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Abstract

This paper studies the distribution of the classical t-ratio with data generated
from distributions with no finite moments and shows how classical testing is af-
fected by bimodality. A key condition in generating bimodality is independence
of the observations in the underlying data generating process (DGP). The paper
highlights the strikingly different implications of lack of correlation versus statisti-
cal independence in DGPs with infinite moments and shows how standard inference
can be invalidated in such cases, thereby pointing to the need for adapting estima-
tion and inference procedures to the special problems induced by thick-tailed (TT)
distributions.

The paper presents theoretical results for the Cauchy case and develops a new
distribution termed the “double Pareto,” which allows the thickness of the tails
and the existence of moments to be determined parametrically. It also investigates
the relative importance of tail thickness in case of finite moments by using TT
distributions truncated on a compact support, showing that bimodality can persist
even in such cases. Simulation results highlight the dangers of relying on naive
testing in the face of TT distributions.
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1 Introduction

Many economic phenomena are known to follow distributions with non-negligible
probability of extreme events, termed thick tailed (TT) distributions. Top income
and wealth distributions are often modelled with infinite variance Pareto distribu-
tions (see among others Cowell, 1995) to address this feature of the data. The
distribution of cities by size also seems to fit a power law, i.e., the number of cities
with population greater than a given threshold C is proportional to 1/C (Zipf,
1949). Zipf’s law is a discrete form of a Pareto distribution with infinite variance
(Gabaix, 1999). Another example is the size distribution of firms, which appears
to exhibit a non-negligible probability of extreme events (Hart and Prais, 1956;
Steindl, 1965; Gibrat, 1931). Further, TT distributions frequently arise in financial
return data as well as data on financial phenomena such as corporate bankruptcies,
which can cause difficulties in regulating markets where such extremes are observed
(Embrechts, 2001; Danielsson and de Vries, 1997; Loretan and Phillips, 1994).

A different example arises in the economics of information technology where it
has been found that Web traffic often presents distributions of file sizes that decline
according to a power law (Arlitt and Williamson, 1996) and often with infinite
variance (Crovella and Bestavros, 1996). For instance, the lengths of bursts in
network traffic and the sizes of files in some systems appear to be well described by
distributions with non-negligible probability of extremely large events. Additional
evidence of power-law behavior is present in same data on transmission lengths of
network transfers (Bodnarchuk and Bunt, 1991) and in data bytes in FTP bursts
(Paxson and Floyd, 1995).

Although there is a large and growing literature on robust estimation with
data following thick tail distributions (see among others Victoria-Feser and Dupuis
(2003); Hsieh (1999); Beirlant et al. (1996)), little is known about the consequences of
performing classical inference using samples drawn from such distributions. Impor-
tant exceptions are Logan et al. (1973), which drew early attention to the possibility
of bimodal distributions in self normalized sums of independent random variables,
Marsaglia (1965) and Zellner (1976, 1978), who showed bimodality for certain ratios
of normal variables, Phillips and Wickens (1978), who showed that the distribution
of structural equation estimators was not always unimodal, and Phillips and Haji-
vassiliou (1988), who analyzed bimodality in t classical ratios. Nelson and Startz
(1990) and Maddala and Jeong (1992) provided some further analysis of structural
estimators with possibly weak instruments. More recent contributions on this latter
topic include Woglom (2001), Hillier ((2005), Forchini (2005), and Phillips (2008),
all of whom consider bimodality in structural equation distributions. Not much
emphasis in this literature has been placed on the difference between orthogonal
observations and full independence.

The present paper contributes to this literature in several ways. It provides an
analysis of the asymptotic distribution of the classical t-ratio for distributions with
no finite variance and discusses how classical testing is affected. To aid the analysis,
the paper develops a new distribution termed the “double Pareto,” which allows the
thickness of the tails and the existence of moments to be determined parametrically.

The plan of the paper is as follows. We clarify the concept of TT distributions
and provide a theoretical analysis of the bimodality of the t-ratio with data from an
iid Cauchy distribution in Section 2. Some simulation analysis is given in Section 3
and extensions to the Stable family of distributions are discussed in Section 3.2.
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Section 4 considers the different implications of lack of correlation and statistical
independence. Section 5 illustrates some alternative results for a symmetric double
Pareto distribution. Section 6 investigates inference in the context of t-ratios with
TT distributions, considering single- and double-sample hypothesis testing. Sec-
tion 7 shows that bimodality can arise even with TT distributions trimmed to have
finite support. Other complications with TT distributions are discussed in Section 8,
while Section 9 concludes.

2 Cauchy DGPs and Bimodality of the t-statistic

While, there is no universally accepted definition of a TT distribution, random vari-
ables drawn from a TT distribution have a non negligible probability of assuming
very large values. Distribution functions with infinite first moments certainly be-
long to the family of thick tail (TT) distributions. Different TT distributions have
differing degrees of thick-tailedness and, accordingly, quantitative indicators have
been developed to evaluate the probability of extremal events, such as the extremal
claim index to assign weights to the tails and thus the probability of extremal events
(Embrechts et al., 1999). A crude though widely used definition describes any distri-
bution with infinite variance as a TT distribution. Other weaker definitions require
the kurtosis coefficient to larger than 3 (leptokurtic) (Bryson, 1982).

In this paper we say that a distribution is thick-tailed (TT) if it belongs to
the class of distributions for which Pr(|X| > c) = c−α and α ≤ 1. The Cauchy
distribution corresponds to boundary case where α = 1. Such distributions are
sometimes called very heavy tailed.

It is well known that ratios of random variables frequently give rise to bimodal
distributions. Perhaps the simplest example is the ratio

R =
a+ x

b+ y
(1)

where x and y are independent N(0, 1) variates and a and b are constants. The
distribution ofR was found by Fieller (1932) and its density may be represented in se-
ries form in terms of a confluent hypergeometric function [see (Phillips, 1982)][equa-
tion (3.35)]. It turns out, however, that the mathematical form of the density of
R is not the most helpful instrument in analyzing or explaining the bimodality of
the distribution that occurs for various combinations of the parameters (a, b) In-
stead, the joint normal distribution of the numerator and denominator statistics,
(a + x, b + y) provides the most convenient and direct source of information about
the bimodality. An interesting numerical analysis of situations where bimodality
arises in this example shows that the density of R is unimodal or bimodal according
to the region of the plane in which the mean (a, b) of the joint distribution lies.
Thus, when (a, b) lies in the positive quadrant the distribution is bimodal whenever
a is large (essentially a > 2.257 ).

Similar examples arise with simple posterior densities in Bayesian analysis and
certain structural equation estimators in econometric models of simultaneous equa-
tions. Zellner (1978) provides an interesting example of the former, involving the
posterior density of the reciprocal of a mean with a diffuse prior. An important
example of the latter is the simple indirect least squares estimator in just identi-
fied structural equations as studied, for instance, by Bergstrom (1962) and recently
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Forchini (2006), Hillier (2006) and Phillips (2006).
The present paper shows that the phenomenon of bimodality can also occur with

the classical t-ratio test statistic for populations with undefined second moments.
The case of primary interest to us in this paper is the standard Cauchy (0,1) with
density

1

π(1 + x2)
(2)

When the t-ratio test statistic is constructed from a random sample of n draws
from this population the distribution is bimodal, even in the limit as n→∞. This
case of a Cauchy (0,1) population is especially important because it highlights the
effects of statistical dependence in multivariate spherical populations. To explain
why this is so, suppose (X1, · · · , Xn) is multivariate Cauchy with density

pdf(x) =
Γ
(
n+1

2

)
π(n+1)/2(1 + x′(n+1)/2)

(3)

This distribution belongs to the multivariate spherical family and may be written
in terms of a variance mixture of a multivariate N(0, σ2In) as∫ ∞

0

N(0, σ2In)dG(σ2) (4)

where 1/σ2 is distributed as χ2
1 and G(σ2) is the distribution function of σ2. Note

that the marginal distributions of (3) are all Cauchy. In particular, the distribution
of Xi is univariate Cauchy with density as in (2) for each i. However, the components
of (X1, · · · , Xn) are statistically dependent, in contrast to the case of a random
sample from a Cauchy (0,1) population. The effect of this dependence, which is what
distinguishes (3) from the random sample Cauchy case, is dramatically illustrated
by the distribution of the classical t-statistic:

tX =
X

SX
=

n−1Σn
1Xi

{n−2Σn
1 (Xi −X

2
)}1/2

(5)

Under (3), tX is distributed as t with n − 1 degrees of freedom, just as in the
classical case of a random sample from a N(0, σ2) population. This was pointed
out by Zellner (1976) and is an immediate consequence of (4) and the fact that
tX is scale invariant. However, the spherical assumption that underlies (3) and (4)
and the dependence that it induces in the sample (X1, · · · , Xn) is very restrictive.
When it is removed and (X1, · · · , Xn) comprise a random sample from a Cauchy
(0, 1) population, the distribution of tX is very different. The new distribution is
symmetric about the origin but it has distinct modes around ±1. This bimodality
persists even in the limiting distribution of tX so that both asymptotic and small
sample theory are quite different from the classical case.

We know that the numerator and denominator statistics in the classical t-ratio
are independent. Moreover, as n → ∞ the denominator, upon suitable scaling,
converges in probability to a constant. By contrast, in the i.i.d. Cauchy case, the
numerator and denominator statistics of tX converge weakly to non-degenerate ran-
dom variables which are (non-linearly) dependent, so that as n→∞ the t-statistic
is a ratio of random variables. Moreover, it is the dependence between the numer-
ator and denominator statistics (even in the limit) which induces the bimodality in
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the distribution. These differences are important and, as we shall show, they explain
the contrasting shapes of the distributions in the two cases.

Let (X1, · · · , Xn) be a random sample from a Cauchy (0,1) distribution with
density (2). Define

S2 = n−2Σn
1X

2
i , S

2
X = n−2Σn

1 (Xi −X)2 (6)

t =
X

S
, tX =

X

SX
(7)

Throughout the paper, we will use the symbol “⇒” to signify weak convergence
as n→∞ and the symbol “≡” to signify equality in distribution.

As is well known X ≡Cauchy (0,1) for all n and, of course, X → X ≡Cauchy
(0,1) as n→∞. Our attention will concentrate on the joint distribution of (X,S2)
and the associated statistic t given in (7). In fact, the distributions of t and tX are
asymptotically equivalent. More specifically, we have:

LEMMA 1

S2 − S2
X = Op(n

−1)

t− tX = Op(n
−1)

Note that X2
i has density

pdf(y) =
1

πy1/2(1 + y)
, y > 0 (8)

In fact, X2
i belongs to the domain of attraction of a stable law with exponent

α = 1/2 . To see this we need only verify (Feller, 1971, p. 313) that if F (y) is the
distribution function of X2

i then

1− F (y) + F (−y) ∼ 2/πy1/2, y →∞

which is immediate from (8); and that the tails are well balanced. Here we have:

1− F (y)

1− F (y) + F (−y)
→ 1,

F (−y)

1− F (y) + F (−y)
→ 0

LEMMA 2
S2 ⇒ Y

where Y is a stable random variate with exponent α = 1/2 and characteristic func-
tion given by

cfY (v) = E(eivY ) = exp

{
− 2

π1/2
cos
(π

4

)
|v|1/2

[
1− isgn(v)tan

(π
4

)]}
(9)

Note that the characteristic function of the limiting variate Y given by (9) be-
longs to the general stable family, whose characteristic function (see Ibragimov and
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Linnik (1971)][p.43]) has the following form:

ϕ(v) = exp
{
iγv − c|v|α

[
1− iβsgn(v)tan

(πα
2

)]}
(10)

In the case of (10) the exponent parameter α = 1/2 , the location parameter
γ = 0 , the scale parameter c = 2π−1/2cos(π/4) and the symmetry parameter β = 1.
Lemma 2 shows that the denominator of the t ratio (7) is the square root of a stable
random variate in the limit as n → ∞. This is to be contrasted with the classical
case where nS2

X →
p
σ2 = E(X2

i ) under general conditions.

The density of S2 is graphed for various values of n in Figure 1. We see that S2

is unimodal with mode lying in the interval (0,1) for all n. The distribution is very
well approximated by the asymptotic even for small values of n (n ≥ 10) .

Note that when n = 1, the numerator and denominator of t are identical up
to sign. In this case we have t = ±1 and the distribution assigns probability mass
of 1/2 at +1 and -1. When n > 1 the numerator and denominator statistics of t
continue to be statistically dependent. This dependence persists as n → ∞. We
have:

LEMMA 3

(X,S2)⇒ (X, Y )

where (X, Y ) are jointly stable variates with characteristic function given

cfX,Y = exp

{
−2π−1/2(−iv)−1/2

1F1

(
−1

2
,
1

2
;u2/4iv

)}
(11)

where 1F1 denotes the confluent hypergeometric function. An equivalent form is

cfX,Y (u, v) = exp
{
−|u| − π−1/2e−iu

2/4vΨ(3/2, 3/2; iu2/4v)
}

(12)

where Ψ denotes the confluent hypergeometric function of the second kind.

For the definition of the hypergeometric functions that appear in (11) and (12)
see Lebedev (1972, Ch. 9). Note that when u = 0 (11) reduces to

exp
{
−2π−1/2(−iv)1/2

}
(13)

We now write −iv in polar form as

−iv = |v|e−isgn(v)π/2

so that

(−iv)1/2 = |v|1/2e−isgn(v)π/4 = |v|1/2cos(π/4) (1− isgn(v)tan(π/4))

from which it is apparent that (11) reduces to the marginal characteristic func-
tion of the stable variate Y given earlier in (9). When v = 0 the representation
(12) reduces immediately to the marginal characteristic function, exp(−|u|), of the
Cauchy variate X . In the general case the joint characteristic function cfXY (u, v)
does not factorize and X and Y are dependent stable variates.

Figures 2a-d show Monte Carlo estimates (by smoothed kernel methods) of the
joint probability surface of (X,S2) for various values of n. As is apparent from the
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Figure 1: Density Function Estimates of S2 for the iid Cauchy DGPs
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Figure 2: Joint Density Function Estimates of X̄ and S2 for the iid Cauchy DGPs
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pictures the density involves a long curving ridge that follows roughly a parabolic
shape

Y = a+ bX2, a ≥ 0, b > 0

in the (X,S2) plane. Simple estimates by ordinary least squares of such quadratic
relations are presented in Figure 3 for seven values of n. The point estimates ob-
tained are given in Table 1, part A. The prominent ridge in the joint density of
tween the two statistics (X,S2) is a manifestation of the dependence between the
two statistics X and S2. As is also apparent from these figures the joint distribu-
tion of (X,S2) seems to be well approximated by the asymptotic distribution of
(X, Y ). Indeed the probability surfaces (X,S2) appear to stabilize quite rapidly
(from n ≥ 10).

TABLE 1
OLS estimates of the Ridge in pdf(X,S2)

Estimated Relation: ŷ = â+ b̂x2

A’. Cauchy Draws

Value of n â estimate b̂ estimate
2 .169 .570
5 .288 .451
10 .330 .411
30 .364 .390
50 .364 .398
100 .376 .382
200 .375 .376

B’. Stable Density Draws (with exponent parameter α and n = 10)

Value of α â estimate b̂ estimate
1/3 .484 .485
2/3 .475 .420
1 .329 .406

4/3 .252 .322
5/3 .218 .171

Note that the ridge in the joint density surfaces of Figures 2a-d is symmetric
about the Y axis. The ridge is associated with clusters of probability mass for various
values of Y on either side of the Y axis and equidistant from it. These clusters of
mass along the ridge produce a clear bimodality in the conditional distribution of
X given S2 for all moderate to large S2 . For small S2 the probability mass is
concentrated in the vicinity of the origin in view of the dependence between X and
S2. The clusters of probability mass along the ridge in the (X, Y ) plane are also
responsible for the bimodality in the distribution of certain ratios of the statistics
(X,S2) such as the t ratio statistics t = X/S and tX = X/SX . These distributions
are investigated by simulation in the following section.
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Figure 3: OLS Fit of Ridge in (X̄, S2) distribution for iid Cauchy DGPs
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3 Simulation Evidence

3.1 The Cauchy Case

The empirical distributions reported here were obtained as follows: For a given value
of n, m = 10, 000 random samples of size n were drawn from the standard Cauchy
distribution with density given by (2) and corresponding cumulative distribution
function

F (x) =
1

π
arctan(x),−∞ < x <∞. (14)

Since (14) has a closed form inverse, the probability integral transform method
was used in generating the draws. To estimate the probability density functions, the
kernel method was employed (see (Tapia and Thompson, 1978)). For the univariate
distributions (Figures 1 and 4 above and 6 below) the kernel estimate at point x is

f̂(x) =
1

m

m∑
r=1

φ

(
x− xr
h

)
/h, m = 10, 000,

where φ(·) is the standard N(0, 1) density and the window width h was chosen to be
equal to 0.2. For the bivariate distributions in Figures 2 and 4 above and 5 below,
the estimate at point (x, y) is

f̂(x, y) =
1

m2

m∑
r=1

m∑
s=1

φ

(
x− xr
hx

)
φ

(
y − ys
hy

)
/hx · hy

with hx = hy = 0.2.
We now investigate the sampling behavior of the t-ratio statistics t and tX .

These are shown in Figures 4a and 4b. Note that the bimodality is quite striking
and persists for all sample sizes.

3.2 Extensions to the Stable Family

Our attention has concentrated on the sampling and asymptotic behavior of statis-
tics based on a random sample from an underlying Cauchy (0,1) population. This
has helped to achieve a sharp contrast between our results and those that are known
to apply with Cauchy (0,1) populations under the special type of dependence implied
by spherical symmetry. However, many of qualitative results given here, such as the
bimodality of the t ratios, continue to apply for a much wider class of underlying
populations. In particular, if (X1, · · · , Xn) is a random sample from a symmetric
stable population with characteristic function

cf(s) = e−|s|
α

(15)

and exponent parameter α < 2 then the t-ratios t and tX have bimodal distribu-
tions similar in form to those shown in Figures 4a and 4b above for the special case
α = 1. To generate random variates characterized by (15) a procedure described
in Section 1 of (Kanter and Steiger, 1974) was used. We show some examples of
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Figure 4: Density Functions of the t-ratio for iid Cauchy DGPs
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the new distributions which apply in these cases for various values of a in Figures 5
through 7. Note how in Figures 5a and 5b the bimodality is accentuated for α < 1
and attenuated as α→ 2. When α = 2, of course, the distribution is classical t with
n − 1 degrees of freedom. These effects are also evident from Figures 6a-d and 7,
which show that the ridge in the joint distribution is most pronounced for α = 1/3
but withers as α rises to 5/3. See also Table 1, part B.

4 Lack of Correlation versus Independence

Data from an n dimensional spherical population with finite second moments have
zero correlation, but are independent only when normally distributed. The standard
multivariate Cauchy (with density given by (3)) has no finite integer moments but its
spherical characteristic may be interpreted as the natural analogue of uncorrelated
components in multivariate families with thicker tails. When there is only “lack of
correlation” as in the spherical Cauchy case, it is well known (e.g., (King, 1980)) that
the distribution of inferential statistics such as the t-ratio reproduce the behavior
that they have under independent normal draws. When there are independent draws
from a Cauchy population, the statistical behavior of the t-ratio is very different.
It no longer mimics behavior under a normal population but has characteristics,
such as a random denominator in the limit, which distinguish its distribution from
the classical t-ratio and induce the bimodality studied in this article. Examples
of this type highlight the statistical implications of the differences between lack of
correlation and independence in nonnormal populations.

We include three figures, (8)-(10), to highlight these differences for the bivariate
Cauchy case. Figure 8 plots the iso-pdf contours of the bivariate spherical Cauchy
(implying that the two observations are non-linearly dependent), while Figure 9 gives
the contours for the bivariate independent Cauchy case (implying that the distribu-
tion is non-spherical). In view of the thick tails, we see the striking divergence
between sphericality and statistical independence: whereas for normal Gaussian
distribution, sphericality (=uncorrelatedness) and full statistical independence co-
incide, we now see that for non-Gaussianity, sphericality is neither necessary nor
sufficient for independence.

Figure 10 considers 6 representative squares on the domain of the bi-
variate Cauchy distributions, and for each calculates various measures of
deviation from independence for the spherical, dependent version. The
last column in the tabulated values in Figure 10 shows that the measure
Pdependent(in given square)/Pindependent(in given square)− 1 = PX |Y/PX − 1 can get
close to 0 (for square E) and sometimes exceeed 50% (for square C).

Hajivassiliou (2005) emphasized that when data are generated from distributions
with thick tails independence and zero correlation are very different properties and
can have startlingly different outcomes. By construction, the random variables in
the numerator of the t-ratio, X̄, is linearly orthogonal to the S2

X variable in the
square root of the denominator. Under Gaussianity, this orthogonality implies full
statistical independence between numerator and denominator. But in the case of
data drawn from the Cauchy distribution, statistical independence of the numerator
and denominator of the t-ratio rests crucially on whether or not the underlying data
are independently drawn or not: if they are generated from a multivariate spherical
Cauchy (with a diagonal scale matrix) and hence they are non-linearly dependent,
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Figure 5: Density Functions of the t-ratio for iid Stable DGPs
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Figure 6: Joint Density Function Estimates of X̄ and S2 for iid Stable DGPs
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Figure 7: OLS Fit of Ridge in (X̄, S2) distribution for iid Stable DGPs
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Figure 8: Bivariate Spherical Cauchy (Dependent)

17



Figure 9: Bivariate Independent Cauchy (Nonspherical)
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Figure 10: Measures of Dependency of the Spherical vs. Independent Bivariate
Cauchy
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then the numerator and denominator in fact become independent and the usual
unimodal t-distribution obtains (this result is given by Zellner, 1976, but apparently
may be traced back to original geometric proofs by Fisher). If, on the other hand,
they are drawn fully independently from one another, then X̄ and S2

X turn out to be
dependent and hence the distribution of the t-ratio exhibits the striking bimodality
documented here.

5 Is the Cauchy DGP Necessary for Bimodality?

Analogous to the double-exponential (see, Feller, 1971, p. 49), we define the double
Pareto distribution as the convolution of two independent Pareto (type I) distributed
random variables, X1−X2, whereX1 andX2 have density α1β

α1
1 x−α1−1 (x ≥ β1, α1 >

0, β1 > 0) and α2β
α2
2 (x)−α2−1 (x ≥ β2, α2 > 0, β2 > 0), respectively. 4 Its density is∫ ∞
−∞

(α1β
α1
1 )(α2β

α2
2 )(x2 + t)−α1−1(x2)

−α2−1dx2

and first two moments are (see Section 11):

E(x) =
α1β1(α2 − 1)− α2β2(α1 − 1)

(α1 − 1)(α2 − 1)
with α1 > 1, α2 > 1

V (x) =
α1β

2
1

α1 − 2
− 2α1α2β1β2

(α1 − 1)(α2 − 1)
+

α2β
2
2

α2 − 2
with α1 > 2, α2 > 2

The results that follow were obtained via Monte Carlo simulations from random
samples of dimension n using the method of inverted CDFs, i.e., a random sample
of dimension n is extracted from a unit rectangular variate, U(0, 1), and then it is
mapped into the sample space using the inverse CDF. The number of replications
m was 10,000. This study allows one to disentangle some differences about the
asymptotic distribution of the t-ratio statistic when either one or both first two
moments do not exist.5

The Cauchy and the double Pareto distribution with α1 = α2 ≤ 1 are both sym-
metric and have infinite mean. For these distributions, as the sample size increases,
the statistic t1 converges towards a stable distribution which is symmetric and bi-
modal. The convergence is fairly rapid, even for samples as small as 10, and the two
modes are located at ±1. As for the symmetric double Pareto, the t-ratio distri-
bution does depend on αi, i = 1, 2: the lower is αi, the higher is the concentration
around the two modes (Figure 11).

Figure 12 examines the case 1 < α < 2. We now see that the t-ratio, t2, is not
always clearly bimodally distributed. The more α departs from 1 the less evident
is the bimodal distribution of the t-ratio and the clearer the convergence towards a
standard normal distribution (Figure 12). We set β = 3 but these results apply for

4The name double Pareto was also used by Reed and Jorgensen (2003) for the distribution of a
random variable that is obtained as the ratio of two Pareto random variables and is only defined
over a positive support.

5Using copulas, we could evaluate behaviour with correlated double Pareto draws. See (Haji-
vassiliou, 2005) for a development of this idea. See also (Ibragimov et al., 2003) for some general
results.
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any value of β > 0, since β is simply a threshold parameter that does not affect the
t1 statistic behavior.

0.
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Figure 11: t-ratio of infinite-first-moment double Pareto distributions
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Figure 12: t-ratio of double Pareto distributions with 1 < α ≤ 2

If α1 6= α2 it suffices to have either α1 ≤ 1 or α2 ≤ 1 for the double Pareto to
have infinite mean. However, in this case the t-ratio distribution is not bimodal nor
stable (Figure 13).

The regularity in the t1 distribution leads us to investigate the relationship be-
tween the first and second centered moments, in the numerator and denominator
of t1 respectively. In Section 2 above, we showed that if the distribution is Cauchy,
the variance converges toward a unimodal distribution with the mode lying in the
interval (0, 1). However, if the distribution is double Pareto, the sample variance
does not converge towards a stable distribution but becomes more dispersed as the
sample size increases (Figure 14). This behaviour confirms the surprising results ob-
tained elsewhere (Ibragimov (2004), Hajivassiliou (2005)) concerning inference with
thick-tailed (TT) distributions depending on the tail thickness parameter, α: for
α = 1, the dispersion of the distribution of sample averages remains invariant to the
sample size n, for α < 1 more observations actually hurt with the variance rising
with n. Furthermore, the usual asset diversification result that spreading a given
amount of wealth of a larger number of assets reduces the variability of the portfolio
no longer holds: with returns from a TT distribution the variability may remain
invariant to the number of assets composing the portfolio if α = 1, while portfolio
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Figure 13: The t-ratio of non-symmetric double Pareto distributions

variability actually rises with the number of assets if α < 1. In such cases, all eggs
should be placed in the same basket.

Moreover, it can be seen that there exists a strong parabolic relationship between
the mean (X) and the centered second moment (S2

X) when the first moment is
infinite. All the distributions with infinite mean show a clear convex parabolic
relationship between the S2

X and X (Figure 15).
A simple OLS estimate for the coefficient b of the parabolic relationship (S2

X =

a + bX
2
) is always very close to 1 and highly significant using the Cauchy, or the

double Pareto with α ≤ 2. However, the coefficient a is not significantly different
from zero for any value of the sample size6. In other words, the average of the
squared deviation from the sample mean can be well approximated by the square
of the sample mean. This property is a direct consequence of the fact that the
Pareto distribution with infinite variance belongs to the class of subexponential
distributions, characterized by two properties: the convolution closure property and
the property of the sum (Embrechts et al., 1999). The first property states that
the shape of the tail is preserved after the summation of a random sample from
a given subexponential distribution. The second property states that in a sum of
observations from a random sample, the largest value will be of the same order of
magnitude as the sum itself7. The latter property implies that the deviation from the

6In the Cauchy section above, we found a b coefficient between .570 and .376 for the Cauchy
distribution and different sample sizes. However, in those regressions the dependent variable was
the uncentered second moment while the centered one is considered here.

7Formally, for any sample size n, if Zn(x) =
∑n

i=1Xi is the sum of i.i.d. random variables and
Mn is their maxima, then it follows that

lim
x→∞

P (Zn > x)
P (Mn > x)

= 1 (16)
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mean will be of the same order of magnitude as the mean, hence the ratio between
the mean of the squared deviation from the mean and the squared mean will be of
the same order of magnitude. The fact that the modes of the bimodal distribution
for the t1 statistic are at ±1 comes from this property and the fact that the sample
mean can be negative whereas its standard error cannot.

6 How Misleading is the Use of Standard t-ratios

with TT distributions?

The preceding results are relevant for hypothesis testing in regressions with errors
that are independent and identically distributed from a TT distribution. They are
also relevant for testing the hypothesis of difference in means or other statistics of
two samples when either or both come from a TT distribution.

How serious are the mistakes in such cases if the critical values of a N(0, 1) dis-
tribution are used in classical t-ratio testing. The issue is well illustrated using the
p−value discrepancy plot (Davidson and MacKinnon, 1998). The p−value discrep-
ancy plot is based on the empirical distribution function (EDF) of the p−values of
some test statistic τ , generated via Monte Carlo simulation using a data-generating
process (DGP) under the null hypothesis. The simulation is usually carried out for
a large number of m replications obtaining simulated values τj, j = 1, 2, · · · ,m. The
p−value of the τj is the probability of observing a value of τ more extreme than
τj, according to some distribution F (τ). This distribution could be the asymptotic
distribution of τ , derived numerically or theoretically, as well as other distributions
such as an approximation derived by bootstrapping. The p−value is a function of
τj, pj ≡ p(τj). Assuming τ is asymptotically distributed as a standard normal with
DF φ(z) and CDF Φ(z), then pj = 1− Φ(τj)

8.
The EDF of the pj is an estimate of the CDF of p(τ). At any point xi in the

(0, 1) interval, it is defined by

F̂ (xi) ≡
1

m

m∑
j=1

I(pj ≤ xi) (17)

where I(pj ≤ xi) is the indicator function. Although the function (17) can be
evaluated at every data point, when m is large it is only necessary to produce a
reasonable picture of the (0, 1) interval or one of its portions. In these applications
1000 equally spaced data points are considered, xi, i = 1, 2, · · · , 1000. The simplest
graph that can be analyzed is the plot of F̂ (xi) against xi. However, for dealing
with test statistics that are well behaved, it is more revealing to plot the p−value
discrepancy plot, namely F̂ (xi)− xi against xi.

6.1 Inference on Location from a Single Sample

The p−value discrepancy plot of the t-ratio statistic for the double Pareto with
different values of α was constructed as in (17), where the p−value is derived both

8For a two-sided test, the p−value is pj ≡ p(|τj |) = 2(1− Φ(τj)).
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using the standard normal and the distributions derived previously by simulation.
The p−value discrepancy plot allows one to distinguish at a glance among test
statistics that systematically over-reject, those that under-reject and test statistics
that reject about the right proportion of times at each desired level of xi: in the first
case the plot will be over, in the second below, in the third around the zero line.

Assume that we have a random sample from a double Pareto distribution with
1 < α ≤ 2 and we run a test H0 : µ = µ0 against the alternative HA : µ 6= µ0, where
µ is the true mean and µ0 some value on the real line. The sample mean is used
to estimate µ. Performing such a test using the standard normal rather than the
correct distribution causes the null hypothesis to be under-rejected by quite a small
amount, not larger than 5% for tests of size 5%, and even less for tests of size 1% or
10%. This conclusion would often lead us to ignore the caveat of having a systematic
error in rejection probability (ERP) using the standard normal for testing two-sided
hypothesis with a symmetric double Pareto distribution with 1 < α ≤ 2. However,
three important points should be noted.

The first conclusion is that the policy of ignoring the true nature of the t-ratio
distribution under this particular DGP may be acceptable if the size of the test is
smaller than 10%. If the test has a larger size - for instance 40% - the ERP can be
larger than 10 and is obviously more difficult to tolerate9. Clearly, the former policy
corresponds to minimizing the type II error as opposed to minimizing the type I
error, as it is typically performed in economics and several other disciplines. In such
cases it is common to find confidence intervals with about 60% coverage probability
(see for instance Karlen, 2002).

Secondly, the “ignore” policy leads to major errors in the case of the symmetric
double Pareto distribution. The ERP for a two sided test about the mean this
distribution can be as large as 10%. This result clearly comes from the non standard
distribution of the t-ratio and is even more dramatic in the single Pareto results
of (Fiorio and Hajivassiliou, 2006). Finally, if the non-symmetric double Pareto
distribution is considered, then the t-ratio statistic is not even stable.

7 Are Infinite Moments Necessary for Bimodal-

ity?

In order to investigate the relative importance of tail thickness and non-existence
of moments, we consider a Cauchy distribution truncated on a compact support,
characterized as follows:

Z =


X iff |X| < c
NA otherwise

9Although tests with nominal size larger than 10% are rather unusual in economics it is much
less so in other disciplines, such as physics, where the main point is often to maximize the power of
the test, rather than to minimize its size. Also in physics and other related sciences, it is common
to consider the “probable error” of a test procedure, which corresponds to a significance level of
50%.
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where X is a standard Cauchy(0,1). The PDF of this truncated distribution is

f(z) =

1
π(1+z2)

2
π
arctan(c)

, |z| < c. (18)

The cutoff parameter c is a positive finite real number. Since the support of this
distribution is by construction finite and compact, the moments of the r.v. Z are
all finite.

The second trimmed distribution we consider is the double Pareto truncated
on a compact support as in (18) where X is a r.v. distributed according to the
double Pareto law introduced in Section 5. As with the trimmed Cauchy, the cutoff
parameter c is a large finite real number. Since the support of this distribution is
by construction finite and compact, the moments of r.v. Z are all finite irrespective
of the parameter α.

By considering truncated versions of distributions whose untruncated counter-
parts do not have finite moments, we can control the relative importance of the tails
while working with distributions with all moments finite. In the simulations below,
we consider the following truncation points:

Truncated Cauchy
c 500 1,000 3,000 5,000
prob(cutoff tails) 0.0012 0.0006 0.0002 0.0001

Truncated Double Pareto
c 5,000 100,000 250,000 500,000
prob(cutoff tails), α = 0.5 0.049 0.011 0.0069 0.0048

The higher the absolute value of c is, the less attenuated the impact of tail
behaviour will be. In contrast, low absolute values of c imply cutting out most of
the (thick) tails of the distribution.

The general conclusion is that the bimodality can appear also when moments
are finite and the sample size is finite, but reasonably large for many empirical
applications. Our results with N = 500 show that the source of the bimodality is
the rate of tail behaviour and not unboundedness of support or non-existence of
moments (Figure 18), the non-normal behavior being more evident the larger the
truncation point c.

The heuristic explanation for these results is that any large draw in a finite sample
from the underlying TT distribution will tend to dominate both the numerator and
denominator of a t ratio statistic, even if the DGP distribution has bounded support.
Especially when there is a single extremely large draw that dominates all others, then
the t will be approximately ±, therefore leading to a distribution that has modal
activity in the neighbourhood of these two points. Clearly, it is not necessary for the
distribution to have infinite moments or unbounded support for this phenomenon
to occur.
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8 Other Complications with TT Distributions

Obviously, the non standard distribution of the t-ratio with infinite second moment
also affects two-sample tests of difference of means. Let us assume that we have
two independent samples from two different distributions, one of which is a Pareto
distribution with infinite first or second moment. Call the two distributions A and
B. We want to test whether the mean of the first (µA) is different from the mean
of the second (µB) using the t-ratio, under H0 = µA − µB = 0:

tD2 =
XA −XB√

(SA
X
/nA) + (SB

X
/nB)

(19)

where XA, XB are the sample means, and SA
X
, SB

X
are the sample variance of A

and B, respectively. The distribution of tD2 is again non-standard. Moreover, in
many cases it does converge to a stable distribution as the sample size increases.
Figure 13 shows via Monte Carlo simulations the distributions of the t-ratio, tD2 ,
for testing the difference in means of two Pareto distributions that may differ in α
but are constrained to have the same location parameter, β = 3, on the assumption
that a sample of the same size has been drawn from each. Clearly, employing
the standard normal critical values for the sample t-ratio in this case would give
extremely misleading results. These results are driven by the fact that tD2 is a
convolution of two stable distributions with different tail-thickness parameters. In
general, convolutions of stable distributions also have a stable distribution only if
the stable distributions involved present the same thickedness (rate of decay) of the
tails (see for instance Samorodnitsky and Taqqu, 1994). Simulation results are not
provided here, but can be obtained from the authors upon request.

9 Conclusions

This paper has investigated issues of inference from data based on independent draws
from TT distributions. When the distribution is TT with infinite second moment,
the standard t-ratio formed from a random sample does not converge to a standard
normal distribution and the limit distribution is generally bimodal. Conventional
inference is invalidated in such cases and errors in the rejection probability in testing
can be serious. The results provide some cautionary evidence and show the need
to adapt estimation and inference procedures to account for the special features
induced by heavy tailed data. Bimodality in the finite sample distribution of the
t-ratio arises even in cases of trimmed TT distributions, showing that non-existence
of moments is not necessary for the phenomenon to occur.
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10 Appendix A: Proofs of Lemmas of Section (2)

Proof of Lemma 1

S2
X = S2 − n−1X

2
= S2 +Op(n

−1)

since X ⇒ Cauchy (0,1). Similarly,

tX = X
[
S2 +Op(n

−1)
]−1/2

= t+Op(n−1)

as required.
Proof of Lemma 2. We start by finding the characteristic function of X2

i . This
is

E
(
eivX

2
i

)
=

∫ ∞
−∞

eivx
2
dx

π(1 + x2)

=

∫ ∞
0

eivrdr

πr1/2(1 + r)

=

(
Γ

(
1

2

))−1

Ψ

(
1

2
,
1

2
;−iv

)
where Ψ is a confluent hypergeometric function of the second kind. It follows

that the characteristic function of S2 = n−2Σn
1X

2
i is:

E
(
eivS

2
)

= Πn
i=1E

(
eivX

2
i /n

2
)

=

[(
Γ

(
1

2

))−1

Ψ

(
1

2
,
1

2
;−iv/n2

)]n
(20)

We now use the following asymptotic expansion of the Ψ function (se Erdélyi,
1953, p. 262)

Ψ

(
1

2
,
1

2
;
−iv
n2

)
= Γ

(
1

2

)
+

Γ
(
−1

2

)
Γ
(

1
2

) (−iv
n2

)1/2

+ o(1/n)

so that (20) tends as n→∞ to:

exp

{
Γ
(
−1

2

)
Γ
(

1
2

)2 (−iv)1/2

}
= exp

{
−2

π1/2
(−iv)1/2

}
.

Using the argument given in the text from equations (13) to (14) we deduce (9)
as stated.

Proof of Lemma 3. We take the joint Laplace transform

L(z, w) =

∫ ∞
−∞

ezx+wx
2

π(1 + x2)
dx
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and transform x → (r, h) according to the decomposition x = r1/2h where r = x2

and h = sgn(x) = ±1. Using the Bassel function integral∫
h

ezrh/2dh = 0F1

(
1

2
,
1

4
z2r

)
= Σ∞k=0

(z24)krk

k!
(

1
2

)
k

we obtain

L(z, w) =
1

π

∞∑
k=0

(z2/4)k

k!
(

1
2

)
k

∫ ∞
0

ewrrk−1/2

(1 + r)
dr

=
1

π

∞∑
k=0

(z2/4)kΓ
(
k + 1

2

)
k!
(

1
2

)
k

Ψ

(
k +

1

2
, k +

1

2
,−w

)
(21)

from the integral representation of the Ψ funciton (Erdélyi, 1953, p. 255). We now
use the fact that

Ψ

(
k +

1

2
, k +

1

2
;−w

)
= Γ

(
1

2
− k
)

1F1

(
k +

1

2
, k +

1

2
;−w

)
(22)

+
Γ
(
k − 1

2

)
Γ
(
k + 1

2

)(−w)1/2−k
1F1

(
1,

3

2
− k;−w

)
(see Erdélyi, 1953, p. 257)

Γ

(
1

2
− k
)

=
π

(−1k)Γ
(
k + 1

2

)
and

1F1

(
k +

1

2
, k +

1

2
;−w

)
= e−w

Combining (21) and (22) we have:

L(z, w) =
∞∑
k=0

(−z2/4)k

k!
(

1
2

)
k

e−w (23)

+
1

π

∞∑
k=0

(z2/4)kΓ
(
k − 1

2

)
k!
(

1
2

)
k

(−w)1/2−k
1F1

(
1,

3

2
− k;−w

)

Let

z =
iu

T
, w =

iv

T 2

It follows from (23) that
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and thus[
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we deduce that
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as required for (11).
The second representation in the Lemma is obtained by noting that

a−1xa1F1(a, a+ 1;−x) = Γ(a)− e−xΨ(1− a, 1− a, x)

(Erdélyi, 1953, p. 266). Using this result we find

(
−1

2

)−1

(−iv)1/2
1F1

(
−1

2
,
1

2
;
u2

4iv

)
=

1

2
|u|
{

Γ
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)
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,
3

2
;
−u2

4iv

)}
.

Using (10) in (10) we obtain (12) as stated.
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11 Appendix B: Moments of the symmetric

Pareto distribution

The first moment of the double Pareto distribution introduced in Section 5 is:

E(X) =

∫ ∞
−∞

t

(∫ ∞
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2 )
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The second central moment of the double Pareto distribution introduced in Sec-
tion 5 is:
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