

M.Sc. Econometrics (Ec402)
2024–2025
Answers for Problem Set #6

Question 1

Explain what we mean by the “Normal Linear Regression Model (NLRM)”.

NLRM-A4GM: $\hat{\beta}_{ols}|X \sim N(\beta^{true}, \sigma^2(X'X)^{-1})$

NLRM-A4Omega: $\hat{\beta}_{ols}|X \sim N(\beta^{true}, c^2(X'X)^{-1}X'\Omega X(X'X)^{-1})$

Outline the conditions that characterize this model.

NLRM-A4GM: $A1 + A2 + A3Rmi$ or stronger $A3 + A4GM(iid) + A5Gaussian$

NLRM-A4Omega: $A1 + A2 + A3Rmi$ or stronger $A3 + A4\Omega + A5Gaussian$

Repeat with the term “Asymptotic Linear Regression Model (ANLRM)”.

Part 1: If “A” is taken to mean “Approximate NLRM for very large, *finite* sample size S”

ANLRM-A4GM: $\hat{\beta}_{ols}|X \approx N(\beta^{true}, \sigma^2(X'X)^{-1})$

ANLRM-A4Omega: $\hat{\beta}_{ols}|X \approx N(\beta^{true}, c^2(X'X)^{-1}X'\Omega X(X'X)^{-1})$

Outline the conditions that characterize this model.

ANLRM-A4GM: $A1 + A2 + A3Rsrn$ or stronger (i.e., *any* of the 7 versions of $A3 + A4GM(iid) + S$ very large).

ANLRM-A4Omega: $A1 + A2 + A3Rsrn$ or stronger (i.e., *any* of the 7 versions of $A3 + A4\Omega + S$ very large).

Part 2: If “A” is taken to mean “Asymptotic NLRM for sample size S growing unboundedly large (i.e., limits as $S \rightarrow \infty$)”

ANLRM-A4GM:

$$\sqrt{S}(\hat{\beta}_{ols} - \beta^{true}) \xrightarrow[S \rightarrow \infty]{d} N\left(0, \sigma^2 \left(p \lim \left(\frac{X'X}{S}\right)\right)^{-1}\right)$$

ANLRM-A4Omega:

$$\sqrt{S}(\hat{\beta}_{ols} - \beta^{true}) \xrightarrow[S \rightarrow \infty]{d} N\left(0, c^2 \left(\left(p \lim \left(\frac{X'X}{S}\right)\right)^{-1}\right) p \lim \left(\frac{X'\Omega X}{S}\right) \left(\left(p \lim \left(\frac{X'X}{S}\right)\right)^{-1}\right)\right)$$

Outline the conditions that characterize this model.

ANLRM-A4GM: $A1 + A2 + A3Rsrn$ or stronger (i.e., *any* of the 7 versions of $A3 + A4GM(iid) + S \rightarrow \infty$).

ANLRM-A4Omega: $A1 + A2 + A3Rsrn$ or stronger (i.e., *any* of the 7 versions of $A3 + A4\Omega + S \rightarrow \infty$).

1. Based on the NLRM, discuss which quantities will be distributed as $\chi^2(\cdot)$ and which as $F(\cdot, \cdot)$.

These distributional results are discussed in the Slides and Extended Notes of weeks 5-8 and will not be repeated here.

2. Will the same two distributions be relevant for the case of the ANLRM?

As $S \rightarrow \infty$, the random variables that are in the denominators of the t-statistic and of the F-statistic will converge to something fixed — this is because the denominators contain the estimated s_{ols}^2 which converges asymptotically to the true σ^2 — you can also see this from the fact that the t-statistic will be distributed $t(S - k)$ and the F-statistic will be $F(r, S - k)$. As $S \rightarrow \infty$,

$$t(S - k) \rightarrow t(\infty) = N(0, 1)$$

$$F(r, S - k) \rightarrow F(r, \infty) = \chi^2(r)/r$$

In practice, econometricians recommend still using the $t(\cdot)$ and $F(\cdot, \cdot)$ distributions even for very large S , because the resulting rejection regions are more conservative compared to their $N(0, 1)$ and $\chi^2(r)$ approximations.

Question 2

This question is given as an illustration of testing non-linear hypotheses in the lecture Slides and Extended Notes.

Using the $g(\cdot)$ notation, this implies:

$$g(\beta) = \begin{pmatrix} \beta_1\beta_2 - 1 \\ \beta_3 - 4\beta_4 + 2 \end{pmatrix} \text{ and } g_\beta(\beta) = \begin{pmatrix} \beta_2 & \beta_1 & 0 & 0 \\ 0 & 0 & 1 & -4 \end{pmatrix}.$$

Hence, in this case the test statistic (based on Abraham Wald's principles) corresponds to:

$$\begin{aligned} W &= g(\hat{\beta})' \left(g_\beta(\hat{\beta}) \hat{V}(\hat{\beta}) g_\beta(\hat{\beta})' \right)^{-1} g(\hat{\beta}) \\ &= (\hat{\beta}_1\hat{\beta}_2 - 1, \hat{\beta}_3 - 4\hat{\beta}_4 + 2) \left(\begin{pmatrix} \hat{\beta}_2 & \hat{\beta}_1 & 0 & 0 \\ 0 & 0 & 1 & -4 \end{pmatrix} \hat{V}(\hat{\beta}) \begin{pmatrix} \hat{\beta}_2 & 0 \\ \hat{\beta}_1 & 0 \\ 0 & 1 \\ 0 & -4 \end{pmatrix} \right)^{-1} \begin{pmatrix} \hat{\beta}_1\hat{\beta}_2 - 1 \\ \hat{\beta}_3 - 4\hat{\beta}_4 + 2 \end{pmatrix}. \end{aligned}$$

The test statistic will be asymptotically distributed as $\chi^2(2)$ under H_0 under assumptions (A1), (A2), (A3Rcu), and (A4). Note in particular that the weakest (A3) is allowed (contemporaneously uncorrelated ϵ and regressors) and (A5Normality) is *not* required.

Since this statistic is asymptotically distributed in the limit when $S \rightarrow \infty$, it will not be valid for any finite sample size. One could use these asymptotic distributional results as an approximation, provided the finite sample size S is very large.

Question 3

ANSWERS:

Consider the classic linear regression model, where A1+A2+A3Rmi hold.

Reminder: A1 : $rank(X) = k$, A2 : $y = X\beta^{true} + \epsilon^{true}$ with $E(\epsilon^{true}) = 0$, and A3Rmi : $E(\epsilon^{true}|X) = \epsilon^{true}$.

It is also believed that: A4 : $E(\epsilon^{true}\epsilon^{true\prime}|X) = c^2\Omega(\lambda)$.

1. Define the IGLS estimator for β^{true} for the case that the λ parameter vector is known, and the FGLS estimator for β^{true} for the case that λ^{true} is unknown but a preliminary estimator $\hat{\lambda}$ for it is available.

$$\hat{\beta}_{igls} = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}y$$

$$\hat{\beta}_{fgls} = (X'\Omega(\hat{\lambda})^{-1}X)^{-1}X'\Omega(\hat{\lambda})^{-1}y$$

where $\hat{\lambda} = \hat{\lambda}(y, X)$. The typical requirement is that the preliminary (or joint) estimator of λ^{true} , $\hat{\lambda}$, is a \sqrt{S} -consistent estimator in the sense that:

$$\begin{aligned} \sqrt{S}(\hat{\lambda} - \lambda^{true}) &\xrightarrow[d]{S \rightarrow \infty} N(0, VCov(\hat{\lambda})) \end{aligned}$$

2. Derive the sampling error vectors for IGLS and FGLS.

By using A2 : $y = X\beta^{true} + \epsilon^{true}$ into the IGLS definition, we obtain:

$$\hat{\beta}_{igls} - \beta^{true} = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}\epsilon^{true}$$

Using A2 into the FGLS definition, however, yields a non-linear function of y , because $\hat{\lambda} = \hat{\lambda}(y, X)$:

$$\hat{\beta}_{fgls} - \beta^{true} = (X'\Omega(\hat{\lambda}(y, X)^{-1}X)^{-1}X'\Omega(\hat{\lambda}(y, X))^{-1}y - \beta^{true} = NLF(y, X, \beta^{true})$$

So this representation is useless in the sense that (a) the sampling error vector is a Non-Linear Function of y , and (b) it depends on the unknown β^{true} .

3. Use the sampling error vectors from (b) to explain the major differences in the properties of the two estimators.

IGLS:

Unbiased? For known Ω , conditional on X it is clear that IGLS is unbiased (which means also unbiased) since the conditional expectation passes through to ϵ^{true} — which is 0 from A3Rmi or stronger and the second part of A2.

Consistent? The key requirement will be that $\frac{1}{S}X'\Omega^{-1}\epsilon^{true} \xrightarrow[S \rightarrow \infty]{p} 0$ which will

hold under A1 – A4 Ω under suitable technical conditions for Law of Large Numbers (LLN); and also that $\frac{1}{S}X'\Omega^{-1}X \xrightarrow[S \rightarrow \infty]{p} M_{X\Omega^{-1}X}$ finite, non-singular limiting $k \times k$ matrix.

Asymptotically normal? In addition to $\frac{1}{S} X' \Omega^{-1} X \xrightarrow[S \rightarrow \infty]{p} M_{X \Omega^{-1} X}$, we now require that

$$\frac{1}{\sqrt{S}} X' \Omega^{-1} \epsilon^{true} \xrightarrow[S \rightarrow \infty]{d} N\left(0, p \lim\left(\frac{1}{S} X' \Omega^{-1} X\right)\right)$$

which will hold under $A1 - A4\Omega$ under suitable technical conditions for Central Limit Theorem (CLT)

FGLS:

Unbiased? The fact that $\hat{\beta}_{f_{gls}} - \beta^{true} = NLF(y, X, \beta^{true})$ means that FGLS will be *biased* in general *even* *if* A3Rmi or stronger holds.

Consistent and Asymptotically Normal?

There are two approaches to establish this:

Method 1: Prove that $\hat{\lambda} \xrightarrow[S \rightarrow \infty]{p} \lambda^{true}$, which makes FGLS converge to the IGLS

one, whose Consistency and Asymptotic Normality were established above. OR
(which is technically more “clean”)

Method 2: Prove that

(a)

$$p \lim \frac{1}{S} \left(X' \left(\Omega^{-1} - \hat{\Omega}^{-1} \right) X \right)^{-1} \xrightarrow[S \rightarrow \infty]{p} 0$$

(b)

$$p \lim \frac{1}{S} \left(X' \left(\Omega^{-1} - \hat{\Omega}^{-1} \right) \epsilon^{true} \right) \xrightarrow[S \rightarrow \infty]{p} 0$$

(c)

$$p \lim \frac{1}{\sqrt{S}} \left(X' \left(\Omega^{-1} - \hat{\Omega}^{-1} \right) \epsilon^{true} \right) \xrightarrow[S \rightarrow \infty]{p} 0$$