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e Topic 19. Estimation of non-linear regression models

Estimators 8.etc. Non-Linear Least Squares (NLLS), Non-Linear GMM, Non-Linear IVE,
MLE

Estimator | Notation | Under Complications Extends to
1. BorLs A2Nonlinear.additive Error — BNLLS
2. Brap

3. BLstar

4. Bavm | A3Endogenous X/ ExogenousW — OIvE
5a. Brers

5. Brars

6. Bure | Multiple — BrIMLE
7. BIvE A2Nonlinear.Additive Error — BNLIVE
8.etc. Nonlinear extensions (NLIV, NLGMM, etc)




“Introduction (1 of 2)

1. Ostensibly non-linear models
e A suitable/judiciously-chosen transformation restores A2 Linear (partially/fully)

e Leading example: Cobb-Douglas (C/D) production function. Consider
Y, = al" K™y,
which exhibits log-linearity (for at least the main parameters) since we can readily obtain
ys = log(Ys) = Bo + Bilog(Ls) + B2 log(K) + &5,

where By = log(a) and g4 = log(vs) — i.e., linear in 8 = (B, £1, 52)" and additive &.

e Techniques: OLS and similar methods are suitable




“Introduction (2 of 2)

2. Inherently non-linear models
e There exists no obvious transformation to restore A2Linear
e Simple example: Constant Elasticity of Substitution (CES) production function

e Leading example: Limited dependent variable (LDV) models (which we focus on below)

e Techniques: NLLS, Non-linear GMM, Non-linear IVE, MLE




: The inherent non-linearity of LDV models

e Models for LDVs represent a leading example of inherently non-linear regressions.

e The key feature of LDV models is the distinction between an underlying latent variable, LV,
(denoted by y¥) and an LDV (denoted by ys), whereby 3* and y; are linked by a “partial
observability” or “information filtering” function given, say, by:

ys = T(Ys)-
Fact 1. The LV y! is governed by assumptions A1*, A2* A3* A4* A5

Fact 2. The LDV y; is governed both by assumptions A1*, A2* A3*, A4*, A5* and
the ys = 7(y;) mapping

Fact 3. Recall that A1, A2, A3 are assumptions that are critical in ensuring consistency (i.e., our
first-order concern, as opposed to efficiency, which is typically a second-order objective).
These assumptions will be determined by the complete set, A1*, A2*, A3*, A4*, A5*

e Leading Examples:
1. Example 1a and 1b — Probit and Logit models for binary outcomes
2. Example 2 — Tobit model for censored and truncated outcomes
3. Example 3 — Selectivity and Discrete/Continuous models for censored and truncated
simultaneous outcomes




'Example 1a — Probit model for binary outcomes

LDV is binary, LV is Gaussian = Probit model

Al*
A2*linear
A3*
A4*GMiid
Ab*

pde(Z)

cdf-(2)

7(:)
A2nonlinear

A3
ys| X

rank(X) =k

yr=af+es Ees) =0

E(e.X) = E(e,)

es| X ~iid

es| X ~ N(0,1), so that y | X ~ N (z.5,1)

\/}—WeXp (—%zz) = (2)
/ \/%exp (—%uﬂ) dw = B(2)

1, y: >0
ys_{ Y

0, ys <0
ys = E(ys| X) +us = (I)(:U;ﬂ) + Us
E(us| X) =0

Bernoulli(p) with p = Pr(y, = 1|X) = ®(2.5) = E(y,| X)




Example 1b — Logit model for binary outcomes

LDV is binary, LV is Logistic = Logit model

A1* 0 rank(X) =k
A2*linear : yr=x.0+¢es E(es) =0
A3" 1 E(gs]X) = E(gy)
AL GMiid e, X ~ iid
A5* e X ~ Logistic(0,7%/3), so that y*|X ~ Logistic(z’3, 7 /3)
exp(—2)

PR = e =

cdf.(z) = 1 _ exp(2)
l+exp(—z) 1+ exp(z)
1, y2>0
s n={ g B2
A2nonlinear : y, = E(y,|X) +us = A(2)5) + us
A3 Eus|X)=0
ys| X ~ Bernoulli(p) with p = Pr(y, = 1|X) = A(2)3) = E(y,|X)

= \(2)




'\ Example 2 — Tobit model for censored outcomes (1 of 2) L

LDV is censored, LV is Gaussian =—> Tobit model

A1 o rank(X) =k
A2*linear : yi=uz.8+e; REes) =0
A3" 0 E(gy|X) = E(ey)
AV GMiid : &)X ~ iid
A5* o | X ~ N(0,0%), so that y| X ~ N (2.3, 0%)

pdf-(z) = éso (g)

cdf(z) = ()

o

)y ye >0

A2nonlinear : ys=E(ys|X)+us == + ug if y, # —999

A3 B(uyX) =0

(Note: -999 is simply an arbitrary code for missing data, or “MDC".)




'\ Example 2 — Tobit model for censored outcomes (2 of 2) L

Lo (2) g, # —999
ys| X ~ mixed distribution with PDF as given by ,
o (22),  yo=—99




Example 3 — Selectivity model with Gaussianity

A1 o rank(X) =k, rank(Z)=k,

A2%linear : yl=a8+¢e,, E(e) =0, Ri=z~v+¢, E(() =0
A3 . B(eX,2)=E(e), E(G|X,Z)=E()

AL GMiid : e,|X,Z ~iid, (X, Z ~ iid

« (€ 0 o’ po
A5* (Cs) ‘X’ZNN((())’(,OJ 1)), so that
Ys v B\ (o° po
() ez~ () (7 7))

pdf-(z) = lgp (z) , cdf-(z) = (i) , et

o o o

*ods=1 oL oL
(1) ys= { Is: where participation, dj, is indicated by

—999, ds =10
g { 1, R:>0
’ 0, RE<0
A2nonlinear : y, =E(y| X, Z) + us = 2.8 + po ( o (2,0) ) +ugifd, =1
1—®(z5)

A3 E(usX)=0
ys|X,Z ~ mixed distribution; d,|Z ~ Bernoulli(p) where p = Pr(d, = 1|2) = ®(z.3)

S




Key estimation strategies for LDV models

Quick summary of available approaches —
1. Full MLE - consistent and asymptotically efficient
2. GMM-type non-linear estimation — consistent but not asymptotically efficient

3. PHP (pretend, hope, and pray!) — inconsistent due to endogeneity (cause 6 or cause 7)
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Dealing with Regressor Endogeneity

The fundamental point is the following:

The appropriate estimation strategy in the presence of one or more endogenous regressors depends
on the particular endogeneity cause that applies in the particular setting.

Hence, we must review the seven leading causes and identify the one that pertains.
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Attempting to Overcome the Seven Leading Causes of Regressor
Endogeneity

3.1 Cause 1

Combination of lagged dependent variables among the regressors and autocorrelated errors.

e Depending on Order of Lags in A2Linear and Type of Autocorrelation:
If A4 autocorrelation is M A(q), Best approach: IVE with older lags of A2linear specification
If A4 autocorrelation is AR(p), IVE *does* *not* work.

3.2 Cause 2

Omitted regressors from the specification.
Recall Paul Broca historical example with ~200 autopsies.

e Best approach: Think what the Omitted Important Variables are. Find them and Include them.

e Poor approach: IVE would be impossible or counterproductive.
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3.3 Cause 3

Measurement errors in one or more regressor variables(s)

A2linear in terms of X*:
y — X*Btrue 4 Etrue

VS.
A2linear in terms of X:

Y= (X _ V) ﬁtrue + strue
— Xﬁtrue + gtrue _ Vﬁtrue
. true
= X"+ U
composite true error
using the fact that, by assumption, X = X*+ V
Suggested IVE idea: Use the *ranking™ of mismeasured variable as Instrument. Idea/Hope: the ranking of a
variable (assigning 1 to its smallest value, 2 to its next largest, ..., and S to its largest value) should be correlated
to the original variable (i.e., Relevant Instrument) while it is hoped that it is *less* correlated to the source of
endogeneity in the composite error U, which is the —3"““V term involving the measurement error.
NB: this is only an *approximate™ idea/hope, since the Ranking is clearly not fully Valid, nor the most Relevant
one.

3.4 Cause 4
Functional form misspecification of A2 part of the model.

e Best approach: Think what the correct Functional Form of E(y|X) is and re-model A2Nonlinear to reflect the
true nonlinear regression relation.

e Poor approach: IVE would be impossible or counterproductive.
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3.5 Cause 5

Simultaneity - System of simultaneous equations determines LHS and RHS variables simultaneously.

e Best approach: IVE of the SFEs, using X% and X% = Z! as regressors, and all the Good (=Exogenous)

variables throughout the model as Instruments. Clearly, the complete set of Exogenous variables in the whole
System of Equations is: Union[Z!, ZElsewhere]

3.5.1 Swimple illustration:
Consider modeling the market for ice cream, assume perfect markets with flexible prices
e SF1: y= X838 4 7159 4 gtrue

— y: quantity of ice cream demanded — dependent variable (endogenous)
— XB: price of ice cream — endogenous

— Z!: consumer income, weather — exogenous
o SF2: XB = yvy  ZFyF 4 ytrue

— XB: price of ice cream — dependent variable (endogenous)
— y: quantity of ice cream supplied — endogenous

— ZF: transportation in refrigerated lorries etc. — exogenous

e Note: we could always consider also the reduced form (RF) equation for price of ice cream y on the LHS as a
function of only Z, (Z! and Z¥) on the RHS
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3.6 Cause 6
[Related to cause 4] + LDV (limited development variable) model

3.7 Cause 7

[Related to cause 5] + LDV (limited development variable) model with Selectivity/Sample Selection/Discrete- Continuous
Switching models

3.7.1 BEST parametric CUAN: LDV Approach 1: Full MLE of LDV Models

3.7.2 CUAN but NOT BEST: LDV Approach 2: Consistent but Inefficient GMM-type
Nonlinear Estimation of LDV Models

3.7.3 TERRIBLE: Inconsistent in General: LDV Approach 3: PHP (Pretend Hope and Pray)
is Inconsistent because Classic Endogeneity (either Cause 6 and/or Cause 7)
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