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Abstract

We develop novel methods for establishing coherency conditions in Static and Dy-
namic Limited Dependent Variables (LDV) Models. We propose estimation strategies
based on Conditional Maximum Likelihood Estimation for simultaneous LDV models
without imposing recursivity. Monte-Carlo experiments confirm substantive Mean-
Squared-Error improvements of our approach over other estimators.

We analyse the impact of financing constraints on innovation: ceteris paribus, a
firm facing binding finance constraints is substantially less likely to undertake inno-
vation, while the probability that a firm encounters a binding finance constraint more
than doubles if the firm is innovative. A strong role for state dependence in dynamic
versions of our models is also established.

Keywords: Financing Constraints; Innovation; Dynamic Limited Dependent
Variable Models; Joint Bivariate Probit Model; Econometric Coherency Conditions;
State Dependence.

JEL Classifications: C51, C52, C15
∗We have benefitted from constructive comments by participants at seminars at the London

School of Economics, Cemmap/UCL, CERGE, Prague, Nuffield College, Oxford University, City

University, University of Marseilles, University of Milan, and the University of Toulouse. Early ideas

on which this work is based were presented at the 2006 Conference on Panel Data at the University

of Cambridge, the 2006 Corporate Finance Conference in London, and the IGIER 2008 Conference

in Capri. We thank in particular Richard Blundell, Christian Bontemps, Andrew Chesher, Francesca

Cornelli, Antoine Faure-Grimaud, Denis Gromb, Tatiana Komarova, Guy Laroque, Claire Lelarge,

Thierry Magnac, Alex Michaelides, Peter Robinson, John Sutton, Elie Tamer, Alain Trognon, Dimitri

Vayanos, Paolo Volpin, and Frank Windjmeier. We also thank Ryan Giordano for expert research

assistance. The usual disclaimer applies for all remaining errors.

1Corresponding author.
eml: vassilis@econ.lse.ac.uk
Department of Economics and Financial Markets Group, London School of Eco-

nomics
London WC2A 2AE, England

1



1 Introduction

In this paper, we investigate the fundamental identification issue of coherency of
Limited Dependent Variable (LDV) models with endogeneity and flexible temporal
and contemporaneous correlations in the unobservables. An LDV model was defined
originally by [Gourieroux et al., 1980] to be “coherent” if it implies a valid func-
tion from the unobservables that drive the model to the observed limited dependent
variables. We develop two novel methods for establishing coherency, which have
intuitive interpretations and are easy to implement and generalize. These methods
lead to estimation strategies based on Conditional Maximum Likelihood Estimation
(CMLE) for simultaneous LDV models without imposing unnecessarily restrictive
assumptions. They also allow us to establish the coherency of several Dynamic LDV
models that until now, it was impossible to determine whether they were coherent or
incoherent using traditional methods.

We focus our discussion of the coherency problem in LDV models by using the
Simultaneous LDV Model with Two Binary Responses. In this model, limited de-
pendent variables y1 and y2 are jointly determined through filter functions τ1(·) and
τ2(·) operating on latent variables y

∗

1 and y
∗

2 respectively:

y1it = τ1
(
y∗1it ≡ [h1(x

′

1itβ1, y2itγ) + ε1it]
)

(1)

y2it = τ2
(
y∗2it ≡ [h2(x

′

2itβ2, y1itδ) + ε2it]
)

(2)

The (possibly non-linear) functions h1(·) and h2(·) are known up to parameter vectors
β1 and β2 and the two interaction coefficients γ and δ. The interaction terms y2itγ
and y1itδ appear in the respective latent variables y

∗

1it and y
∗

2it. Let x1it and x2it
denote the vectors of exogenous factors for each side of the model. The parameter
vector to be estimated is θ ≡ (β′1, β

′

2, γ, δ, σ
2
1, σ

2
2, ρ)

′ where ρ ≡ correlation(ε1it, ε2it).
In the most general case, the sample is a panel data set indexed by i = 1, · · · , N and
t = 1, · · · , T .

The existing econometric literature has established as the typical coherency con-
dition to be: γ ·δ = 0, i.e., no reverse interaction terms are allowed among the two en-
dogenous variables. This condition, which is termed “recursivity,” is sufficient for the
joint distribution (y1it, y2it|x1, x2, θ) to be well-specified. [Gourieroux et al., 1980]
explain the condition in terms of there being a valid function from (ε1it, ε2it) to the
observable endogenous variables (y1it, y2it). [Lewbel, 2007] establishes necessary and
sufficient conditions for coherency by approaching the problem as requiring a valid
reduced form system for (y1it, y2it). For example, if δ = 0 then the RF for y2it is:

y2it = τ2
(
h2(x

′

2itβ2) + ε2it
)

and hence the RF for y1it is given by:

y1it = τ1
(
h1
(
x′1itβ2, γ ·

(
τ2h2

(
x′2itβ2

)
+ ε2it

))
+ ε1it

)

In practice there are many situations where assuming recursivity may be too
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restrictive.2 For instance, let us consider the case where we want to study the in-
teractions between innovation by firms and the financial constraints they may face.
Obviously, the propensity to innovate may be affected by financial constraints, and at
the same time, innovative firms are likely to face specific financial constraints: innova-
tion affects survival of firms (see [Audretsch, 1995] and [Klette and Kortum, 2004]),
asset intangibility is higher for innovative firms which lowers their collateral value
and due to their innovative nature informational asymmetries with external investors
are more pronounced. While such issues may be investigated based on survey data
and self-assessed measures of financial constraints on firms, the estimation of such
models is complicated by the problem of coherency. Recursivity corresponds to the
key identifying assumption that innovation does not affect financial distress directly
(δ = 0). On a priori grounds, this assumption seems particularly dubious since inno-
vation may lead to more profits and thus relax financial constraints (corresponding to
δ > 0). An alternative possibility is that innovation may lead to higher investment
in intangible assets thus reinforcing binding financial constraints (corresponding to
δ < 0). Both possibilities violate the traditional coherency condition.

Our main contributions can be summarized as follows: first, we show how to
establish coherency of static and dynamic LDV models without imposing recursivity.
Second, this novel approach leads to less strict conditions. It is shown how to
establish coherency without model recursiveness through the use of (a) endogeneity
in terms of latent variables and/or (b) sign restrictions on model parameters.

Our approach overcomes three major sources of confusion in the analysis of co-
herency: first, incoherency may be one of two distinct types, which we term below
“empty region incoherency” vs. “overlap incoherency.” Second, a given econometric
model may exhibit simultaneously both types of incoherency and hence it is not a
model property – see the model of subsection 2.2 for an illustration. This point is not
made clear in the analysis of [Chesher and Rosen, 2014]. Third, the traditional ap-
proaches focus on establishing sufficient conditions for coherency, while our methods
allow us to prove that they may not be necessary. In addition, our approach exhibits
two major improvements over existing methods: firstly, they are intuitive; secondly,
they can be generalized. Secondly, they can be extended to considerably more com-
plicated LDV models, especially in cases where the models are allowed to contain
intertemporal endogeneity of the type considered in [Falcetti and Tudela, 2008]. In
Subsection 2.7.1 we establish for the first time the coherency of the Panel Univariate
Probit model with State Dependence and in Subsection 2.7.2 the coherency of the
Panel Bivariate Probit model with State Dependence.

We also develop and summarize the results of a set of extensive Monte-Carlo ex-
periments, which confirm very substantive Mean-Squared-Error estimation improve-
ments of the CMLE approach over estimators that make overly restrictive coherency
assumptions about the Data Generating Process (DGP). The fact that our novel
approach for the first time eliminates the need to assume model recursivity is quite

2Exceptions of this do exist: for example in industrial organization a two-agent discrete game
may be employed to model the strategic interactions between firms in a duopoly setup. If one firm is
a Stackelberg leader while the other is a follower, a recursive model may be applicable, even though
the analogy is not precise.
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important for the economic problem studied in the empirical application.
Our empirical results are quite striking: ceteris paribus, we estimate that a firm

that faces a binding finance constraint is approximately 30% less likely to undertake
innovation, while the probability that a firm encounters a binding finance constraint
more than doubles if the firm is classified as innovative. Finally, we establish a strong
role for state dependence in dynamic versions of our models: firms tend to innovate
continuously rather than occasionally and past financial difficulties are correlated with
the present ones even after conditioning on important firm characteristics. Moreover,
it seems that firms with current but also past innovative experiences are more likely
to find it difficult to finance their current projects.

Section 2 explains the coherency issue in LDV models and proposes two novel ap-
proaches for establishing coherency without imposing recursivity. Section 3 summa-
rizes the results from the Monte-Carlo experiments. Section 4 presents the empirical
application, which quantifies the interaction between financial constraints and firm
innovation. Section 5 concludes.

2 Econometric Coherency in LDV Models

To analyze the problem of econometric coherency we use two discrete-reponse LDV
models.

2.1 The Joint Bivariate Binary Probit Model

The first case we focus on here is the binary threshold crossing response model in
which:

τ j(z) ≡ 1(z > 0)

where 1(z > 0) is the indicator function defined by: 1(z > 0) ≡

{
1 if z > 0
0 if z ≤ 0

. In

terms of the two latent variables y∗1 and y
∗

2 and the observed binary indicators y1 and
y2, and suppressing the observation indices:

y1 =

{
1 if y∗1 ≡ x

′

1β1 + γy2 + ε1 > 0
0 if y∗1 ≡ x

′

1β1 + γy2 + ε1 ≤ 0
(3)

y2 =

{
1 if y∗2 ≡ x

′

2β2 + δy1 + ε2 > 0
0 if y∗2 ≡ x

′

2β2 + δy1 + ε2 ≤ 0
(4)

In the Empirical application of Section 4.2, we employed this model to study the
impact of financing constraints on a firm’s decision and ability to innovate in a panel
data context.3

The specific version of model becomes:

3A related application of this setup in International Finance is the Banking and Currency Crises
Model of [Falcetti and Tudela, 2008] where (Cit, Bit) refer to Currency and Banking Crises respec-
tively. Their model is recursive, in that Currency crises are allowed to depend on Banking crises
but not vice-versa.
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Iit =

{
1 if I∗it ≡ x

I
itβ

I + γFit + ε
I
it > 0

0 if I∗it ≡ x
I
itβ

I + γFit + ε
I
it ≤ 0

(5)

Fit =

{
1 if F ∗it ≡ x

F
itβ

F + δIit + ε
F
it > 0

0 if F ∗it ≡ x
F
itβ

F + δIit + ε
F
it ≤ 0

(6)

Analytically, (Iit, Fit) ∈ {(1, 1), (1, 0), (0, 1), (0, 0)} such that:

(Iit, Fit) I∗it F ∗it
(1, 1) x′1itβ1 + γ + ε1it > 0 , x′2itβ2 + δ + ε2it > 0
(1, 0) x′1itβ1 + ε1it > 0 , x′2itβ2 + δ + ε2it < 0
(0, 1) x′1itβ1 + γ + ε1it < 0 , x′2itβ2 + ε2it > 0
(0, 0) x′1itβ1 + ε1it < 0 , x′2itβ2 + ε2it < 0

For a typical it observation, the probability Prob(Iit, Fit|X, θ) is thus characterized
by the constraints on the unobservables:

(aI , aF )′ < (εI , εF )′ < (bI , bF )′

through the configuration:

Iit Fit aI bI aF bF

1 1 −xIitβ
I − γ ∞ −xFitβ

F − δ ∞

1 0 −xIitβ
I ∞ −∞ −xFitβ

F − δ

0 1 −∞ −xIitβ
I − γ −xFitβ

F ∞

0 0 −∞ −xIitβ
I −∞ −xFitβ

F

In general, in the absence of coherency conditions, there will be overlaps and/or
gaps in the domain of (ε1it + x

′

1itβ1, ε2it + x
′

2itβ2). These would be ruled out by the
aforementioned sufficient coherency condition.4

4A related LDV model that does not exhibit similar coherency difficulties is the bivariate probit
model with latent variable interactions (as opposed to limited variable interactions). Specifically:

y1it = τ1
(
y
∗

1it ≡ [h1(x
′

1itβ1, y
∗

2itγ) + ε1it]
)

y2it = τ2
(
y
∗

2it ≡ [h2(x
′

2itβ2, y
∗

1itδ) + ε2it]
)

Then:
y
∗

1 = x1β1 + y
∗

2γ + ε1

y
∗

2 = x1β1 + y
∗

1δ + ε2

and
y
∗

1 = x1β1 + γ · [x2β2 + y
∗

1δ + ε2] + ε1

y
∗

2 = x2β2 + δ · [x1β1 + y
∗

2γ + ε1] + ε2

Hence y∗1 = RF1 and y
∗

2 = RF2, allowing us to obtain y1 = τ(RF1) and y2 = τ(RF2). We thus
see that it is considerably more straightforward to establish coherency identification of LDV models
with latent variable interactions as opposed to limited variable interactions.
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2.2 The Traditional Approach to Coherency Conditions

The second model we focus on to analyze econometric coherency, is a slightly more
complicated simultaneous LDV model, namely the binary & trinomial ordered probit
model of [Hajivassiliou and Ioannides, 2007]. This model studies interactions be-
tween liquidity and employment constraints on individual households indexed by i
at a given point in time indexed by t. The reason we select this model is because
it can exhibit simultaneously both types of incoherency (overlaps and gaps). This is
critical because it will allow us to devise estimation strategies that overcome certain
types of incoherency.

Define two latent dependent variables y∗1it and y
∗

2it. The first denotes the propen-
sity of individual i in period t to be liquidity constrained and the second its propensity
to face employment hour constraints. The corresponding limited dependent variables
are denoted by y1it and y2it. Dropping the it subscripts for simplicity, the model is
defined by:

y1 =

{
1 if y∗1 > 0 (liquidity constraint binding),
0 if y∗1 ≤ 0 (liquidity constraint not binding).

y2 =




−1 if y∗2 ≤ λ

− (overemployed)
0 if λ− ≤ y∗2 < λ

+ (voluntarily employed)
+1 if λ+ ≤ y∗2 (under-/unemployed).

where the latent variables are given by:

y∗1 = 1(y
∗

2 < λ
−)γ11 + 1(λ

− < y∗2 < λ
+)γ12 + x

′

1β1 + ε1

y∗2 = 1(y
∗

1 > 0)δ + x2β2 + ε2

Since (S,E) lie in {0, 1}×{−1, 0, 1}, the 6 possible configurations may be enumerated
as follows:

S E y∗1 y∗2
0 -1 γ11 + x1β1 + ε1 < 0, x2β2 + ε2 < λ

−

0 0 x1β1 + ε1 < 0, λ− < x2β2 + ε2 < λ
+

0 +1 γ12 + x1β1 + ε1 < 0, λ+ < x2β2 + ε2
1 -1 γ11 + x1β1 + ε1 > 0, δ + x2β2 + ε2 < λ

−

1 0 x1β1 + ε1 > 0, λ− < δ + x2β2 + ε2 < λ
+

1 +1 γ12 + x1β1 + ε1 > 0, λ+ < δ + x2β2 + ε2

In terms of the unobservables, the probability of a (y1, y2) observed pair is equivalent
to the probability: (

a1
a2

)
<

(
ε1
ε2

)
<

(
b1
b2

)
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where (ε1, ε2)
′ ∼ N(0,Σε), and a and b are given by:

S E a1 a2 b1 b2
0 -1 −∞ −∞ −(γ11 + x1β1) λ− − x2β2
0 0 −∞ λ− − x2β2 −x1β1 λ+ − x2β2
0 +1 −∞ λ+ − x2β2 −(γ12 + x1β1) +∞

1 -1 −(γ11 + x1β1) −∞ +∞ λ− − δ − x2β2
1 0 −x1β1 λ− − δ − x2β2 +∞ λ+ − δ − x2β2
1 +1 −(γ12 + x1β1) λ+ − δ − x2β2 +∞ +∞

Using traditional arguments, we obtain that a sufficient condition for coherency of
the model is:

(γ11 + γ12)δ = 0 and γ11γ12δ = 0.

To verify this condition, suppose (S,E) = (0, 0). This rules out (S,E) = (0,−1)
because x2β2 + ε2 > λ

−, and rules out (S,E) = (1, 0) because x1β1 + ε1 < 0.
But (1,−1) is not ruled out if the coherency conditions do not hold, since γ11 could

be sufficiently negative and δ sufficiently positive to imply the (1,−1) conditions.
Similarly, the (1, 1) possibility cannot be ruled out in the absence of the coherency

conditions, since γ12 and δ can be sufficiently positive.
Such logical inconsistencies are prevented if either (a) δ = 0 or (b) γ11 and γ12

are simultaneously 0.

2.3 Extending the Traditional Approach to Coherency

The traditional approaches to model coherency suffer from several major difficul-
ties. Firstly, derivations of formal conditions using the traditional approach lack
intuition. Secondly, the derived conditions are impossible to generalize and ver-
ify in moderately more complicated LDV models, especially in cases where the
models are allowed to contain intertemporal endogeneity of the type considered in
[Falcetti and Tudela, 2008]. Similarly, in case the joint binary probit model (3)-(4)
is extended intertemporally, as for example in the empirical dynamic application in
Section 4.2, the coherency condition is impossible to generalize and verify using the
traditional analysis of the previous subsection. Thirdly, in practice non-triangular
or reverse triangular cases are the most interesting from an economic point of view.5

Finally, the traditional approaches focus on establishing sufficient conditions for co-
herency, while our methods allow us to prove that they are not necessary.

To overcome the first two difficulties, alternative ways for establishing coherency
are developed here, that are both intuitive and straightforward, as well as much more
generalizable. In addition, our methods allow us to resolve the last two difficulties
leading to estimation based on CMLE for much more interesting practical applica-
tions. It is shown in the next Section how to establish coherency without model

5Exceptions of this do exist: for example in industrial organization a two-agent discrete game
may be employed to model the strategic interactions between firms in a duopoly setup. If one firm is
a Stackelberg leader while the other is a follower, a recursive model may be applicable, even though
the analogy is not precise.
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recursiveness through the use of (a) endogeneity in terms of latent variables and/or
(b) sign restrictions on model parameters.

2.3.1 Novel Approach 1: Graphical

Let us illustrate the first approach using the Liquidity-Employment constraints ap-
plication of [Hajivassiliou and Ioannides, 2007]. This graphical approach was first
included in the LSE working paper [Hajivassiliou, 2002] and was presented at the
CRETE Conference in Syros in 2003. It should also be noted that our graphical ap-
proach presented here is related to that of [Tamer, 2003] who studied the problem of
coherency in bivariate discrete models for games with multiple equilibria.

Figure 1 gives the 6 possible regimes (y1×y2) = {1, 0}×{−1, 0, 1} in terms of the
two latent variables y∗1 and y

∗

2 and the possible configurations in terms of parameters
λ̄, λ, δ, γ11, and γ12. y

∗

1 is on the horizontal axis and y
∗

2 on the vertical. The figure
makes clear the role of the coherency condition (a) δ = 0 or (b) γ11 = γ12 = 0: in
general, regions R2 and R6 exhibit double-counting (cross-hatched area), as well as a
white rectangle remains which makes the six regions not mutually exhaustive. These
two logical incoherencies disappear when either δ = 0 and/or γ11 = γ12 = 0 hold.

[Figure 1 approximately here.]

We develop further our graphical approach here and use it to highlight the fun-
damental distinction between two types of incoherency, the first corresponding to
overlap regions in latent variables space, while the second to empty regions. A criti-
cal fact that this model illustrates is that a particular model may simultaneously
exhibit incoherencies of both kinds, empty region incoherency as well as over-
lapping region incoherency. This is a critical point that is not well understood in
previous work, e.g., [Chesher and Rosen, 2014]. In fact, the terminology adopted
by those authors, calling overlapping region incoherency as “model incompleteness”
and empty region inchoherency as proper “model inchoherency,” excacerbates this
confusion in somehow giving the impression that a model can only exhibit one of the
two irregularities.

We then show below that under prior sign restrictions on model parameters, inco-
herencies of the empty region type can be eliminated by relying on suitable parameter
sign restrictions through the use of Conditional MLE.

2.3.2 Novel approach 2: DGP From First Principles

Despite the usefulness of the graphical approach of the previous section to LDV
problems with two latent variables, the method is very unwieldy or inapplicable to
higher dimensional cases. To cover such problems, we develop a second approach to
incoherency, which consists of designing a data-generating algorithm (hypothetical
or implemented on a computer) to simulate random draws from an LDV model’s
structure. Again let us use the Liquidity-Employment Constraints application of
[Hajivassiliou and Ioannides, 2007] to illustrate the method. We draw ε1 and ε2 under
the joint bivariate normal distribution with zero mean vector and variance-covariance
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matrix Σε, and given x
′

1β1 and x
′

2β2 we attempt to generate y
∗

1 and y
∗

2. This is
straightforward provided the coherency condition holds: If (a) δ = 0, then latent y∗2
can be drawn, then LDV y2, which together with ε1 and x

′

1β1 determines the right
hand side of y∗1, thus allowing y1 to be drawn. Similarly, if (b) γ11 = γ12 = 0, then
y∗1 can be drawn from the first equation based on ε1 and x

′

1β1, which determines y1,
thus giving y∗2 and hence y2. In general it is impossible, however, to devise such a
data generation mechanism in case the coherency condition does not hold.

This approach is related to the [Gourieroux et al., 1980] condition that a function
exist from ε1, ε2 to y1, y2. It is also related to [Lewbel, 2007] in that coherency
translates to there being a valid reduced form for the endogenous variables.

As we will show in section 2.7, the approach extends naturally to cases with
intertemporal endogeneities in panel LDV models, and can be used to prove the co-
herency of the classic multiperiod panel probit with state dependence ([Heckman, 1981a]),
as well as the intertemporal endogeneity versions of the models in Section 4.2 with
explicit dynamic effects.

2.4 Identification Under Prior Sign Restrictions

The graphical approach we developed in the previous section highlights two dis-
tinct cases of incoherency: the first type of incoherency corresponds to regions of
the observed endogenous variables of the model being overlapping, while the second
to regions that are empty. We show that empty region incoherency can be over-
come through conditional maximum likelihood (CMLE) of truncating the LDVs to
lie outside the incoherency regions.6 Our CMLE approach can also be motivated
through the DGP approach for establishing coherency that we discussed in the previ-
ous subsection. In that case, we need to consider DGPs truncated to lie on a specific
region of the latent variables space. A specific method for achieving this is given in
[Hajivassiliou, 2008].

It is useful to highlight here the similarities and differences to the analysis in
[Tamer, 2003], who also used a graphical approach to resolve an incomplete simulta-
neous discrete response model for a homogeneous two-agent discrete game of entry.
Since the two rival firms in his setting were assumed identical, any incoherency aris-
ing was necessarily of the indeterminate type – see our two subcases 2.4.1 and 2.4.2,
where the interaction terms γ and δ are of the same sign. Consequently, the pos-
sibility of the interaction terms being of opposite sign was not under focus in his
analysis and hence the applicability of CMLE to resolve those cases was not consid-
ered. It is also useful to note that our approach for establishing coherency through
the use of prior sign restrictions developed here is related to the recent approach
by [Uhlig, 2005] for Vector Autoregression identification under prior sign restrictions
on impulse response functions.7[Dagenais, 1997] also makes a distinction between al-

6We also explain below that overlapping region incoherency cannot be transformed into empty
region incoherency by redefining one of the observed binary LDVs to its complement.

7We are indebted to Alain Trognon for pointing out the potential of parameter sign restrictions
overcoming incoherency of the “empty region” type, and to Hashem Pesaran for bringing to our
attention Uhlig’s work on sign identification.
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ternative types of incoherency regions.8 We stress again that the approach and
terminology in [Chesher and Rosen, 2014] is likely to lead to the incorrect belief that
a model may exhibit only a single type of incoherency, either of the empty region- or
overlap- type. Such misunderstanding would prevent the CMLE solution we develop
below.

It is also critical at this point to explain why recent methodologies developed
for econometric partially identified models with multiple equilibria cannot solve the
coherency problems of the type we study here. There is a fundamental reason why the
works of [Berry and Tamer, 2006], [Ciliberto and Tamer, 2009], [Beresteanu et al., 2011]
and [de Paula and Tang, 2012], which follow on the pioneering approach of [Tamer, 2003],
are not applicable to our models: these works require simultaneous games with mul-
tiple decision makers making a simultaneous decision. In the absence of these two
ingredients, we believe that our CMLE approach is the only available solution.

In addition, contrary to [Tamer, 2003] and the four cited papers that followed
him, our approach here can be extended to study the coherency of dynamic LDV
econometric models. We develop these extensions in section 2.7 below.

We illustrate the CMLE approach for establishing coherency through prior sign
restrictions by using the joint binary probit model:9

I =

{
1 if I∗ ≡ x′1β1 + γF + ε1 > 0
0 otherwise

(7)

F =

{
1 if F ∗ ≡ x′2β2 + δI + ε2 > 0
0 otherwise

(8)

Obviously, there exist four cases based on the signs of γ and δ. These are presented
in the four figures that follow.

2.4.1 Case 1: γ > 0, δ > 0 – overlapping regions, incoherency

[Figure 2 approximately here.]

2.4.2 Case 2: γ < 0, δ < 0 – overlapping regions, incoherency

[Figure 3 approximately here.]

2.4.3 Case 3: γ > 0, δ < 0 – empty regions, coherency through condi-
tioning

[Figure 4 approximately here.]

8Unfortunately his work remains incomplete and unpublished due to his untimely death.
9For the first equation, I∗ is used for the latent and I for the observed LDV as a mnemonic to

the Innovation side of the model of Section 4.2 below. Similarly, for the second equation we use
F ∗ and F as a mnemonic to Financing Constraints.
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For this case, coherency can be achieved by conditioning to lie outside the “empty”
region of Figure 4, which has conditioning probability:

1− Prob(−γ < ε1 + x
′

1β1 < 0, 0 < ε2 + x
′

2β2 < −δ)

The estimation method that implements this is CMLE

2.4.4 Case 4: γ < 0, δ > 0 – empty regions, coherency through condi-
tioning

[Figure 5 approximately here.]

For this case also, coherency is achieved by conditioning to lie outside the “empty”
region of Figure 5. The conditioning probability is:

1− Prob(0 < ε1 + x
′

1β1 < −γ, δ < ε2 + x
′

2β2 < 0)

and the appropriate estimation method is CMLE.

2.4.5 Can Overlapping Regions Incoherency be Overcome through LDV
Redefinition?

We have shown that in general, in the absence of coherency conditions, there will
be overlaps and/or gaps in the domain of (ε1 + x

′

1β1, ε2 + x
′

2β2). At this point, a
researcher might be tempted to propose that the incoherency cases with overlapping
regions (Cases 1 and 2 above) may be overcome by redefining one of the two limited
dependent variables to their complement. According to this reasoning, since the
incoherency is caused in these cases because γ and δ are of the same sign, and since
changing y2, say, to its complement y

N
2 ≡ (1 − y2) would result in δ

N ≡ −δ, then
coherency would be achieved since then γ · δN < 0.

Such reasoning would be incorrect, however. We analyze here this idea and show
that such a redefinition would maintain the overlapping-region incoherency. This
is because the yN2 ≡ (1 − y2) redefinition would also switch the sign of γ and hence
γN · δN > 0 just as γ · δ > 0.

Let us return to the bivariate binomial probit (7) and (8). Suppose we have
incoherency because we believe γ > 0 (in our application below translating to binding
finance constraints expected to raise the chance of innovation I) and that δ > 0
(innovative firms face a higher chance that the banks will refuse them a loan). So
γ · δ > 0. This is Case 1 analyzed in subsection 2.4.1 as represented by Figure 2,
and corresponding to the constraints on the unobservables:

(a1, a2)′ < (ε1, ε2)′ < (b1, b2)′

11



such that:

I F a1 b1 a2 b2 Shading Region

1 1 −x′1β1 − γ ∞ −x′2β2 − δ ∞ horizontal R1

1 0 −x′1β1 ∞ −∞ −x′2β2 − δ /////// R2

0 1 −∞ −x′1β1 − γ −x′2β2 ∞ \\\\\\\ R3

0 0 −∞ −x′1β1 −∞ −x′2β2 vertical R4

Now consider the transformed model with NF instead of F . This transforma-
tion still gives an overlapping region in the transformed variables, and hence corre-
sponds to an incoherent model. To see this, proceed as follows:

In terms of the two latent variables I∗ and NF ∗ = −F ∗ and the observed binary
indicators I and NF = 1− F , and suppressing the observation index:

I =

{
1 if I∗ ≡ x′1β1 + γ

NNF + ε1 > 0
0 if I∗ ≡ x′1β1 + γ

NNF + ε1 ≤ 0
(9)

NF =

{
1 if NF ∗ ≡ x′2β

N
2 + δ

NI + εN2 > 0

0 if NF ∗ ≡ x′2β
N
2 + δ

NI + εN2 ≤ 0
(10)

Given this transformation, we expect that γN < 0 (high NF means not very binding
constraints so cause dampening of I) and that δN < 0 (firms who have high I i.e.,
innovate, raise the chance the banks will refuse them a loan so low NF ). So γN ·δN >
0. See Figure 6.

[Figure 6 approximately here.]

For a typical i observation, the probability Prob(y1i, y2i|X, θ) is characterized by
the constraints on the unobservables:

(a1, a2)′ < (ε1, ε
N
2 )

′ < (b1, b2)′

through the configuration:

I NF a1 b1 a2 b2 Shading Region

1 0 −x′1β1 ∞ −∞ −x′N2 β2 − δ
N horizontal R1

1 1 −x′1β1 − γ
N ∞ −x′2β

N
2 − δ

N ∞ /////// R2

0 0 −∞ −x′1β1 −∞ −x′N2 β2 \\\\\\\ R3

0 1 −∞ −x′1β1 − γ
N −x′N2 β2 ∞ vertical R4

2.5 Efficient Estimation through Conditional Maximum Likelihood
for Empty Region Incoherency

The optimal parametric estimation approach for the models with empty region in-
coherency (Cases 3 and 4 above) will be conditional maximum likelihood (CMLE),
employing the appropriate likelihood contributions that characterize correctly the
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necessary conditioning through truncation that ensures that the LDVs stay out of
the empty region of incoherency. For example, assuming independence across obser-
vations {it}, the likelihood contribution in Case 3 will be:

lit =
Prob (ε1, ε2 : I = 1(I

∗ > 0) & F = 1(F ∗ > 0))

(1− Prob(−γ < ε1 + x′1β1 < 0, 0 < ε2 + x
′

2β2 < −δ)

while for Case 4:

lit =
Prob (ε1, ε2 : I = 1(I

∗ > 0) & F = 1(F ∗ > 0))

(1− Prob(0 < ε1 + x′1β1 < −γ, δ < ε2 + x
′

2β2 < 0)

These likelihood contributions make it clear why approaches that ignore the coherency
issue are inconsistent in general: the inconsistency would arise because the condition-
ing probability expressions in the denominator are functions of the underlying para-
meters and data, and hence affect critically the evaluation of the correct likelihood
function.

It is important to rememeber that fact that the likelihood contributions depend
on denominator probabilities characterizing the support of the underlying truncated
distributions that are also functions of parameters and data does not make the CMLE
estimation problem irregular. The earliest example where such likelihood problems
were studied formally is [Amemiya, 1973] for models of censoring and truncation.
The uniform consistency, asymptotic normality, and efficiency of the CMLE estima-
tors for the empty region inchorency Cases 3 and 4 can be established using methods
in [Amemiya, 1973] and in works that followed.

2.6 Estimation for Overlap Region Incoherency

We note that Cases 1 and 2 (with same sign of the interaction coefficients γ and δ)
may be handled in an analogous fashion provided it is assumed first that the Data
Generating Process (DGP) that overcomes the overlapping-regions incoherency is
one where (ε1i, ε2i) are drawn from an unrestricted bivariate normal distribution and
then any draws falling into the overlap region are rejected. The analogous CMLE
approach for handling overlap regions incoherency is presented here for completeness
only because (a) on a priori grounds the γ and δ of our Financing Constraints/Firm
Innovation application are of opposite sign, a theoretical feature that is confirmed by
our empirical findings; and (b) CMLE is arguably much less unambiguous and clear-
cut to apply it to overlap regions incoherency compared to the implied truncation in
the cases of empty regions inchoherency.

To find the correct likelihood contributions in Cases 1 and 2, first define:

p∗11 ≡ Prob(I∗ > 0, F ∗ > 0)

p∗10 ≡ Prob(I∗ > 0, F ∗ ≤ 0)

p∗01 ≡ Prob(I∗ ≤ 0, F ∗ > 0)

p∗00 ≡ Prob(I∗ ≤ 0, F ∗ ≤ 0)
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Then, note that:
p∗11 + p

∗

10 + p
∗

01 + p
∗

00 = S > 1

where S − 1 ≡ d, the probability of the overlap region. In Case 1, the overlap
occurs between regions (1, 1) and (0, 0), while for Case 2 between regions (1, 0) and
(0, 1). Consequently, assuming an Accept/Reject DGP out of the overlap region, the
likelihood contribution for observation {it} for Case 1 is:

lit =





p11 ≡ Prob(I = 1&F = 1) = (p
∗

11 − d)/(2− S)
p10 ≡ Prob(I = 1&F = 0) = p

∗

10/(2− S)
p01 ≡ Prob(I = 0&F = 1) = p

∗

01/(2− S)
p00 ≡ Prob(I = 0&F = 0) = (p

∗

00 − d)/(2− S)

while for Case 2:

lit =





p11 ≡ Prob(I = 1&F = 1) = p
∗

11/(2− S)
p10 ≡ Prob(I = 1&F = 0) = (p

∗

10 − d)/(2− S)
p01 ≡ Prob(I = 0&F = 1) = (p

∗

01 − d)/(2− S)
p00 ≡ Prob(I = 0&F = 0) = p

∗

00/(2− S)

As mentioned at the outset, this Accept/Reject DGP approach for overcoming
overlapping regions incoherency is logically less clear-cut and more ambiguous. One
may consider instead alternative schemes for the overlapping regions case which are
particularly suitable for specific economic applications – see, for example, the game-
theoretic models of entry analyzed by [Tamer, 2003] and the works cited above that
followed him.

2.7 Establishing the Coherency of Panel LDVModels with Intertem-
poral Endogeneities using DGP Approach

Extending the analysis to a panel data set, we explain how the probability of a pair
(Sit, Eit) in subsection 2.2 and a pair (y1it, y2it) in subsection 2.1, can be represented
in terms of the linear inequality:

(a1, a2)
′ < (ε1, ε2)

′ < (b1, b2)
′

where the error vector has a flexible autocorrelation structure. For example, one-
factor random effect assumptions will imply an equicorrelated block structure on Σε,
while our most general assumption of one-factor random effects combined with an
AR(1) process for each error implies that Σε combines equicorrelated and Toeplitz-
matrix features. Consequently, the approach incorporates fully (a) the contempo-
raneous correlations in εit, (b) the one-factor plus AR(1) serial correlations in εi,
and (c) the dependency of Sit on Eit and vice versa. The coherency issue expands
naturally to the panel sequence of data, by thinking of each (correlated) time-period
for a given individual i as a distinct probit equation and then dealing with the
independent cross-section of equations across individuals. Details of the analysis can
be found in [Hajivassiliou, 2007].
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2.7.1 Dynamic Model 1: Univariate Panel Data Probit with State De-
pendence

Our hypothetical DGP method presented in Subsection 2.3.2 for establishing co-
herency is now applied to the canonical panel data Probit model with state depen-
dence, first analyzed by [Heckman, 1981a]. The model is defined by:

yiT = 1(λyi,T−1 + xiTβ + εiT > 0)

yi,T−1 = 1(λyi,T−2 + xi,T−1β + εi,T−1 > 0)

...

yi2 = 1(λyi1 + xi2β + εi2 > 0)

yi1 = 1(xi1ξ1 + · · ·+ xiT ξT + ui1 > 0)

The equation for t = 1 is a generalization of the [Barghava and Sargan, 1982] ap-
proach. Let Σ ≡ V Cov(εiT , · · · , εi1, ui1). Imposing one-factor random effect as-
sumptions will imply an equicorrelated block structure on the top left T − 1× T − 1
block of Σ, while more general assumptions of one-factor random effects combined
with an AR(1) or ARMA(p,q) processes for each ε error implies that Σ combines
equicorrelated and Toeplitz-matrix parts. The last row and last column of Σ giving
the variance of u1i and its covariances with all εit allow the flexibility stipulated by
[Heckman, 1981b].

Define the Cholesky lower triangular times upper triangular factorization of Σ =
CC ′. Given the assumed normality, the error vector can be written:

(ε′i, u1i)
′ = Cνi νi ∼ N(0T , IT )

Theorem 1: The Univariate PD Probit Model with State Dependence defined above
is coherent.

Proof: (using the DGP approach)
Let us begin with the simplified case of the initial condition being exogenous:

yiT = 1(λyi,T−1 + x
′

iTβ + εiT > 0) (11)

yi,T−1 = 1(λyi,T−2 + x
′

i,T−1β + εi,T−1 > 0) (12)

... (13)

yi2 = 1(λyi1 + x
′

i2β + εi2 > 0) (14)

yi1 = exogenous (15)

Suppose first the εit has the one-factor (equicorrelated) error components structure
εit = αi + νit. Conditional on αi, these T − 1 equations are independent (since they
only depend on the i.i.d. νits). Hence draw an αi and an independent νi2. Then
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use the exogenous yi1 outcome to generate yi2. This completes equation 14 which
allows to move sequentially to generating yi3, then yi4, etc. until yiT is generated.
This establishes the coherency of the model.

Now allow for a general Σ ≡ V Cov(εiT , · · · , εi2) = CC
′. Given that we assume

Gaussianity and dropping the i index, we obtain:

yT = 1(λyT−1 + xTβ + cT1ν1 + cT2ν2 + · · ·+ cT,T−1νT−1 + cTT νT > 0)

yT−1 = 1(λyT−2 + xT−1β + cT−1,1ν1 + cT−1,2ν2 + · · ·+ cT,T−1νT−1 > 0)

...

y2 = 1(λy1 + x2β + c22ν2 + c21ν1 > 0)

y1 = exogenous

Given a random draw of νi1, · · · , νiT , an unambiguous rule gives sequentially yi1 →
yi2 → · · · yi,T−1 → yiT . Hence, the above defines a recursive DGP which establishes
the coherency of the model.

Finally, consider the more general case when yi1 cannot be assumed as exogenous.
We then supplement the system with an initial condition equation:

yi1 = 1(xi1ξ1 + · · ·+ xiT ξT + ui1) > 0 (16)

The following remarks are in order: First note that (16) is a generalization of the
[Barghava and Sargan, 1982] approach. Second, one-factor random effect assump-
tions will imply an equicorrelated block structure on the top left T − 1 × T − 1
block of Σ, while more general assumptions of one-factor random effects combined
with an AR(1) or ARMA(p,q) processes for each ε error implies that Σ combines
equicorrelated and Toeplitz-matrix parts. The last row and last column of Σ giv-
ing the variance of u1i and its covariances with all εit allow the flexibility stipulated
by [Heckman, 1981a]. The only modification now necessary is to change the initial
condition equation to:

yi1 = 1(xi1ξ1 + · · ·+ xiT ξT + c11νi1 > 0)

This recursive representation again establishes the coherency of the model: given a
random draw of νi1, · · · , νiT , an unambiguous DGP rule can be defined to establish
sequentially yi1 → yi2 → · · · yi,T−1 → yiT .

2.7.2 Dynamic Model 2: Bivariate Panel Data Probit with State Depen-
dence

Parameter mnemonics:

• Exogenous variable coefficients: β, θ

• Simultaneous interaction terms: γ, δ
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• Own state dependence: λy, λw

• Cross state dependence: ζw, ζy

yit = 1(x′i,tβ + λyyi,t−1 + γwit + ζwwi,t−1 + εit > 0)

wit = 1(z′itθ + λwwi,t−1 + δyit + ζyyi,t−1 + uit > 0)

yiT = 1(x′iTβ + λyyi,T−1 + γwiT + ζwwi,T−1 + εiT > 0)

wiT = 1(z′iT θ + λwwi,T−1 + δyiT + ζyyi,T−1 + uiT > 0)

yi,T−1 = 1(x′i,T−1β + λyyi,T−2 + γwi,T−1 + ζwwi,T−2 + εi,T−1 > 0)

wi,T−1 = 1(z′i,T−1θ + λwwi,T−2 + δyi,T−1 + ζyyi,T−2 + ui,T−1 > 0)

...

yi2 = 1(x′i2β + λyyi1 + γwi2 + ζwwi1 + εi2 > 0)

wi2 = 1(z′i2θ + λwwi1 + δyi2 + ζyyi1 + ui2 > 0)

yi1

wi1

Lemma 1: Without any restrictions on the γ, δ parameters or the distribution of
(ε, u), the General Bivariate PD Probit Model with State Dependence above is not
coherent.

Proof:

yit = 1(x′itβ + λyyi,t−1 + γwit + ζwwi,t−1 + εit > 0)

wit = 1(z′itθ + λwwi,t−1 + δyit + ζyyi,t−1 + uit > 0)

Given y, w from period t−1, the λ and ζ terms are determined on the latent variable
terms for period t (defining the event arguments of the indicator functions).

Together with unrestricted values of the random shocks and the exogenous vari-
ables of period t, everything in the event conditions is determined, except the simul-
taneous interaction terms γ, δ.

• But since the interaction terms appear both as conditioning variables on the
RHS as well as dependent variable dummies on the LHS, they cannot be deter-
mined unambiguously. Hence, no complete DGP can be defined from ε, u to
y, w.
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Theorem 2: The General Bivariate PD Probit Model with State Dependence
above is coherent without any restrictions on the λ, ζ state dependence parameters or
the distribution of (ε, u), if the simultaneous interaction terms satisfy γ · δ = 0, i.e.,
the model is triangular.

Proof: Assume that γ · δ = 0 because γ = 0.

yit = 1(x′itβ + λyyi,t−1 + ζwwi,t−1 + εit > 0)

wit = 1(z′itθ + λwwi,t−1 + δyit + ζyyi,t−1 + uit > 0)

Given y, w from period t−1, the λ and ζ terms are determined on the latent variable
terms for period t (defining the event arguments of the indicator functions). Together
with unrestricted values of the random shocks and the exogenous variables of period t,
everything in the event condition of the yt is determined, since there no simultaneous
interaction term is present on the RHS (as γ = 0).

Entering the yt value in the interaction term on the RHS of the wt equation,
everything in its event condition is now determined, which fixes wt.

Hence, a complete DGP can be defined sequentially from the errors to the ob-
servables: yi1, wi1 → yi2, wi2 → · · · yi,T−1, wi,T1 → yiT , wiT .

The proof for the δ = 0 case is perfectly symmetric and will not be repeated.
Theorem 3: The General Bivariate PD Probit Model with State Dependence

above is coherent without any restrictions on the λ, ζ state dependence parameters,
if:

(i) the simultaneous interaction terms are of opposite signs, i.e., γ · δ < 0 and
(ii) the distribution of (ε, u) satisfies F (εt, ut|ε−t, u−t) = F (εt, ut|ε<t, u<t) and the

error r.v.s (ε, u) are restricted on rectangular regions that are determined recursively.

• Proof: Assume that γ · δ < 0 because γ < 0, δ > 0.

yit = 1(x′itβ + λyyi,t−1 + γwit + ζwwi,t−1 + εit > 0)

wit = 1(z′itθ + λwwi,t−1 + δyit + ζyyi,t−1 + uit > 0)

Given y, w from period t − 1, the λ and ζ terms are determined on the la-
tent variable terms for period t (defining the event arguments of the indicator
functions).

Given the exogenous variables of period t, the event conditions of yt, wt are
determined except (a) the interaction terms γ, δ and (b) the error terms.

In the absence of condition (ii), the model would exhibit “empty region inco-
herency” as defined above. Employing the graphical approach of the Static Bi-
variate Probit above, defines the necessary rectangular exclusion region (drawn
white) for the support of the truncated Gaussian:

0 < εit + x
′

itβt + λyyi,t−1 + ζwwi,t−1 < −γ

δ < uit + z
′

itθ + λwwi,t−1 + ζyyi,t−1 < 0
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Based on the underlying uniform rv’s drawn at the start of the DGP, the trun-
cated Gaussian ε, u are drawn to satisfy the identifying rectangle restrictions
using the probability integral transform method defined in [Hajivassiliou, 2008].

Hence, the model under conditions (i) and (ii) is coherent, since a complete
DGP could be defined sequentially from the errors to the observables: yi1, wi1 →
yi2, wi2 → · · · yi,T−1, wi,T1 → yiT , wiT .

The proof for γ · δ < 0 because γ > 0, δ < 0 is exactly symmetric and will not
be repeated.

2.7.3 Extensions to Bivariate Multinomial Ordered Probit

[Hajivassiliou, 2007] discusses how to extend the analysis to the case of two simultane-
ous (bivariate) ordered probit equations with multiple regions. We refer the interested
reader to that study.
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3 Monte-Carlo Evidence on the Performance of CMLE

3.1 Overview

As we showed in Subsection 2.4, we obtain a coherent non-recursive model with
interaction dummies included on both sides, provided we believe the feedback terms
have opposite signs on the two sides. Note that it is sufficient to consider only the
γ ≥ 0, δ ≤ 0 case, since the reverse can always be subsumed by redefining both
dependent binary variables to their complements y′it ≡ (1− yit).

We performed extensive Monte Carlo experiments, designed to illustrate the con-
sequences of adopting existing and novel estimation strategies for the problem of this
paper. The experiments confirm that the CMLE approach under sign restrictions
derived above provides reliable, consistent and efficient estimates of the underlying
parameters including the two interaction terms. In contrast, the existing tradi-
tional approaches (unrestricted MLE ignoring possible incoherency and MLE that
incorrectly assumes recursivity of the system) give seriously misleading and incon-
sistent results. The interested reader is referred to the online companion paper
[Hajivassiliou, 2008] for an extensive presentation of the Monte Carlos summarized
here and detailed analysis and findings.10 We give a brief summary of the key
findings:

• The Truncated CMLE proposed in this paper performs very satisfactorily, being
the only consistent estimator for the reverse feedback cases, and with only small
sacrifices in terms of efficiency in the recursive DGPs when it is not strictly
necessary.

• The linear probability estimators perform very badly in all cases with endoge-
nous interaction terms, thus suggesting that the inherent non-linearities of the
bivariate probits cannot be safely ignored.

10The cited study considered nine estimation approaches:
(a) Incorrectly forcing the old coherency condition to hold, i.e., assuming recursivity when in fact

both feedback terms are present (estimators E-TRWN=assuming δ = 0 and E-TRNW=assuming γ = 0);
(b) unrestricted likelihood estimation, which ignores the resulting incoherency due to the empty

or overlap region(s) (estimator E-INCO);
(c) restricted likelihood estimation conditioning on the data lying outside the empty region(s) of

incoherency (estimators E-SQPM=assuming (γ ≥ 0, δ ≤ 0) and E-SQMP=assuming (γ ≤ 0, δ ≥ 0));
(d) restricted likelihood estimation conditioning on the data lying outside the overlap region(s) of

incoherency (estimators E-SQPM=assuming (γ ≥ 0, δ ≥ 0) and E-SQMP=assuming (γ ≤ 0, δ ≤ 0)); and
(e) LPOLS: (linear probability) ordinary least squares estimation of each binary probit equation

ignoring the possible endogeneity of the interaction terms; and LP2SLS: applying two-stage least
squares recognizing that the two interaction terms on the RHS of each probit equation can be
endogenous.
In the cited study, six “true” models were generated, depending on whether interaction terms

were allowed on one or both sides In each case, the nine estimators E-TRWN, E-TRNW, E-INCO, E-SQPM,
E-SQMP, E-SQPP, E-SQMM, LPOLS, and LP2SLS were calculated.
Apart from confirming the excellent performance of the Truncated MLE approach adopted here,

the study also confirmed that application of linear probability methods to the bivariate binary probit
model typically leads to very unreliable findings, even if such methods attempt to take account of
the endogeneity of the direct and reverse interaction effects.
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• Truncated CMLE also works well for the overlap region incoherency cases.

• Unrestricted likelihood estimation ignoring the resulting incoherency due to the
empty or overlap region(s) is by far the worst performing estimator, dominated
even by equation by equation univariate estimators which estimate the two
equations separately while ignoring the other side of the model.

We then proceed with the design and implementation of the experiments.

3.2 Design of Monte-Carlo Experiments

The experiments were designed to illustrate the importance of coherency on the
following nine estimation approaches:

(Est1&Est2) likelihood estimation that incorrectly forces the old coherency con-
dition to hold, i.e., assuming recursivity when in fact both feedback terms are present
(estimators E-TRWN=assuming δ = 0 and E-TRNW=assuming γ = 0);

(Est3) unrestricted likelihood estimation, which ignores the resulting incoherency
due to the empty or overlap region(s) (estimator E-INCO);

(Est4&Est5) restricted likelihood estimation conditioning on the data lying out-
side the empty region(s) of incoherency (estimators E-SQPM=assuming (γ ≥ 0, δ ≤ 0)
and E-SQMP=assuming (γ ≤ 0, δ ≥ 0));

(Est6&Est7) restricted likelihood estimation conditioning on the data lying out-
side the overlap region(s) of incoherency (estimators E-SQPP=assuming (γ ≥ 0, δ ≥ 0)
and E-SQMM=assuming (γ ≤ 0, δ ≤ 0)).

(Est8&Est9) LPOLS: (linear probability) ordinary least squares estimation of each
binary probit equation ignoring the possible endogeneity of the interaction terms; and
LP2SLS: applying two-stage least squares recognizing that the two interaction terms
on the RHS of each probit equation can be endogenous.

We generate six “true” models:

1. DGP− TRWN(δ = 0) 4. DGP− SQMP (γ ≤ 0, δ ≥ 0)
2. DGP− TRNW(γ = 0) 5. DGP− SQPP (γ ≥ 0, δ ≥ 0)
3. DGP− SQPM (γ ≥ 0, δ ≤ 0) 6. DGP− SQMM (γ ≤ 0, δ ≤ 0)

To simulate data from these six models, it is necessary to devise a methodology for
generating standard Gaussian variates truncated to lie outside an interval [λ, λ̄]. The
following algorithm achieves this: Let z ∼ N(0, 1) and define τ ∼ z|{z /∈ [λ, λ̄]} Then
cdf(z) : F (z) = Φ(z) and

cdf(τ) : F (τ) =





Φ(z)

1−Φ(λ̄)+Φ(λ)
if z < λ,

Φ(λ)

1−Φ(λ̄)+Φ(λ)
if λ < z ≤ λ̄,

Φ(z)−Φ(λ̄)+Φ(λ)

1−Φ(λ̄)+Φ(λ)
if z > λ̄.

The procedure is exact for a univariate z truncated on {z /∈ [λ, λ̄]}, but it will not
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work for higher dimensions.11

Based on data generated from each of the six DGPs in turn, we calculate the nine
estimators E-TRWN, E-TRNW, E-INCO, E-SQPM, E-SQMP, E-SQPP, E-SQMM, LPOLS, and
LP2SLS.

The generating equations are:

ystar1 = x1[nobs, kx1] ∗ beta1 + gamma ∗ y2 + eps1, y1 = 1(ystar1 > 0)

ystar2 = x2[nobs, kx2] ∗ beta2 + delta ∗ y1 + eps2, y2 = 1(ystar2 > 0)

where x1 is a nobs× kx1 matrix and x2 is a nobs× kx2 matrix.

3.2.1 Case DGP-TRWN: γ unrestricted, δ = 0

ystar1 = x1[nobs, kx1] ∗ beta1 + gamma ∗ y2 + eps1, y1 = 1(ystar1 > 0)

ystar2 = x2[nobs, kx2] ∗ beta2 + eps2, y2 = 1(ystar2 > 0)

Given the recursivity of the γ · δ = 0 restriction in this case, ystar2 is generated
first, which gives y2. This is then plugged into the RHS of the ystar1 equation thus
allowing ystar1 and y1 to be obtained. The symmetric case DGP-TRNW is handled
analogously.

3.2.2 Case DGP-SQPM: γ ≥ 0, δ ≤ 0

0 ≤ eps1 + x1 ∗ b1 ≤ gamma,−delta ≤ eps2 + x2 ∗ beta2 ≤ 0 (17)

Accept-reject methods are used to generate the data so that these restrictions are
satisfied. The symmetric DGP-SQMP case is handled analogously.12

3.2.3 Case DGP-SQPP: γ ≥ 0, δ ≥ 0

Accept-reject methods are used to generate the data so that these restrictions are
satisfied, as well as for the symmetric case DGP-SQMM.

3.3 Implementation of the Monte-Carlo Experiments

We performed 32 Monte-Carlo experiments, indexed by MCxyz as follows:

δ γ

x=1 0 0

x=2 0.8 0

x=3 0.8 1

x=4 0.8 -1

ρε1,ε2
y=1 0.3

y=2 -0.3

x11 x12 x13 x21 x22 x23
z = 1 const χ2(1) Bernoulli(0.7) const x12 DoubleExponentialSS

z = 2 const χ2(1) Bernoulli(0.9) const x12 DoubleExponentialSS

z = 3 const χ2(1) Bernoulli(0.7) const x12 DoubleExponentialLS

z = 4 const χ2(1) Bernoulli(0.9) const x12 DoubleExponentialLS

11For DGPs with higher dimensions, the leading alternative procedures are Acceptance-Rejection
and Gibbs resampling – see [Hajivassiliou and McFadden, 1998] for discussion.
12 See also [Hajivassiliou, 2008] for an exact algorithm for generating draws from truncated normal

distributions restricted to lie on region (17).
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where DoubleExponential stands for a Double Exponential distribution with
mean 0 with asymmetric two sides, SS for “small skewness” and LS with “large skew-
ness.” Each random data set had 2000 observations and 200Monte-Carlo replications
were generated. The true beta parameters were set at: β1 = ( 0.8, −0.5, −0.3 )′

and β2 = ( −0.3, 0.7, −0.4 )′.13 The four regime probabilities and their row
and column sums across the 32 Monte-Carlo experiments that we performed were as
follows:

Y2= 1 Y2= 0

Y1= 1 p11 p10 p1·
Y1= 0 p01 p00 p0·

p·1 p·0

Across Experiments p11 p10 p01 p00 p0· p1· p·1 p·0
minimum 0.120 0.141 0.065 0.166 0.266 0.333 0.444 0.382

average 0.318 0.220 0.217 0.245 0.462 0.538 0.535 0.466

maximum 0.552 0.330 0.410 0.307 0.667 0.734 0.618 0.556

13The full tables presenting the detailed Monte-Carlo results in terms of various estimation criteria
(root-mean-squared error, absolute bias, absolute median bias, variance, interquartile range, and
nine-decile range) can be found in the online companion paper [Hajivassiliou, 2008].
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4 Empirical Application: Quantifying the Interactions

between Financial Constraints and Firm Innovation

A large strand of the theoretical literature shows how investment is affected by infor-
mational asymmetries about the quality of the investment to be financed or relating
to the behaviour of entrepreneurs. Such imperfections increase the cost of external fi-
nance and therefore, firms may be credit constrained. Due to their specificities induc-
ing large informational asymmetries, high risk in terms of probability of failure, unpre-
dictability in R&D returns and poor collateral, innovative firms are more likely to face
agency issues and to be financially constrained ([Holmstrom, 1989]). Most of the ear-
lier papers studying the link between firm level financial factors and R&D investment
build on the work of [Bond and Meghir, 1994] and [Bond and van Reenen, 2007] on
the financing of investment. These papers obtain mixed evidence of such binding
constraints on innovation (e.g., [Brown et al., 2009], [Brown et al., 2012], and see
[Lerner and Hall, 2010] for a survey). Empirical evidence of the impact of finan-
cial constraints on the behaviour of firms is however not easy to obtain, essentially
because the notional demand of firms for external finance is not observed directly (see
[Hottenrott and Peters, 2012] for a test based on the use of a hypothetical payment
received by the firm).

4.1 Direct Measures of Innovation and Financial Constraints

Instead, in this paper the existence of constraints is not deduced indirectly through
the common arguments above nor identified through changes in financing supply
conditions, but is directly measured by employing real data on the encountering of
binding financing constraints as reported by firms in surveys by the European Union,
as well as in a French survey about the financing of innovation. See Data Appendix
for details.

Due to the serious drawbacks of indirect approaches, direct measures of financial
difficulties reported by firms can be useful, but very few surveys collect such informa-
tion. For instance, [Guiso, 1998] uses a direct qualitative measure given by a survey
run by Banca d’Italia. In this paper, a firm is characterized as credit constrained
“if at the rate of interest prevailing in the loan market, it would like to obtain a
larger amount of loans but cannot". Such a precise definition of credit constrained
firms is obtained thanks to the survey used where three questions are asked about
access to credit (i) whether at the current market interest rate the firm wish a larger
amount of credit, (ii) whether the firm would be willing to obtain more credit, (iii)
whether the firm has applied for credit but has been turned down by the financial
intermediary. Thanks to this information, the probability to be credit constrained
is estimated which leads to the finding that low-tech firms are less likely to be fi-
nancially constrained than high-tech firms. [Hottenrott and Peters, 2012] rely on
hypothetical questions in a firm survey where firms are asked to imagine that they
receive additional cash exogenously and indicate how they would spend it.

In the survey we use (FIT, Financement de l’Innovation Technologique) firms
are asked whether some of their innovative projects were delayed, abandoned or non
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started because of (i) unavailability of new financing, (ii) searching and waiting for
new financing, (iii) too high cost of finance. We define as financially constrained firms
with hampered innovative projects because of one of these three reasons so that our
direct indicator of financial constraints takes into account both quantity rationing
and higher cost of finance.14 Given that this is a qualitative self-assessed measure of
financial constraint, we checked that it correlates strongly with quantitative balance
sheet variables related to the financial health of firms (See Table 3). Innovation
in this survey is defined according to the technological innovation in the Oslo Man-
ual (OECD). This is then a qualitative self-assessed and survey-based information
which was implemented to overcome some other shortcomings of traditional mea-
sures (R&D, patents), see [Mohnen, 2019] for a detailed discussion on these issues.

4.2 Empirical Application

Using the econometric machinery developed in Section 4 that allows us to estimate
joint binary probit equations with interaction terms on both sides, we apply those
methods to the key issue of Being Innovative vs. Binding Financing Constraints
interactions.

We take as our starting point the results obtained by [Savignac, 2008] who stud-
ied the impact of financial constraints on the decision to innovate by investigating
the impact of financial constraints on innovation through a recursive model that did
not allow for the probability of a binding finance constraint to depend on whether or
not the firm is innovative. The propensity to innovate is explained by the traditional
determinants of innovation presented above (firm size and market power, technol-
ogy push, latent consumer demand).15 We account for financial constraints through
our qualitative indicator reflecting the financial difficulties encountered by firms to
conduct their innovative projects.16

In sum, we model the probability that a firm decides to be innovative as:17

14For summary descriptive statistics, see Table 2 in the Data Appendix.
15See Table 4 for variable definitions and Table 5 for descriptive statistics.
16For the importance of endogeneity in this setting, see [Mohnen and Roller, 2005]) for an example

of another study that finds the “paradox” of a positive correlation between financial constraints and
innovation .
17Main determinants of the propensity for a firm to innovate are known to be its size, its market

power and its environment ([Cohen and Levin, 1989]).
The positive correlation between innovation and firm size is largely exposed in the literature

(see [Cohen and Klepper, 1996]). Large firms can amortize sunk costs caused by their innovative
activities and are able to diversify the risk incurred by innovation by running simultaneously several
investment projects at the same time. And finally, large established firms are less likely to be
financially constrained as they are able to generate cash-flow and to raise external funds.
Regarding the link between innovation and competition, the Schumpeterian theory argues that

market power and innovation are positively correlated whereas Arrow’s theory shows that the gains
to innovate are larger in an ex-ante competitive market. [Aghion et al., 2005] try to solve this puzzle
and propose an inverted U shape relationship between innovation and competition : in a competitive
environment, firms are incited to innovate to gain market power and increase their profits, but when
competition becomes hard, the followers can be discouraged to innovate.
Other factors affecting innovative behaviour are driven by the firm environment (technological

push, latent consumer demand perceived by the firm). See among others [Crepon et al., 1998] or
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Prob(Innovate?) = f(Financial Constraints, (18)

Size, Market Power,

Technological Opportunities,

Latent Consumer Demand for New Products, ...)

We model the investment outcomes as depending on the discrete outcome from
the other side (on y2it of equation 2).

To close the system, we now define also the probability of a binding financing con-
straint, which is assumed to have as an important determinant the (binary) decision
of whether or not the firm chooses to be innovative:

Prob(Binding Financing Constraint?) = f(Innovation?, (19)

Size,

Guarantees or Collateral,

Profit Margin,

Banking Debt Structure,

Internal Financing, ...)

The key idea modelled by this equation is that prospective lenders will
try to assess the creditworthiness of the applicant firm in the face of incomplete in-
formation. In particular, they do not know the precise riskiness of assets so they
attempt to infer that using observable characteristics of firms. In the face of such un-
certainty, it makes sense for lenders to be more cautious granting loans to innovative
firms since they present a higher inherent (but not directly observed) risk.

Such a system can be formulated as follows:

Ii =

{
1 if I∗i ≡ x

I
i β
I + γFi + ε

I
i > 0

0 if I∗i ≡ x
I
i β
I + γFi + ε

I
i ≤ 0

(20)

Fi =

{
1 if F ∗i ≡ x

F
i β

F + δIi + ε
F
i > 0

0 if F ∗i ≡ x
F
i β

F + δIi + ε
F
i ≤ 0

(21)

The econometric specifications we estimate below belong in three main groups.
The first group contains recursive specifications, which ignore the possibility that
the propensity to innovate may be affected by financial constraints. The second
group allows for reverse interactions, whereby a firm undertaking actively innovative
activities raises significantly the probability of it encountering a binding financing
constraint, possibly because potential lenders are particularly wary of granting loans
to firms of such type because of the extra riskiness involved. The third group of
estimated specifications, investigates state dependence in financing and innovation

[Raymond et al., 2010] for empirical research on the firm level determinants of innovation.
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experiences of firms the nature of the available datasets can be exploited to study
whether, ceteris paribus, past financial distress or innovation failures can affect a
firm’s current experiences in these two dimensions.

Though the surveys about innovation we use are not truly longitudinal “panel”
sets, the information was collected in multiple biennial waves. We hence restrict our
“longitudinal” dataset to two waves in order to limit the reduction of the sample size
when merging the waves. Hence, we know whether a particular firm i has reported
binding financing constraints in the past. See the Data Appendix for details about
the dataset employed here and the transition tables.

The most general specification that we estimate below, accounting for both reverse
and dynamic effects, is:

Iit =

{
1 if I∗it ≡ α

IIit−1 + x
I′
itβ

I + γ0Fit + γ1Fit−1 + ε
I
it > 0

0 if I∗it ≡ α
IIit−1 + x

I′
itβ

I + γ0Fit + γ1Fit−1 + ε
I
it ≤ 0

(22)

Fit =

{
1 if F ∗it ≡ α

FFit−1 + x
F ′
it β

F + δ0Iit + δ1Iit−1 + ε
F
it > 0

0 if F ∗it ≡ α
FFit−1 + x

F ′
it β

F + δ0Iit + δ1Iit−1 + ε
F
it ≤ 0

(23)

[Table 1 approximately here.]

4.3 Comparative Analysis of Alternative Specifications

Table 1 summarizes succinctly our key empirical results and presents the calculated
direct and reverse effects that we obtained. To recapitulate, Models 1 and 2 adopt
the existing approach of the past literature of forcing the econometric specification
to be triangular with financial constraints allowed to affect the innovation decision,
while the financial constraint outcome is assumed independent of being innovative or
not. Models 3 and 4 allow the binary interactions on both the Innovation and the
Finance sides, proved to be coherent through our Coherency analysis based on prior
sign restrictions and estimated through the CMLE approach developed and analyzed
in this paper. Model 3 is static with a single cross-section of firms, while Model 4
uses a two-wave, dynamic panel data set.

Apart from the coefficient estimates for the most important exogenous explana-
tory variables, Table 1 presents also: γ, the coefficient for the financial constraint
dummy when entered in the Innovation side; δ, the coefficient for the Innovation
dummy entered in the Finance side; and for the dynamic Model 4, the coefficients for
the lags of the Finance and Innovation dummies. First, note how seriously misleading
conclusions were reached by the early strands of the literature, that inappropriately
ignored the endogeneity of the Finance dummy: doing so yields a completely coun-
terintuitive γ estimate of +0.55, implying that finance constraints raise significantly
the likelihood of innovation, confirming [Savignac, 2008]. This positive effect is ex-
plained by two sources of bias: a selection bias due to firms not wishing to innovate,
which we studied elsewhere and a problem of simultaneity between investment and
financing decisions that we tackle below. At the same time, treating the Finance
constraint dummy as endogenous gives a range of negative estimates from −0.32 to
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−0.56. Since Models 1 and 2 impose a triangular specification, they do not estimate
δ coefficients for the Innovation dummy in the Finance equation. In contrast, our
two CMLE models give statistically very significant δ estimates of over 0.6 – as we
expected a priori, being innovative raises the probability of facing a binding finance
constraint. In the dynamic Model 4, we find very significant state dependence over
the two periods of the panel – note the statistical significance of three of the four
lagged dummies entered as regressors. Our findings confirm the strong importance
of such dynamic terms and establish very significant positive state dependency in
our models. Our results show that firms tend to innovate persistently rather than
occasionally.

Second, past financial difficulties are positively correlated with current binding
financial constraints. As we take into account the experience of a firm concerning
innovation, the state dependence of financial constraints seems particularly interest-
ing. Indeed, firms currently implementing innovative projects as well as firms with
innovative experience in the past are more likely to find it difficult to finance their
current projects.18

Third, the probability for a firm to be currently conducting an innovative project
is negatively impacted by the current financing difficulties as found in the static
regressions but also positively correlated with financing constraints encountered in
the past. One possible explanation for this positive correlation could be that financial
difficulties mainly impact the beginning of the projects so that innovative projects
that were initially hampered by financial difficulties are more likely to be continued
when they become more mature. However, additional information on the stage of
development of the innovative projects and on their duration would be necessary
to further investigate this point. In particular, we are not able to identify whether
the firms were continuing in Wave 2 (1997-1999) with projects that were already
conducted in Wave 1 (1994-1996).

In order to quantify the importance of our interaction findings about γ and δ,
we present in Table 6 four estimated probability calculations for each of the two I
and F sides: (a) avg P̂I , the average probability of undertaking innovation; (b) P̂I :
F = 0, the estimated probability of Innovation given the Finance constraint is not
binding; (c) P̂I : F = 1, the estimated probability of Innovation given a binding

Finance constraint; and (d) %∆̂PI : F = 0 → 1, the percentage change in the
estimated probability of changing from F = 0 to F = 1, while keeping everything
else unchanged. For the finance side, the analogous four quantities are: avg P̂F ,
P̂F : I = 0, P̂F : I = 1, and %∆̂PF : I = 0→ 1.

Our estimated probability results are quite striking: for the Innovation equation,
we find that when a firm faces a binding finance constraint, the probability of being

18An important issue discussed frequently in the econometrics literature is the possibility that state
dependence may not be an important factor per se, but it might appear statistically significant if
persistent heterogeneity among individual economic agents is ignored. As [Heckman, 1981a] shows,
the two can be identified when a panel data set with more than two waves per individual is available.
Since our dynamic sample consists only of two waves, we need to acknowledge the possibility that the
strong state dependence we report here may be compounded by unobserved persistent heterogeneity
that is not accounted for explicitly.
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innovative falls ceteris paribus by 30%−40% depending on the version.19 Moving to
the Finance constraint side, the magnitudes of the results are even more impressive:
all other things equal, a firm being innovative more than doubles the probability of a
finance constraint.20

5 Conclusions

In this paper we developed two novel methods for establishing coherency conditions
in LDV models with endogeneity and flexible temporal and contemporaneous correla-
tions in the unobservables. The first is based on a graphical characterization and the
second is based on a hypothetical Monte-Carlo Data Generating Process (DGP) ap-
proach. Our novel methods have intuitive interpretations and are easy to implement
and generalize. A constructive consequence of the new approaches is that they indi-
cate how to achieve coherency in models traditionally classified as incoherent through
the use of prior sign restrictions on model parameters. This allowed us to develop es-
timation strategies based on CMLE for simultaneous LDV models without imposing
recursivity. The proposed CMLE methodology was evaluated through an extensive
set of Monte-Carlo experiments. The experiments allowed us also to study the conse-
quences of employing estimators that make overly restrictive coherency assumptions
about the DGP. The findings confirmed very substantive improvements by employing
the CMLE developed in this paper in terms of estimation Mean-Squared-Error.

Through the CMLE novel approach, we analyzed the existence and impact of
financing constraints as a possibly serious obstacle to innovation by firms. We were
able to quantify the interaction between financing constraints and a firm’s decision
and ability to innovate without forcing the econometric models to be recursive. Direct
measures of financing constraints were employed using survey data, which helped us
overcome the problems with the traditional approach in the past literature of trying
to deduce the existence and impact of financing constraints through the significance
of firm wealth variables. We thus obtained direct as well as reverse interaction effects,
leading us to conclude that binding financing constraints discourage innovation and
at the same time innovative firms are more likely to face binding financing constraints.
The empirical results we obtained using CMLE were quite striking: ceteris paribus,
we found that a firm facing a binding finance constraint is approximately 30% less
likely to undertake innovation, while the probability that a firm encounters a binding
finance constraintmore than doubles if the firm is classified as innovative. In addition,
we investigated the importance of state-dependence in dynamic versions of our models
and concluded that such issues are critical if direct and reverse interactions between
innovation and financing constraints are to be quantified reliably.

19 In the erroneous Model 1 that ignores the endogeneity of the Finance constraint, the probability
of innovation is predicted to rise by over 50% as a result of a binding Finance constraint!
20Since Models 1 and 2 do not allow for reverse interactions by excluding the I dummy from the

F side, they imply %∆̂PF : I = 0→ 1 equal to zero.
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6 Figures

Coherency of Binary+Trinomial Model
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Case 1: γ > 0, δ > 0
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Case 2: γ < 0, δ < 0
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Case 3: γ > 0, δ < 0
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Case 4: γ < 0, δ > 0
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γN < 0, δN < 0
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Table 1: Comparative Summary of Empirical Results

All Firms

Model 1

Triangular,

Exogenous FC

Model 2

Triangular,

Endogenous FC

Model 3

Full Joint

Static

Model 4

Full Joint

Dynamic

No.of Waves

No.of Firms

One

1940

One

1940

One

1940

Two

1512

INNOVATION EQUATION

Size 0.33*** 0.305 0.183*** 0.256***

γ (FC dummy) 0.55*** -0.555*** -0.324** -0.447***

Market Share -0.01 -0.001*** 0.020 0.027

Innovt−1 – – – 0.829***

FinCont−1 – – – 0.301

avg P̂I 0.418 0.418 0.418 0.543

P̂I : F = 0 0.384 0.453 0.438 0.554

P̂I : F = 1 0.601 0.250 0.316 0.377

%∆̂PI : F = 0→ 1 56.42 -44.72 -27.93 -31.82

FINANCE EQUATION

Size -0.054 -0.002 -0.016 0.035

δ (Innov dummy) – – 0.647*** 0.627***

Collateral 0.067 0.030 0.030 0.003

Banking Debt Ratio 0.010*** 0.010*** 0.015*** 0.005

Own Financing Ratio -0.003** -0.003*** -0.001** -0.008***

Profit Margin -0.007** -0.008*** -0.002*** -0.007***

Innovt−1 – – – 0.236**

FinCont−1 – – – 0.135***

avg P̂F 0.160 0.160 0.160 0.060

P̂F : I = 0 0.160 0.160 0.103 0.029

P̂F : I = 1 0.160 0.160 0.268 0.102

%∆̂PF : I = 0→ 1 0.0 0.0 160.62 252.58

corr(Innov,FinCons)

LogLikFunction

–

-1060-803=-1863

0.572***

-1853

0.132**

-1712

0.500**

-1331 (-1706 imputed)

NOTES:

1. ***=significant at 1%; **=significant at 5%; *=significant at 10%.

2. Industry dummies (11) included in both Innovation and Financial Constraint equations.

39



7 Appendix: Data Sources and Constructions

7.1 Sources

7.1.1 The FIT survey

The survey “Financement de l’Innovation Technologique” (FIT) was conducted in
2000 by the French Ministry of Industry, in order to obtain statistical informa-
tion about the financing conditions of innovative projects of manufacturing firms
in France.21 The survey identifies the firms which undertook innovative projects be-
tween 1997 and 1999 and gives qualitative information about the financial constraints
experienced by firms. 5500 manufacturing companies with 20+ employees were sur-
veyed (excluding agricultural-food and building sectors). The response rate was 85%
overall, and 100% among firms with 500+ employees. It is important to note that
start-ups and new established firms were not included.

As the Community Innovation Surveys (CIS) compiled by Eurostat, the FIT sur-
vey is based upon the technological innovation definition in the Oslo manual (OECD
1997) and is less restrictive than R&D expenditures or patents data.22

• Definition 1: Innovative firms

A firm is “innovative” if it has introduced or developed a product or process inno-
vation (or was in process of doing so) during the surveyed period. This identification
is built on at least one positive answer to the three questions:

1) In 1997, 1998 or 1999, did Your enterprise introduce onto the market any new or significantly

improved products for Your enterprise?

2) In 1997, 1998 or 1999, did Your enterprise introduce onto the market any new or significantly

improved process for Your enterprise?

3) In 1997, 1998 or 1999, did Your enterprise have projects of new or significantly improved

products or processes:

- Which are not yet completed or not yet introduce to the market?

- Which were failures?

• Definition 2: Financing constraints

21See [Lhomme, 2002] for details.
22The Oslo manual definition was set up to overcome some shortcomings associated with R&D and

patents. For instance, innovative activities are not systematically associated with R&D investments
and patents are also strategic tools that are not necessarily used by firms to protect innovation.
Moreover, the set of innovative firms according to the OECD definition expands for practical reasons,
as we need to observe both the innovative behaviour of the firm and its assessment about financial
difficulties.
The Community Innovation Surveys (CIS) are conducted in each country by the national statistical

entities in order to collect information about the innovative activities of firms.They are based on the
same harmonised questionnaire that may be completed at the national level by additional questions.
The survey used here (Financement de l’Innovation Technologique, FIT) is different because it is
focused on the financing of innovation. However, its methodological framework is the same as the
well-known CIS’ one, in particular concerning the definition of innovation and the structure of the
questionnaire.
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All surveyed firms had to answer the following question:
In 1997, 1998 or 1999, what are the obstacles that have prevented your firm to conduct or to

start innovative projects (multiple answers possible)?

- Excessive perceived economic risk

- Lack of qualified personnel

- Innovation costs too high

- Lack of sources of finance

- Slowness in the setting up of the financing

- Too high interest rates of the financing

- Excessive get out clause in the shareholder agreement

- Lack of knowledge about ad hoc financial networks

- No obstacle

The firm had to assess the severity of each negative factor (seriously delayed,
abandoned, or prevented to be started).

A firm is defined as financially constrained when it reported seriously delayed,
abandoned or non-started projects because of:

- Too high interest rates of the financing; Lack of sources of finance; or Slowness in the setting

up of the financing

7.1.2 The Banque de France Balance Sheet Data set

In order to obtain information about the size, economic performance, and financing
structure of firms, we use the Banque de France Balance Sheet Data set, or Centrale de
Bilans (CdB). This is a database of detailed accounting data of all French companies
with 500+ employees, as well as of a fraction of smaller firms, giving a total of
around 34,000 companies. It covers about 57% of all industries (by employment),
and gives detailed information on financing sources (group financing, internal, etc)
and financing expenditures (intangible goods, services, etc.)

We have verified that the direct indicator reported by the firms is in line with the
balance sheet data: firms without financial constraints exhibit a better profile than
constrained firms in terms of financing structure, risk, and economic performance.

INSERT TABLE 3 and TABLE 4 ABOUT HERE

7.2 Cross-section vs. Dynamic (Panel) Samples

The cross-section sample results from the matching of FIT and CdB in the 1997-1999
wave, allowing us to recover about 60% of the FIT companies.

7.2.1 Our Cross-Section Sample – Wave 1997-1999. (1940 firms)

After some necessary cleaning, our sample contains 1940 firms. The distribution
of the firms in our sample according to their innovative behaviour and financing
obstacles is given in Table 8 below:
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7.2.2 Our Dynamic (Panel) Sample – Waves 1994-1996 and 1997-1999.
(1512 firms)

The panel sample is obtained by matching the survey FIT with two other sources:
(i) the second French wave of the Community Innovation Survey (CIS2) run by the
French Ministry of Industry for Eurostat; and (ii) the balance sheet data set of the
Banque de France (Centrale de Bilans). The FIT and CIS2 surveys ask the same
questions to identify innovative firms; and very similar questions about financial con-
straints.23 The sample obtained by matching FIT, CIS2 and CdB contains 1512
firms. The transitions for innovation and financial constraints between the two sur-
veyed periods are reported in the tables below.

[Tables 6ABC approximately here.]

23Unfortunately, the following wave of the Community Innovation Survey (CIS3) covering 1998-
2000 does not include questions about financial constraints and therefore we cannot use it here.
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Table 2: Details of the financial obstacles and their consequences

% of Constrained Consequences for their

Firms Innovative Project(s)

delayed abandoned non started

Unavailability of new financing 87.74 46.27 10.45 46.27

Searching and waiting for new financing 43.23 35.29 12.13 57.72

Too high cost of finance 22.90 28.17 15.49 57.75

Table 3: Direct indicator and balance sheet ratios
Constrained Unconstrained

Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean

Nber of employees 47 112 290 249.7 47 102 243 227.6

Debt/Equity 8.4 50.7 147.9 132.7 7.9 3.4 9.2 55.0

- Long term bank debt/Equity 0.6 21.9 62.3 43.7 1.7 18.6 51.9 33.4

- Short term bank debt/Equity 0.1 15.4 73.5 89.1 0.0 3.7 34.9 21.6

EBITDA/Sales 6.6 15.4 25.4 10.8 11.8 20.8 30.5 20.3

Cash-flow/Total assets 2.9 7.3 11.1 5.8 5.2 8.5 12.2 8.8

Immaterial Inv/Value added 0.4 1.5 3.9 4.6 0.3 1.1 3.0 3.3

Table 4: Definition of the variables
Name Definition
Dependent variable : y1i =1 if the firm was innovative, =0 otherwise

Explanatory : x1i
Size log (number of employees)

Market share sales of the firm
sales of the sector × 100

TP1 =1 if the firm’s market is technologically not innovative

(reference)

TP2 =1 if the firm’s market is weakly innovative,

TP3 =1 if the firm’s market is moderately innovative

TP4 =1 if the firm’s market is strongly innovative

Financial constraints =1 if the firm faced financial constraints, =0 otherwise

Financial constraints equation

Dependent variable : y2i =1 if the firm faced financial constraints, =0 otherwise

Explanatory : x2i
Size log (number of employees)

Collateral log(tangible assets)

Banking debt ratio Banking debt
(Own financing+Market Financing+Financial debt) × 100

Own financing ratio Own financing
(Own financing+Market Financing+Financial debt) × 100

Gross operating profit margin EBIDTA
Value added × 100

Sources : Centrale de Bilans (Banque de France), FIT (French Ministry of Industry) and EAE (INSEE)
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Table 5: Descriptive statistics

Full sample of 1940 firms
Mean Std Min Max

Innovation 0.418 0.493 0 1

Size 4.783 1.107 2.890 9.716

Market share 0.177 0.566 0.001 16.15

TP1 0.139 0.312 0 1

TP2 0.416 0.493 0 1

TP3 0.348 0.476 0 1

TP4 0.097 0.297 0 1

Financial constraints 0.160 0.366 0 1

Collateral 71.048 22.698 4.241 302.444

Banking debt ratio 17.678 15.758 0 92.307

Own financing ratio 31.827 24.195 -609.459 90.136

Gross operating profit margin 18.248 19.416 -197.600 76.850

Sources : Centrale de Bilans (Banque de France), FIT (French Ministry of Industry) and EAE (INSEE)
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Table 6: Transitions

Legend:

col %
Cell

Count

row %

Part A: Innov Transitions 1994-6 —> 1997-9
1997-1999 (FIT)

Iit = 1 Iit = 0 Total

84.45 40.74 42.53

Ii,t−1 = 1 543 354 897
1994-1996 60.54 39.46 100

15.55 59.26 57.47

(CIS2) Ii,t−1 = 0 100 515 615
16.26 83.74 100

100 100 100

Total 643 869 1512
42.53 57.47 100

Part B: FinCons Transitions 1994-6 —> 1997-9
1997-1999 (FIT)

Fit = 1 Fit = 0 Total

41.32 15.98 20.04

Fi,t−1 = 1 100 203 303
1994-1996 33.00 67.00 100

58.68 84.02 76.96

(CIS2) Fi,t−1 = 0 142 1067 1209
67.00 88.25 100

100 100 100

Total 242 1270 1512
16.01 83.99 100
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Part C: 1994-6 —> 1997-9 Transitions
1997-1999 (FIT)

Iit = 1 Iit = 1 Iit = 0 Iit = 0
and and and and Total
Fit = 1 Fit = 0 Fit = 1 Fit = 0

Ii,t−1 = 1 37.7 15.8 14.8 7.3 13.6

and 58 77 13 57 205
Fi,t−1 = 1 28.3 37.6 6.3 27.8 100

Ii,t−1 = 1 46.1 68.9 30.7 32.9 45.8

and 71 337 27 257 692
Fi,t−1 = 0 10.3 48.7 3.9 37.1 100

1994-1996 Ii,t−1 = 0 7.8 1.4 19.3 7.9 6.5

(CIS2) and 12 7 17 62 98
Fi,t−1 = 1 12.2 7.1 17.3 63.3 100

Ii,t−1 = 0 8.4 13.9 35.2 51.9 34.2

and 13 68 31 405 517
Fi,t−1 = 0 2.5 13.2 6.0 78.3 100

100 100 100 100 100

Total 154 489 88 781 1512
10.2 32.3 5.8 51.7 100
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8 Appendix: Detailed Estimation Results

Table 7: Innovation and Financing Constraints Joint Probit

With Reverse Interaction Effects
Full sample, nobs=1940

Model 3
Coeff. Std.

Innovation Equation
Constant -7.235*** 0.118
Size 0.183*** 0.020
Market share 0.020 0.045
TP4 1.822*** 0.183
TP3 1.0110*** 0.199
TP2 0.437*** 0.176
Financial Constraints -0.324** 0.255
11 Industry dummies misc

Financial Constraint Equation
Constant -1.221*** 0.241
Firm Innovates 0.647*** 0.032
Size -0.016 0.073
Collateral amount 0.030 0.050
Banking debt ratio 0.015*** 0.002
Own financing ratio -0.001*** 0.001
Profit margin -0.002*** 0.002
11 industry dummies misc

corr12 -0.132*** 0.013
Log lik Innovation

Log lik Fin Constraint

Log lik Bivariate -1712

47



Table 8: Innovation and Financing Constraints Joint Probit

With Reverse Interaction Effects and Dynamics

Full sample, nobs=1512

Model 4
Coeff. Std.

Innovation Equation
Constant -2.441*** 0.323
Innovt−1 0.829*** 0.094
Size 0.256*** 0.037
Market share 0.027 0.071
TP4 1.461*** 0.201
TP3 0.932*** 0.156
TP2 0.621*** 0.143
Financial Constraints -0.447*** 0.106
Financial Constraintst−1 0.300 0.123
11 Industry dummies misc

Financial Constraint Equation
Constant -0.885*** 0.311
Firm Innovatest 0.627*** 0.022
Firm Innovatest−1 0.236** 0.133
Financial constraintst−1 0.135*** 0.093
Size 0.035 0.039
Collateral amount 0.003 0.002
Banking debt ratio 0.005 0.003
Own financing ratio -0.008*** 0.002
Profit margin -0.007*** 0.002
11 industry dummies misc

corr12 0.500** 0.210
Log lik Innovation

Log lik Fin Constraint

Log lik Bivariate -1331
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