assumption by A3Rsru.W : E(wsεs) = E(aives ) = 0.

� How could we exploit this windfall source of exogenous variation?

� We cannot blindly replace xs with ws in the previous proof – this would constitute a major

mis-specification of the original model. (Remember that no one is interested in estimating

the partial effect of ws on ys. What we care about is the partial effect of xs on ys.)

� One could, however, develop a whole new approach (OLS simply cannot be rescued) as per

the following slide. Let us first consider the algebra and then consider the intuition.
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SEV-based introduction to IVE (1 of 4) – Discussion point #2.

� Consider again our consistency proof, but this time we will try to avail of the windfall data

on ws for s = 1, ..., S. Consider a thought-experiment in which we analyse the properties

of

β̂novel ≡

(
1

S

S∑
s=1

wsx
′
s

)−1

1

S

S∑
s=1

wsys

� (Ultimately, this “novel” estimator will be exactly our IV estimator, and we will drop the

odd-sounding name. But let us just work through the mechanics first so that we can define

what we mean by an instrument.)
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SEV-based introduction to IVE (2 of 4) – Discussion point #2.

� Consider the analysis of SEV (β̂novel). Under A2linear and given the definition of our novel

estimator, we have

β̂novel − β =

(
1

S

S∑
s=1

wsx
′
s

)−1

1

S

S∑
s=1

wsεs,

so that by Slutsky’s theorem, we obtain

plim
S→∞

β̂novel − β =

(
plim
S→∞

1

S

S∑
s=1

wsx
′
s

)−1

plim
S→∞

1

S

S∑
s=1

wsεs,

which by a suitable LLN evaluates to,

plim
S→∞

β̂novel − β = (E(wsx
′
s))

−1E(wsεs),

which is only well-defined and equal to zero under the critical assumptions that:

1. There exists a finite non-singular matrix, B0
∞, such that E(wsx

′
s) = B0

∞

2.
(∑S

s=1wsx
′
s

)−1

exists (otherwise the first step of the proof fails)

3. E(wsεs) = E(aives ) = 0, or A3Rsru.W holds (otherwise the final step of the proof fails)
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SEV-based introduction to IVE (3 of 4) – Discussion point #2.

� Clearly, under conditions 1–3 on the previous slide, our novel estimator is consistent. (One

can arguably think of these conditions as reverse-engineered to ensure consistency!)

� All that remains is for us to give ws a scientific name; that is, an instrument.

� Indeed, an instrument is defined precisely such that conditions 1–3 hold. These defining

conditions, in turn, are so crucial that they bear their own names. Let us review them:

1. There exists a finite non-singular matrix, B0
∞, such that E(wsx

′
s) = B0

∞

2.
(∑S

s=1wsx
′
s

)−1

exists (otherwise the first step of the proof fails)

3. E(wsεs) = E(aives ) = 0, or A3Rsru.W holds (otherwise the final step of the proof fails)

� Conventional nomenclature for the bullets above is as follows:

1. Condition 1 is none other than “relevance”. It ensures the inverse term in the final step

of the consistency proof is well-defined.

2. Condition 2 is “in-sample relevance” or “feasibility”. It ensures the IV estimator exists

to begin with. (For instance, it precludes perfect collinearity among the ws variables.)

3. Condition 3 is none other than “validity”. It ushers in the final consistency result.

9



SEV-based introduction to IVE (4 of 4) – Discussion point #2.

We are now in a position to (i) define what an instrument means; and (ii) concurrently move the

discussion forwards by setting up the notation to generalise our framework from the so-called

“just-identified” setting to the “over-identified” setting (which we will analyse in detail shortly).

� A q-dimensional vector ws is said to be instrumental for k-dimensional vector of (potentially

endogenous) regressors xs if ws satisfies the twin conditions of validity and relevance.

– When q < k, the model is said to be “under-identified”. (No solution is possible.)

– When q > k, the model is said to be “over-identified”. (We will study 2SLS shortly.)

– When q = k, the model is said to be “just-identified”. (Our current focus – i.e., IVE.)

� So long as q = k, we can define the IV estimator as:

β̂IV E ≡ (W ′X)−1W ′y =

(
S∑

s=1

wsx
′
s

)−1 S∑
s=1

wsys, where W ≡


w′

1

w′
2
...

w′
S

 is an S×k matrix

satisfying the needed feasibility condition that (W ′X)−1 exists.

� Note that when q > k, the over-identified setting, the inverse of (W ′X) cannot exist (at

least not in a conventional sense) because it is not a square matrix.
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Asymptotics of the IV estimator – Discussion point #3.

The key results in the IVE case, given S × k instrument matrix W are as follows:

(i) Under relevance, an LLN ensures that plim
S→∞

(W ′X/S) is a finite non-singular k× k matrix.

(ii) Under validity, an LLN ensures that plim
S→∞

(W ′ε/S) is the k-dimensional zero vector.

(iii) Under the feasibility condition, the SEV of the estimator, (W ′X)−1W ′ε, is well-defined.

(iv) We will also require a ‘well-behaved’ population second moment matrix for instruments W

as captured by existence and non-singularity of plim
S→∞

(W ′W/S).

(v) Under these conditions, a CLT ensures that W ′ε/
√
S

d→ N (0,Σ) as S passes to infinity,

where Σ = plim
S→∞

(W ′W/S) under A4GM(iid) and Σ = plim
S→∞

(W ′ΩW/S) under A4Ω.

(vi) It follows from (i)–(iii) and Slutsky’s theorem that SEV (β̂IV E)
p→ 0 as S → ∞; and it

follows from (i)–(v) and Cramér’s theorem that
√
S · SEV (β̂IV E)

d→ Z0 as S → ∞, for

k × 1 vector Z0, where Z0 ∼ N (0,ΣZ) with the definition of ΣZ as per:

c2
(
plim
S→∞

(W ′X/S)

)−1

plim
S→∞

(W ′ΩW/S)

(
plim
S→∞

(X ′W/S)

)−1

under A4Ω.
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A mix of endogenous-exogenous regressors (the model)

� Consider a situation in which we have a single endogenous regressor and several hundred

exogenous regressors. The temptation might be to think that the exogenous variation, in

some sense, swamps or drowns-out the endogenous variation. However, this reasoning is

incorrect. We see why below.

� Suppose we have a linear regression model with data (y,X) of sample size S. The k

regressors are grouped in two parts, XA and XB, of dimensions S × kA and S × kB
respectively, with kA+kB = k. Suppose that the model satisfies the following assumptions:

A1 : rank(X) = k < S

A2 :
y = Xβ + ε = XAβ

A︸ ︷︷ ︸
XGoodβGood

+ XBβ
B︸ ︷︷ ︸

XBadβBad

+ ε = ZIβG︸ ︷︷ ︸
XGoodβGood

+ XBβ
B︸ ︷︷ ︸

XBadβBad

+ ε

A3Rmi.XA : E(ε|XA) = E(ε)
A3.XB : ε and XB correlated for all s = 1, ..., S

A4Ω : E(εε′|X) = c2Ω

A5Gaussian : εs|X ∼ N (0, σ2)

In other words, regressors XB are endogenous with respect to the true error.

� We are particularly interested in the true coefficients of the XA variables, βA.
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A mix of endogenous and exogenous regressors (the problem)

� The sampling error vectors for OLS and IGLS estimators is respectively:(
β̂OLS
A

β̂OLS
B

)
−
(

βA
βB

)
=

(
X ′

AXA X ′
AXB

X ′
BXA X ′

BXB

)−1(
X ′

Aε

X ′
Bε

)
(

β̂IGLS
A

β̂IGLS
B

)
−
(

βA
βB

)
=

(
X ′

AΩ
−1XA X ′

AΩ
−1XB

X ′
BΩ

−1XA X ′
BΩ

−1XB

)−1(
X ′

AΩ
−1ε

X ′
BΩ

−1ε

)

� Given these expressions, it is clear that both estimators will be biased and inconsistent for

coefficients on both sets of regressors (i.e., sets A and B). This is because:

1. the endogeneity of regressors XB implies that the terms X ′
Bε and X ′

BΩ
−1ε will not be

zero in expectation, nor will X ′
Bε/S and X ′

BΩ
−1ε/S converge to zero asymptotically;

2. the bias/inconsistency carries over even to the estimated coefficients on the XA variables

because in general neither X ′
AXB nor X ′

AΩ
−1XB will vanish.

� Detailed formal algebraic explanations (i.e., based on partitioned regression formulas) of the

above statements are provided in the extended notes. (These are DrRS’s old teaching notes

based on the associated problem set question – i.e., the same one that was ear-marked for

you to submit to your class teachers. Compare his solution with your own...? Hope it helps.)
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A mix of endogenous and exogenous regressors (IVE – 1 of 2)

As a possible response to the problem of endogeneity of XB, econometricians proposed the IVE-

based solution, defined by:

β̂IV E = (W ′X)−1W ′y, where

SEV (β̂IV E) = β̂IV E − βtrue = (W ′X)−1W ′ε

Here is a recap of the key points; now from a practitioner’s (rather than a theorist’s) perspective:

� The matrix W should be of the same dimension as X and have full rank k. Further, W ′X

should have full rank k = kA + kB.

� Further, W should consist only of exogenous variables, implying that XA can be used.

� Since this disallows the use of the endogenous regressor XB, in order to make the method

feasible, we must find kE additional “instrument” variables (kE ≥ kB) to construct W .

� As a reminder, W should consist solely of valid instruments or linear combinations of such

valid instruments. An instrument variable z is termed “valid” if it is weakly exogenous w.r.t.

to the error term – i.e., E(zsεs) = 0.

� An instrument variable z is termed “relevant” if it has a high correlation with the endogenous

variables of the model, in this case the endogenous regressors XB.

14



A mix of endogenous and exogenous regressors (IVE – 2 of 2)

� Notice the potential for over-identification alluded to in the previous slide. If kE were strictly

larger than kB, we would have to eliminate the extra instruments so as to maintain feasibility.

� However, wasting information is never a good idea. Formally, there are efficiency gains

to be exploited by (linearly) combining the information across all kz = kI + kE available

instruments.

� So what is the optimal choice, say W ∗, in the over-identified setting? We explore this next.
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Dealing with over-identification

� Say we have available an S×kz matrix of (valid and relevant) instruments, Z, where kz > k.

� Then, the optimal choice would entail construction of an S×k matrix, W ∗, that constitutes

effectively a k = (kA + kB) < kz = (kA + kE) dimensional fitted (via least squares) version

of all available weakly exogenous variables, given by Z = (ZI , ZE) = (XA, Z
E).

� Indeed, the optimal combination – one that maximises the correlations between W ∗ and the

original regressors (XA, XB) – is obtained via the fitted/predicted values from a ‘multivariate’

regression, using OLS, of S×(kA+kB) matrix (XA, XB) on S×(kA+kE) matrix (XA, Z
E).

� Let us denote these fitted/predicted values as S × k matrix X̂ = (X̂A, X̂B) = (XA, X̂B).

� The multivariate regression described on this slide is known as the “1st stage regression”.

� To summarise we have our S × k optimal instrument matrix, W ∗, given by:

W ∗ = X̂ = Zπ̂ = Z(Z ′Z)−1Z ′X,

where π̂ = (Z ′Z)−1Z ′X is a kz × k matrix of so-called 1st stage regression coefficients and

Ẑ = Zπ̂ is the S × k (i.e. lower-dimensional) projection.

� The so-called optimal IVE is then obtained as

β̂Opt.IV E = (W ∗′X)−1W ∗′y
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