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Abstract

The method of simulated scores (MSS) is presented for estimating limited dependent vari-
ables models (LDV) with flexible correlation structure in the unobservables. We propose
simulators that are continuous in the unknown parameter vectors, and hence standard opti-
mization methods can be used to compute the MSS estimators that employ these simulators.
The first continuous method relies on a recursive conditioning of the multivariate normal
density through a Cholesky triangularization of its variance-covariance matrix. The second
method combines results about the conditionals of the multivariate normal distribution with
Gibbs resampling techniques. We establish consistency and asymptotic normality of the
MSS estimators and derive suitable rates at which the number of simulations must rise if
biased simulators are used.
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1 Introduction

It has long been known that classical estimation of limited dependent variable (LDV) mod-
els with flexible correlation structure in the unobservables poses formidable computational
problems because of a concomitant need for high dimensional numerical integration. Exam-
ples of such models are multiperiod (panel) probit and Tobit models, as well as multinomial
discrete choice models with varying substitutability between available alternatives. Recently
investigators have shown that simulation estimation methods that approximate generalized
moment conditions by unbiased simulators provide consistent and asymptotically normal
parameter estimates for a finite number of simulations (McFadden, 1989, Pakes and Pollard,
1989).1 A common property of the early formulations of methods of simulating moment con-
ditions (MSM) is that they yield criterion functions that are discontinuous in the unknown
parameter vectors to be estimated. As a result, establishing their asymptotic properties
requires the theory of empirical processes. Moreover, their implementation poses difficult
computational problems, because standard methods for numerical optimization assume con-
tinuity of the optimand (and several also require twice continuous differentiability of the
criterion function).

In this paper, we exposit and operationalize a method of simulated scores (MSS), which
simulates directly the logarithmic derivatives corresponding to maximum likelihood estima-
tion (MLE), and establish its asymptotic properties. We show that the MSS provides a
unified treatment of a broader class of estimation problems compared to other simulation
estimation methods. We discuss three simulators to be used in conjunction with MSS esti-
mation. The first, which is a discontinuous function of the unknown parameters, generalizes
acceptance-rejection methods and provides unbiased simulation of the scores. We prove that
the MSS estimator using the generalized acceptance-rejection simulator is consistent uni-
formly asymptotically normal (CUAN) for a finite number of simulations. We show that
computational problems may be eased if smooth but biased simulators are used for the
MSS estimator. We develop two such simulation methods. The first employs a recursive
conditioning of the normal multivariate density through a Cholesky triangularization of its
variance-covariance matrix; it thus provides unbiased simulation for likelihood contributions
and asymptotically unbiased simulation of the scores, and is continuous in the unknown

parameters. We establish that when this method is used to simulate the scores, the resulting

IThese methods are in contrast to simulation estimation methods that simulate non-linear expressions in
criterion functions and hence require an unbounded number of simulations to achieve consistency and asymp-
totic normality. See, inter alia, Lerman and Manski, 1981, van Praag and Hop, 1987, Laroque and Salanié,
1989. For an extensive review of the literature on simulation-based classical estimation, see Hajivassiliou
and Ruud, 1994.



MSS estimator is CUAN provided the number of simulations grows faster than the square
root of the number of i.i.d. observations, N. The second smooth and asymptotically unbi-
ased simulator relies on results about the conditionals of a multivariate normal distribution
and employs Gibbs resampling (Geman and Geman, 1984).2 It then follows that for an MSS
estimator based on this simulator to be CUAN, the number of resamplings used for each
simulation must grow with the sample size at the (much slower) rate log N. Hence this
paper shows for the first time that Gibbs resampling techniques can be useful for classical
inference, while to our knowledge past applications of these techniques have been only for
Bayesian estimation problems.?

It should be noted that several investigators in the past have proposed consistent simu-
lation of the score as a method of estimation. See, inter alia, van Praag and Hop, 1987. The
MSS estimators we discuss here when used in conjunction with the three simulators devel-
oped in this paper have several advantages over such existing simulation estimation methods.
A particular development below follows on a suggestion by Ruud, 1986 that the score for the
general linear exponential model can be written as conditional expectations, which might be
simulated directly. This provides the first major advantage of MSS in that it is applicable to
any LDV model that can be written as a set of linear inequality constraints on the underlying
latent variables, the distribution of which belongs to the linear exponential class. Hence, the
method does not require the development of ad hoc simulation techniques for each type of
LDV model that is under consideration. Second, since MSS simulates directly the scores,
it corresponds to MSM where the optimal (for asymptotic efficiency) instruments are used.
Hence, the efficiency of the MSS estimator among the class of simulation estimation methods
is guaranteed.Third, when simulating functions that are continuous in the parameters are
employed, certain computational complexities of MSM are avoided.

In Section 2 we explain the intractability of MLE for LDV models with correlated un-
observables. We then introduce in Section 3 the simulated scores estimation method that
is applicable to LDV models with flexible correlation structures in the unobservables. Such
LDV models include the probit and Tobit models with panel data time-dependence, as well as
multinomial choice models without restrictive assumptions on the substitutability of differ-
ent alternatives such as the independence of irrelevant alternatives assumption (McFadden,
1973).

In Section 4 we establish the CUAN properties of the MSS estimator under general condi-

2For a good introduction to Markov-Chain Monte-Carlo methods (MCMC), of which Gibbs is a leading
method, see Chib, 1995. Hajivassiliou et al. , 1996 discuss alternative simulators and compare their properties
to the ones given here.

3For example see McCulloch and Rossi, 1994 for a Bayesian estimator for the multinomial probit model
based on Gibbs resampling.



tions. In Section 5 we develop a method of generating unbiased simulations of LDV probabil-
ities and two methods for generating draws from conditional normal distributions. The first
two methods make the MSS estimator continuous in the unknown parameter vectors, and are
respectively based on a recursive conditioning of the normal multivariate density through a
Cholesky triangularization of its variance-covariance matrix and on Gibbs resampling. The
third simulator is based on refinements of acceptance-rejection methods. Software imple-
menting the simulators and simulation-based estimators discussed in this paper is publicly
available over the Internet through the Web page

http://econ.lse.ac.uk/"vassilis.

Section 6 investigates the CUAN properties of MSS estimators based on each of the three
simulators we introduce. We show in that Section that MSS using the acceptance-rejection
simulator is CUAN for a finite number of simulations; MSS using the continuous recursive
conditioning simulator is CUAN provided the number of simulations rise faster than the
square root of the number of observations; and finally, we obtain the result that the MSS
estimator based on Gibbs resampling with R (finite) simulations is CUAN as long as the
number of resamplings used for each simulation grows at a rate faster than log V.

Section 7 gives a simple illustrative example to highlight the relations between the MSS

estimation method and other simulation methods in the literature. Section 8 concludes with

a summary.

Table 1: MSS Estimators
Estimator | Underlying Simulator Description | Asymptotic Properties
General MSS | — Section 3 Section 4
MSS-SRC SRC: Smooth Recursive Conditioning Section 5.1 Section 6
MSS-GRS GRS: Gibbs Resampling Section 5.2 Section 6
MSS-SAR SAR: Sophisticated Acceptance-Rejection | Section 5.3 Section 6

2 The Canonical LDV Model

Consider a sample of N economic agents, assumed to be random. A data array (y;, X;) is
observed, where X; is an m; X K array of exogenous variables, and y; is an m; x 1 vector of
limited dependent variables. We assume y; is an indirect observation on a latent vector y;

according to a many-to-one mapping y; = 7(yF), with y} given by a linear model

yr =X+ e (1)



We assume the disturbance vector ¢; is multivariate normal, independent of X;, with the

structure
e = I'in;, (2)

where I'; is a m; x S; parametric array of rank m,, and 7; is a S; x 1 vector of independent
standard normal variates. Let ; = I';I",. Note that this notation encompasses also panel
data models, since in that case y; would be the stacked vector of the values of the latent

variables for agent 7 in each period.
Define

D(y:) = {yilvi = 7(y) }- (3)
Then the likelihood of the observation is

065 ) = L |l = X8, do], (4)
Yi

with derivative vector fy;(-), where 3,€); are functions of a k x 1 deep parameter vector 6,
and .
n(e, Q) = (2m) " T/4Q /2 exp[—§e’Q*1€] (5)

is the multivariate normal density. The asymptotically optimal parametric Maximum Like-

lihood estimator (MLE) is defined as the argument that solves the score equations, i.e.,

N 1 1
QA[LE SOéVGS {N ZSZ(Q,yZ) = N Zﬁg,(@,yz)/&(ﬁ,yz) = 0} . (6)

The classic cross-sectional LDV model belonging to the class we describe here is the multi-

nomial discrete choice:

Model 1: multinomial probit
Consider an independent sample of /N individuals, with typical individual ¢ choosing among

m; alternatives with observed attributes z;;. Alternative j yields the (random) utility
Yij = TiiB+ € jg=1---,J
and individual i chooses alternative k that satisfies

D(y;): —oo<yjp<oo, 0<yj—y;<oo, Yj#k. (7)

The analyst observes the indicator y; = arg max,;{y, - - - TR LY}, say k. It follows that
in this case, the linear restrictions on the elements of y! correspond to the matrix

Ay = {—=1I; with column k replaced by a vector of 1's}.
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A related model is:

Model 2: multivariate rank ordered probit As with model 1, individual i chooses
alternative k that offers the highest utility y},.. The analyst, however, observes the full ranking
of the J alternatives in terms of the utility they yield, i.e., the analyst observes the J-

dimensional vector of indices
Y = (k17...7kJ>,
such that
D(y;) : ?J?kl < y;kkg < < yka. (8)

For panel (longitudinal) data sets, the following models are useful:

Model 3: multiperiod probit

D(y;) : yi = 7(y})
0<y; <0 Yir =1 (9)
—o0o<y; <0y =0.

Model 4: multiperiod Tobit

D(y;) : yi = 7(y7)

0 <y Yie = Yz > 0 (10)
—o0<y; <0 yir = 0.

In view of (4) and (5), classical estimation by the method of maximum likelihood of
either the panel binomial discrete response model (9), the panel Tobit model (10), or the
MNP models (7, 8) is computationally intractable when m;, the number of time periods
per individual, or the number of alternatives in the choice set, exceeds 3 or 4, the variance-
covariance matrix €); of the error vector ¢; is left unrestricted, and conventional numerical
integration (e.g., multivariate quadrature) is used. A traditional approach in obtaining ML
estimates is to restrict heavily the structure of ); in such a way as to make the evaluation
of (4) and its derivatives computationally feasible. One extreme is to assume that the errors

are independent across individuals and across time periods for a given individual, i.e.,
11D / 2
Q"7 = Eeie; = Vi Im,, (11)

where 77 is a variance parameter to be estimated.
Despite its computational simplicity, such an assumption is often very inappropriate

for realistic applications. In panel data models, for example, temporal dependence can



arise because of unobserved heterogeneity that persists over time. Conversely, in the cross-
sectional multinomial discrete choice case, assuming the (11) covariance structure leads to
potentially problematic implications of the so-called independence of irrelevant alternatives
variety.*

Another commonly used assumption, which allows some dependence across the elements

of ¢;, is the one-factor analytic structure:
Q’FE = '712177% + '722imii;ni7 (12)

where 4,,, is the m; x 1 vector of one’s, and 7%, 5 are variance parameters to be estimated.
This implies that the integral in (4) can be written as a univariate integral of a product of
cumulative normal distributions, which can be evaluated very efficiently through Gaussian
quadrature methods (see Heckman, 1981, Butler and Moffit, 1982, and Hajivassiliou, 1984).

In many applications it is useful to consider a third model for ¢;. This is the natural

generalization of (12) that adds an autoregressive structure:
€ij = & + &y, §ij = P&ij—1+ Vi jg=1---,J (13)

viy ~ N(0, 07) , &o ~ N(0, 03) , 05 = 0f = 0, /(1 — p*) by stationarity.

a; ~ N(0, 62) , o; and &;; independent.

This one-factor plus AR(1) structure, with a variance-covariance matrix denoted by
QARIEE implies that (4) will involve an mj;-dimensional integral, thus rendering efficient
classical estimation methods infeasible. This is also true in the most flexible case, when
€); is allowed to be a general covariance matrix (i.e., positive definite and symmetric) with
additional assumptions imposed to achieve identification. Hence, we turn to the method of

simulated scores, which avoids the need for multidimensional integration.

3 MSS Estimation of LDV Models with Correlated

Errors

In this Section we present the method of simulated scores and show that it is applicable
to the class of LDV models that can be written as sets of linear inequality constraints on
the underlying latent variables, the distribution of which belongs to the linear exponential
class. This approach builds on an idea by Ruud, 1986. Three simulation techniques to use in
conjunction with MSS estimation are presented in Section 5. T'wo of those techniques make

MSS continuous in the unknown parameters.

4See McFadden, 1973 for an explanation of this point.
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Using standard matrix differentiation results, the derivatives of the likelihood (4) of a

typical observation with respect to the parameters 3, I'; can be shown to satisfy

0a(053) = S — 405X B — Xisly: € D) (14
. — 85(97y1) _ . —1 * * I, % —1
ri(O5ys) = —p— = (0 9) 0 I, — E{(y; = XiB)(y; = XiB) |y € D(yi) 3% |Ts. (15)
It will be useful for later analysis to write the derivative of (4) with respect to 6 as
Cig(0;43) = % = 6i(0;9:) E{h(y; — XiB)lyi € D(yi)}, (16)

where h(u) is a vector of terms that are linear or quadratic in u = y — X3, and depend
on X; and the mapping from the deep parameters 6 to § and I';. In the general case
with unrestricted €2;, the deep parameters 6 consist of § and the unique elements of 2. In
the most restrictive covariance model (11), § = [#’,11]’; in the random-effects model (12),
0 = [3,71,72); and in the random-effects-plus-AR(1) case (13) , 0 = [3', 02,03, p, 2] .

In general, h(u) will be the vector

X0
— QT L, — ud/ QT |

(2

(17)

premultiplied by the array of derivatives of ([, vec I';) with respect to the deep parameters.
For the general LDV model, the score of a subject is

si0:0) = 2B iy - X9l € D}
fD(yi) h(Z, Xi: ﬂ? QZ)TL(Z - Xzﬁ: Qz) dz
2 :

The set D(y;) in the four leading cases of LDV models we consider here corresponds to a set

= lg/l; =

(18)

of linear inequality constraints on the elements of the latent vector y;, as described in the
previous section (equations (7-10)). ®
In view of our assumption that the observations are 4.i.d. across individuals, the maxi-

mum likelihood estimator is a root of the sum of scores (18) over subjects — see equation

5A similar set of linear inequality constraints on the latent dependent vector can also be defined for the
canonical disequilibrium model with T" markets, which are observed to be demand- or supply- constrained:

yir = min(y7, yj)

Yiz = min(ys, yiy)

Yirs2 = min(yf,Tqy Yir)
where y;; denotes notional demands if j is odd, and notional supplies if j is even.



(6), implying that at the true parameter vector 6*,
E{25)} = E{tio/t:} = B{h(y; — X:3")|D(y:)} = 0.

Consider a simulator, A, = hr(Xlﬂ, ;), for the score function h(-), satisfying the set of
restrictions yf € D(y;). Also consider a simulator hip = iL(XZﬂ, Q,R) = %ZT ﬁir, which
averages R independent simulations h;,.. The MSS estimator we propose here replaces hard-

to-compute conditional expectation terms in the logarithmic score with simulators hip

Orrss solves {% Z hip = 0} ) (19)
9 7

In case iLiR is an unbiased simulator of the score, Orrss is consistent and asymptotically

normal for a finite number of simulations R. Such a simulation method is discussed in

Section 5 as simulator SAR, based on acceptance-rejection arguments (Devroye, 1986). The

MSS estimator that results by employing simulator SAR will be labelled MSS-SAR.

We further show that one may obtain computationally more tractable MSS estimators
by employing (possibly biased) simulators that are continuous in . An MSS estimator that
uses biased simulations of the score function relies on the fact that the score s;(0;y;) =
Lig(0;y:)/4i(0;y:), and uses unbiased simulators for ¢;(0;y;) and ¢;(6;y;). It is thus defined
by

~ 1 =
Orsse SoéVES {N ; higr = 0} ; (20)

where

;zz

Lior (0; 1)
o :RZ zreyz) (21)
such that Elg;, = by, Ely = ;, and 0;, 5 ¢; with R.

It is important to note that in general it is advantageous to simulate the numerator and
denominator expressions simultaneously as in (21) rather than separately (R%L S g ) T S 7).
This is because by using the same underlying draw to simulate numerator and denominator
instead of one draw for the numerator and an independent one for the denominator, a posi-
tive correlation is built into the numerator and denominator simulations, which reduces the
variance of the simulator for the ratio.”

In Section 5 we give two simulators that are continuous in €. The first such simula-

tor, simulator SRC, is based on a recursive conditioning of the normal multivariate density

61t is important to point out that all the asymptotic properties we will establish will require that the
same underlying random variates, used to simulate the h(-) functions, must be used throughout the iterative
search for the solution to the simulated scores.

"This is confirmed by the Monte-Carlo experiments in Hajivassiliou, 1996.



through a Cholesky triangularization of its variance-covariance matrix and allows us to de-
fine MSS-SRC along the lines of (20-21). A second continuous method, simulator GRS, is
also presented in Section 5 and employs Gibbs resampling methods. The resulting estimator,
MSS-GRS, is an implementation of (19). As we show in Section 6, for MSS-SRC based on R
simulations to be CUAN as N — oo, R must rise at a rate faster than v/N, whereas if the
simulator based on Gibbs-resampling (MSS-GRS) is employed with R simulations, then ng,
the number of Gibbs resamplings used to generate each simulation, must grow faster than
the (much) slower rate log N. When, in addition, R grows without bound (at any rate),
MSS-GRS achieves the full asymptotic efficiency of MLE.

These features are a marked improvement over the properties of the first simulation
estimation method for LDV models developed by Lerman and Manski, 1981. These authors
explored the use of simulation in the context of estimating the classic discrete choice model

and proposed the estimator:

. 1 1 ~
HLMzargmeax{NzijﬁzT:lnﬁw} , (22)

such that the likelihood contributions ¢; are simulated unbiasedly (EZW = ¢;) and consis-
tently with R (g" LN ¢;). Lerman and Manski used the empirical choice probabilities as the
simulating function . This estimator is a discontinuous function of the parameters and it
is not bounded away from 0 and 1. Hence, because of these problems Lerman and Man-
ski found that their estimator required a very large number of simulations for satisfactory
performance.

The fact that MSS relies on the idea that the score for the general linear exponential model
can be written as conditional expectations which might be simulated directly, implies that
MSS is generally applicable to any LDV model that can be written as a set of linear inequality
constrains on the underlying latent variables, the distribution of which belongs to the linear
exponential class. Four illustrations were given in (7)—(10). Hence, the method does not
require the development of ad hoc simulation techniques for each type of LDV model that is
under consideration. This generality of the MSS estimator improves on existing estimation
methods of simulated moments (MSM) which require specialized arguments for different
classes of LDV models. See, for example, the MSM approach developed by McFadden, 1989
for the special case of the multinomial probit model. The case of multiperiod binary discrete
response can be thought of as a multinomial probit model over the choice set C' = {—1,
+1}™ with 2™ possible patterns of choice over time. The fact that m; is fairly large in

typical applications® renders intractable simple frequency simulators for choice-probabilities

8For most countries in the sample of Hajivassiliou, 1994, the number of time periods with available data
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in the moment conditions. A similar difficulty with the MSM approach arises in the rank
order probit model (model 4 above) because with J available alternatives in the choice set
there exist J! possible orderings that would require their probabilities calculated.

It should also be noted that the simulation estimators considered here apply also to
general LDV models that have both discrete and continuous features by writing the joint
likelihod as the product of the marginal distribution of the continuous part times the con-
ditional distribution of the discrete part conditional on the continuous. Typically, analytic
expressions will exist for the continuous part, while simulation methods will be applied to
the conditional discrete part. As an illustration, consider the multiperiod Tobit or censored
regression model, where y;; = max(0,y},). Define

I =I(y;) ={tlyu=0,t=1,--- T}

J=Ji(yi)) ={tlyu >0,t=1,--- T}

The likelihood for a respondent is

Ui, 6) = / n(y? — X185 — X8, Q)dy,
y7 <0

where y7 is the subvector of y; with components in /. But

n(y; — X168, ys — Xs3,9Q) = nly; — X8, 255) - n(y; — pr, i),

with p; = E(yt|ys) and Q; = var(yt|yy).

The log-likelihood for a respondent then consists of a term that has a closed form expression
and a second term which is a multinomial probability that all components of y; are non-
positive.

A further considerable advantage of MSS estimators is that because they simulate directly
the conditional expectation expressions that appear linearly in the scores, they implicitly
employ the optimal instrument functions in a generalized method of moments context. This
issue is found to be critical in the Monte-Carlo study of Hajivassiliou, 1996: for satisfactory
efficiency, MSM estimation requires good approximations to optimal instruments, which in
general is difficult to achieve. In contrast, MSS automatically uses the optimal instruments
for asymptotic efficiency.

Let us now outline the three simulation methods we propose in Section 5 to use in
conjunction with MSS estimators. The simulator SAR is based on a suggestion in Ruud,
1986 to use an unbiased simulator of the conditional expectation E{h(y; — X;3|D(v:))}
which appears in the logarithmic score, by drawing standard normal vectors 7 sequentially

until R values of yf = X8+ I'in € D(y;) are observed, where R is fixed in advance,

s 17.
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then forming a sample average of h(y; — X;(3) for the y} drawn that are in D(y;).” Define
Spwy = 1if yf € D(y;), = 0 otherwise. If 4;(0;y;) = Edp,)(y;) is small, as should be
expected in realistic cases with a large number of alternative choices or choice patterns over
time, then a large simulation sample is required to obtain the simulator. Simulator SAR
is an alternative method based on acceptance-rejection arguments that is computationally
much more efficient. (See Press et al. , 1986 and Devroye, 1986 for using the acceptance-
rejection method to generate non-uniform random variates.) These approaches also yield
discontinuous estimators but have the advantage that a finite number of terminal simulations,
R, is needed for MSS to be CUAN.

Further, the SRC simulator in Section 5 is motivated by the observation that the condi-

tional expectation expression that appears in (18) can be written as:

hy? — XiB)opon(yr — Xif, Q) dy?
Bl - X)D() = LSRNl S AR (o

Hence implementation of MSS-SRC in the form of (20) and (21) requires simulators with

good properties for the derivative vectors £;p and the probabilities ¢;. Note, in particular,
that SRC is by design bounded away from 0 and 1, which is crucial given that ¢; appears in
the denominator of the score expression.

As we discussed earlier, one can think of an alternative MSS estimator that simulates

the numerator and denominator of the score ratio separately of one another in the form:

Rn Rd
. 1 1 1 Z
HMSSBR solves {N; R—ngggz,«/ﬁd S ElS] = O}, (24)

6

A method in the literature that works along these lines is due to van Praag and Hop,

1987. Their method employs independent simulators of the numerator and denominator of
(23).1% As we explained already, our (20-21) implementation is preferable because it reduces
simulation variance by simulating simultaneously the score as a ratio. In either case, it is
imperative that one not use a frequency simulator for the denominator expression because the
frequency simulator is not bounded away from 0. The recursive conditioning simulator SRC
we discuss in Section 5, is by design bounded away from 0 and 1 and, in addition, is smooth,
which avoids a second difficulty with the frequency simulator.!!

Finally, introducing the Markovian updating scheme known as Gibbs resampling we

obtain simulator GRS which estimates the complete score function as in (19). An MSS

9See Ruud, 1991 for combining these ideas with the EM algorithm.

108ee equation (22) on p.19 of their paper.

1 Another simulator of LDV probabilities which is smooth and bounded away from 0 and 1 is due to
Stern, 1992. Extensive Monte Carlo evidence in Hajivassiliou et al. , 1996 shows that simulator SRC strictly
dominates the Stern simulator in terms of simulation MSE.
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estimator based on simulator GRS R terminal simulations each based on ng resamplings (or
“burn-in” cycles) is CUAN for any R, provided ng grows faster than log N. In addition,
MSS-GRS will achieve the full asymptotic efficiency of MLE as R grows without bound
at any rate. These are very satisfactory rates, especially given the smoothness and the

computational simplicity of this simulator.

4  Asymptotic Distribution of MSS Estimators

Let s;(0) = £;9(0)/¢;(0) denote the score for observation i, and let 3;(6) denote the simulated
value of s;(0), for a sample of independently, identically distributed observationsi = 1,---, N.

Define a simulation bias,

By (6) = %Z — s:(0)]. (25)

i=1
where E; denotes an expectation with respect to the simulation process, given the observa-

tion. Define a simulation residual process,
[N
>

Following the method of McFadden, 1989 and Pakes and Pollard, 1989, we show that assump-
tions on the simulation bias and simulation residual process, plus regularity assumptions,
are sufficient for the MSS estimator fy that solves S~ 5;(dy) = 0 to be consistent and

asymptotically normal.

Theorem 1 Assume that the parameter 0 is contained in a compact set ©, and that the true
value 0% is in the interior of ©. Assume that the score s;(0) is continuously differentiable
on ©. Assume that the score and its derivatives, and the simulated score, are dominated
by a function independent of 0 with finite first and second order moments. Assume that
E;si(0) = 0 if and only if 0 = 0%, and that J = —E;s;9(0%) is positive definite, where E;
denotes expectation with respect to the distribution of the observations. Assume that the
observations and simulators are independently identically distributed across observations.
Assume that (i) the simulation bias converges to zero in probability, uniformly in 0, and

(ii) the simulation residual process is stochastically equicontinuous.'?> Assume that a MSS

12The functions {(x(-)} are stochastically equicontinuous at ©; C © if for each € > 0 and A > 0, there
exists 6 > 0 and N, such that for N > N,,

Prob < sup |Cn(0) —Cn (0] > e) < A, where #' € © and 6 € ©;.
l6—6'| <5
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estimator solving 0 = Zfil §z(éN) exists for each N.'3 Then, the estimator satisfies On L 6%
and VN(Oy — 0*) 5 Z ~ N(0,J7" + J1QJY), where Q = E[5:(6%) — Ei5,(6%)][5:(6") —
E;5;(0%)).

Proof:
The defining equations for the estimator can be written, by adding and subtracting terms,
as,
LN
v Z = Ay + Cn(0n) + Cn () + Br(On), (27)
with

Ay = o 20 si(07) + J DL [5:(07) — Eidi(07)],

On(0) = o iy [s:(6) — 5:(67)).
The 4.7.d. assumption on the observations and simulation, the dominance condition that
implies the existence of moments, and the condition Fs;(0*) = 0, imply by the Lindberg-Levy
central limit theorem that Ay is asymptotically normal with mean zero and covariance matrix
J+Q. Then Ay/v/N = 0,(1). The stochastic equicontinuity assumption (ii) implies that Cy
is uniformly stochastically bounded, and hence that Cy(6y) /V'N = 0,(1), and assumption
(i) on the simulation bias implies that By(fy) = 0,(1). The continuous differentiability of
s; on © and the moment conditions imply that C(8)/v/N satisfies a Uniform Law of Large
Numbers, converging to a continuously differentiable function () that is bounded away
from zero when 6 # 6%, with 1y(0*) = —J.1* From (27), one then has

0= Cn(On)/VN +0y(1) = ¢(O) + 0p(1),

implying that On 2 0",

If (v is stochastically equicontinuous at ©, with © compact and convex, and (x (6°) is stochastically bounded
for some 0° € O, then (y is uniformly stochastically bounded on ©. This follows by noting that at most
2M /6 points less than a distance ¢ apart are required on a line segment between 6° and any 6 € ©, where
M bounds the diameter of ©. Then,

sup ‘CN(Q) - CN(00)| < (2]\1/6) sup |CN(9/) _ CN(QN)‘ 7
e 0r—011| <6

implying that given €, A > 0, there exists > 0 such that Prob(supycg [(n(0) — (N (87)] > 2Me/6) < X. This
works for the simulation residual process in this Section with 6 = 6* since {y(6*) = 0.

131¢ is sufficient to define Oy to be an approximate solution satisfying 0Q1) = Zf;l §¢(éN); such an
estimator always exists.

14A U.L.L.N. states that given €, § > 0, there exists N, such that for N > N,, Prob(maxgece |Cn(0) —

P(0)] > 6) <e.
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Next, vV N (éN — 6*) is shown to be stochastically bounded. The asymptotic normality of

Ap, and assumptions (i) and (ii), imply,
O,(1) = O (8 (NZSW )+ O( aN—e*)]> VN(x - 6%),

with the second equality following from a Taylor’s expansion of s;(fy) about 6* using the
differentiability and dominance assumptions. Then, Es;(0*) non-singular and éN LN
imply v N (0x —0%) = O,(1). Note that this result and assumption (ii) imply that (y(fy) =
op(1). )

To establish asymptotic normality, use the Taylor’s expansion above of Cy(fy) and

assumptions (i) and (ii) in Theorem (1) to obtain,

N
1 * N * N *
0=Ay+ (ﬁ ;[sw(e )+ OOy —0 )]) VN(Oy — 0) + 0,(1).
But, + 52V si4(0%) £ J, implying VN(Oy — 6) = —J YAy + 0,(1) > Z ~ N(0,J1(J +
Q)J ). 0

5 Conditional Normal Distributions and Simulation

In this Section we present three simulation techniques to use with MSS estimators. The
first two are continuous in the unknown parameters, and provide asymptotically unbiased
simulators of the score. Asymptotic unbiasedness of simulator SRC requires the number
of simulations employed to grow without bound, while simulator GRS, which uses a finite
number of simulations, is asymptotically unbiased as the number of resamplings used to
generate each simulation rises without bound. The third simulator, SAR, is an unbiased
estimator for the score for a finite number of simulations, and is a discontinuous function
of the unknown parameters. The consistency and asymptotic normality of MSS estimators
based on any of these three simulation methods is established in Section 6 specializing the
general results of Section 4.

We illustrate our methods for the leading distributional case of multivariate normality.

Consider the general normal LDV model:

For simplicity, we will drop the ¢ index whenever no ambiguity would arise. The MSS

estimator requires simulating the h(y*) functions that appear in the scores, conditional on
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y* € D(y). Hence, our general objective is to obtain random draws from the distribution
y* subject to y = 7(y*). Then, we see from Section 3 that three types of functions need to
be simulated. The first function is the likelihood contribution ¢, given by (4). The second
is the likelihood derivative ¢y (equations (14) and (15)). Finally, the third function is the
logarithmic score 22, given by (18).

Our general objective will be to develop unbiased simulators for these functions that are
computationally very fast; and simulators that though only asymptotically unbiased, their
bias vanishes at sufficiently fast rates as to guarantee consistency and asymptotic normality

5 The first continuous simulator is based on the

of MSS estimators that employ them.!
idea of employing a Cholesky triangularization so as to make the constraints y* € D(y)
recursive.'® This will make simulator SRC unbiased for the likelihood contributions and
asymptotically unbiased for the logarithmic scores. The second continuous simulator employs
repeated drawings from univariate truncated conditional normal distributions and applies
Gibbs resampling methods (Geman and Geman, 1984, Gelfand and Smith, 1990, Chib, 1995)
to ensure that the joint distribution we are simulating from converges to the appropriate
multivariate truncated normal distribution. Hence, simulation method GRS will provide
unbiased drawings of likelihood contributions and scores as the number of Gibbs resamplings
rises to infinity. Finally, we describe a third simulator, SAR, based on acceptance-rejection
arguments, which though a discontinuous function of the underlying model parameters,
provides unbiased drawings of likelihood contributions and scores for a finite number of
terminal simulations used.

We first introduce some notation: For a vector of indices (1,-- -, J), we use the notation
“< 4”7 to denote the subvector (1,---,7 — 1), “< j” to denote the subvector (1,---,j), and
“—7” to denote the subvector that excludes component j. Thus, for a matrix L, L; -; denotes
a vector containing the first —1 elements of row j, and L_; _; denotes the subarray excluding
row j and column j. For a vector €, e.; is the subvector of the first 7 — 1 components, and
€_; is the subvector excluding component j.

Define q(u,a,b) = @1 (®(a) - (1 —u) + P(b) - u), where 0 < u < 1 and —oo < a < b < 0.
Then q is a mapping that takes a uniform (0, 1) random variate into a truncated standard

normal random variate on the interval [a, b].

Proposition 1 Consider the multivariate normal J x 1 random vector Y ~ N(X[3,Q) with

15Unbiased and consistent simulators for the integrals appearing in expressions (4), (14), and (15) can also
be obtained through importance sampling and other methods (see Moran, 1984, Moran, 1985, Moran, 1986),
Dedk, 1980, McFadden, 1989, Stern, 1992). These methods cannot be used for direct unbiased simulation of
the logarithmic score (18), unless an infinite number of simulations is averaged.

16 Geweke, 1989 uses this triangularization in a Bayesian context and Keane, 1994 employs it in the special
case of estimating by simulation a multiperiod (panel-data) binary probit model.
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Q positive definite, the linear transformation Z = MY ~ N(MX(3,%), with M non-singular
and X = MQM’, and the event B = {a* < Z = MY < b*}, with —oo < a* < b* < 400.
Define P = [,n(z; MX3,YX)dz, a = a* — MX[3, b = b* — MX[3, and let L denote the

lower-triangular Cholesky factor of ¥. Let (u1,---,uy) be a vector of independent uniform
(0,1) random variates. Define recursively for j =1,--- J:

ej =q(uy, (aj — Ljrex — -~ — Ly ae5-1)/Lyj, (b — Ljper — -+ - — Ljj1e51)/Ly;) ,  (29)

Q; =@ ((bj — Ljser — -+ — Lyj-1€j-1)/Lj;) = ((ai — Lyjer — -+ — Lyj1e5-1)/Ly;) . (30)

Define e = (eq,--+,ey), Y = X3+ M'Le, and Qle)=Q1-...-Qy. Then Y is a random
vector on B, and the ratio of the densities of Y and Y aty = X3+ M 'Le, where e is any
vector satisfying a < Le < b, is P/Q(e).

Proof:

Since the ratio of densities is preserved by a common linear transformation, it is sufficient to
consider the ratio of the density of the random vector e constructed recursively above and
the density of a standard normal random vector € conditioned on the event a < Le < b. But

these densities differ only in their normalizing denominators, Q(e) and P respectively. O

It is important to reiterate that the Y’s implied by the sequential scheme of Propo-
sition 1 are not distributed according to the multivariate truncated normal distribution
Y ~ N(Xf,Q) conditional on a* < MY < b* because the recursive constraints defined by
the Cholesky decomposition are not independent. This fact should be evident from a simple
two-dimensional example. Suppose by = by = oo as is the case in the probit model, and
lo1 > 0, corresponding to a positive correlation between Y; and Y;. Draws of e; according to
the inequality in (29, j=1) will ignore the constraint in (29, j=2), hence will be too small
on average. Given an e; too small, e5, obeying the second constraint (29, j=2), will be too
large on average.

Despite this fact, we can show that combining Proposition 1 together with importance-
sampling arguments we obtain smooth, unbiased, and direct simulators for the likelihood
contributions ¢; and their derivatives fy;, and a smooth, asymptotically unbiased simulator
of the score function, termed simulator SRC. The results in Section 6 will establish that MSS
estimators based on simulator SRC will be CUAN provided the number of simulations used
grows faster than v/N.
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5.1 SRC: A Smooth, Direct Simulator for Likelihood Scores and

Contributions

The likelihood contribution of the general LDV model examined in this paper is given by

(4), which we can rewrite, after dropping index i, as

Uy, X;8,Q2) = n(z — X6,Q) dz

/a* (Y)<M(y)-2<b*(y)
=Probla*(y) < M(y)-Y <b*(y); Y ~ N(X3,Q)]. (31)

But Probla*(y) < M(y) - Y < b*(y); Y ~ N(XB,Q)] = Probla(y, X, 8,Q) < L(y,Q) - v <
b(y, X, 3,Q); v~ N(0,I)], with a, L, and b as defined in Proposition 1. Hence, the likelihood

contribution becomes

Uy, X;3,9Q) = Probla(y, X, 3,Q) < L(y,Q) - v < b(y, X, 5,Q);v ~ N(0,1)]

J
=/ [T o)) dv;. (32)
a(y,X,8,) <L(

¥,)-v<b(y,X,3,Q) ;24
Now consider a J x 1 vector e, drawn according to the sequential scheme described in

equations (29). Obtain R such vectors e].s and define the likelihood contribution simulator

le; y, X; B, R)

R J
~ 1
g(e7y7X76797R) = Ezn@j(elra'”vej—l,r)7 (33)
r=1 j=1
where Q1 = Prob(a;/lin < e; < (b1/l11), and for j < 1
Qjler, -+ ej1) = Prob((a; — Lj<j-e<;)/l; < ej < (b — Lj<j - e<j) [ljzer, - -+ ej1). 17

Lemma 1 The simulator {(e;y, X; 3, R) defined by (33) is an unbiased estimator of
Uy, X; 8,9).

Proof:

It is sufficient to show the Lemma for R = 1. The expected value of £ is Ef = [ {(e) f(e) de,
where f(e) denotes the density that generates the (biased) sequential truncated draws e, in
Proposition 1. By (33), the definition of 7, and result (32),

M:/?ﬁ@»<

—00

J J

Hd@@ﬂ®~dw=/ T] é(es)de;

17Recall that since e; ~ N(0,1), Prob(k1 < e; < ko) = ®(k2) — ®(ky).
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=Prob(a < L-v <b) =1Ly, X;5,Q).

|

The combination of the recursive conditioning method, the above Lemma, and the smooth
univariate truncated variate generation algorithm produces an unbiased (for any value of
R) multivariate probability simulator that is smooth, i.e., a continuous and differentiable
function of the model parameters 8 and €2.!* Moreover, apart from an initial Cholesky
decomposition and several matrix multiplications, most computational effort is in drawing
the univariate truncated normal variates according to the steps in (29). This effort is ap-
proximately linear in J, the dimension of the probability integral, which is an extremely
convenient feature of simulator SRC. The results of Borsch-Supan and Hajivassiliou, 1993,
confirm the excellent computational efficiency of simulator SRC. In terms of timing, we find
that generating 1000 simulations l, according to this algorithm from the 10-dimensional
distribution Y ~ N (u,¥) with ¥ = {o;; = 1, 0;; = .5 for i # j} subject to Y; > 0 if j even
and < 0 if j odd, required 5.3 seconds on a 486/33MHz Personal Computer, and 7.4 seconds
for 20 dimensional Y vectors. In contrast, a (discontinuous) acceptance-rejection algorithm
required 8 minutes for the 10 dimensional case and nearly 1 hour for the 20 dimensional one.

To obtain a smooth and asymptotically unbiased simulator for s;, the logarithmic score
(18), recall that s; = l;9/l; = E[R(Y — X3)|Y € D(y;)]. Hence, we define

5 =lor/lR, (34)

where lpr = £ 3 {h(M 'Le,) - [1;Qi(ej—1,)}, and lr=1%, I1,Qj(ej-1,)." From the
Lemma (1) given above, Efp = ¢ ; given the linear form of the likelihood derivative h(-)
function, an exactly analogous importance sampling argument as the one used in the proof of
the Lemma establishes that Efyp = ¢5. Hence, a standard law of large numbers implies that,
as R — oo, the simulator for the denominator, ¢, converges to ¢; = E{1(Y; € D(y;))}, the
probability of the event Y; € D(y;), and the simulator for the numerator, lo R, converges to
lig = E{h(Y;) - 1(Y,; € D(y:))}. Thus, 3g LN lig/l; = s;. See the Monte-Carlo experiments
in Hajivassiliou, 1996 for an investigation of the choice of R for satisfactory performance of
this simulator. Moreover, the continuity in ¢ and the unknown parameters makes estimators
based on this simulator extremely fast. Therefore, one can afford quite high R values,

because the necessary time is approximately linear in the dimension of Y and is independent

18Gee also Borsch-Supan and Hajivassiliou, 1993.

19 As discussed in Section 3, employing the same e,.’s for the numerator and denominator expressions results
in MSS estimators with better statistical properties compared to using independent e’s for the numerator
and denominator.
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of the magnitude of Prob(Y € D(y;)), in sharp contrast to discontinuous simulators. Thus
we see that the SRC simulator breaks a major “curse of dimensionality” of simulation in
this context. A further feature of the simulator that helps explain its distinctly superior
performance when used for estimation compared to (discontinuous) frequency simulators,
is that, unlike the latter, the smooth, recursive conditioning simulator presented here is
bounded away from 0 and 1. This is obvious from (33).

For more details on the comparative performance of simulator SRC in simulating LDV
probabilities and derivatives, see, inter alia, Borsch-Supan and Hajivassiliou, 1993, Haji-
vassiliou, 1993, and Hajivassiliou et al. , 1996. These studies confirm a general consensus
that has developed in the recent literature that the SRC simulator is impressively accurate
in approximating LDV probabilities and derivatives, especially when taking into account
the low computational effort it involves. A key intuition behind these findings seems to
be that the Cholesky triangularization underlining the SRC method implies an importance-
sampling distribution that, while computationally extremely tractable, provides an excellent
approximation to the true correlation structure of the unobservables. This well-documented
ability of the SRC simulator to approximate extremely accurately LDV probabilities with
low computational effort is particularly useful in selecting among multiple roots of the score

equations in models where the likelihood function does not have a unique global maximum.

5.2 GRS: An Infinite Algorithm for Generating Truncated Mul-

tivariate Normal Variates Based on Gibbs Resampling

In this section we show that by employing Gibbs resampling techniques (Geman and Geman,
1984) we can devise another smooth simulator, simulator GRS, which has the correct trun-
cated multivariate density Y ~ N (X3, Q) conditional on a* < MY < b* asymptotically with
the Gibbs resampling rounds, ng. Though the Gibbs-based simulator GRS only guarantees
drawing from the correct multivariate truncated normal distribution as the number of Gibbs
resamplings rises without bound, the Monte-Carlo findings in Hajivassiliou, 1996 suggest
that the convergence rate of this method is very rapid. This finding confirms the result in
Section 6 that MSS estimators using the Gibbs-resampling-based simulator are consistent
and asymptotically normal provided that number of Gibbs resamplings (or “burn-in” cycles)
grows faster than log N. Hence this paper shows for the first time that Gibbs resampling
techniques can be useful for classical inference.

The Gibbs sampler was developed for and has been applied to the problems of complex,

large scale stochastic models, such as image reconstruction, neural networks and expert
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systems.?’ In these cases, direct specification of a joint distribution is typically not feasible.
Instead, the full set of conditionals is specified. Consider a J x 1 variate random vector Y
and let

Y[y, j=1, (35)

denote the distribution of the variable Y; conditional on all the random variables constituting
Y excluding Y;.

For the purposes of this section, we further assume that the truncation region (a,b) of
the multivariate normal distribution in (28) is compact, which is equivalent to assuming
—00 < a < b < 4o00. This does not entail any loss of empirical generality, since we can
consider large compact rectangles defined, for example, by the limits of computing machine
representation of floating point numbers. We let B denote the (compact) rectangle [a, b).

Gibbs sampling is a Markovian updating scheme which proceeds as follows. Given an
arbitrary starting set of values Yl(o), YQ(O), e ,YJ(O), we draw Yl(l) ~ [Y1|Y2(0), e Y}O)], then
Y2(1) N [}/2|§/1(1),}/2(0)---,Y}0)], Y}fl) N [Y3|Y1(1),Y2(1),13(0) O 7y}0)]7 ..., and so on, up to
YJ(I) ~ [YJ|Y1(1), e Yﬁ)l]. Thus each variable is “visited” in the “natural” order and a cycle
in this scheme requires J random variate generations. After ng such iterations we would
arrive at Vo) = ("9 .. -,YJ(”G)). Proposition 2 will establish that Y ™) will asymp-
totically have the true joint distribution of Y as ng grows without bound. In our case,
we let Y describe the distribution of Y ~ N(X3,Q) conditional on a* < M -Y < b,
and let Y, "¢ be a vector drawn according to the Gibbs scheme after ng resamplings.
By (18), the logarithmic score, s;, equals the expectation of A(Y, X, 3,Q) over the dis-
tribution of Y. It then follows trivially that E h(Y}(nG),X,ﬁ,Q) converges to s; as the
number of Gibbs resamplings, n¢, grows to infinity. Hence, we define simulator GRS by
5" y X, 3,QnR) =+, h(YT(nG), y, X, 3,Q), where R is the (finite) number of ter-
minal simulations drawn, and n¢s the number of Gibbs resamplings used for each simulation.
Though s; is unbiased for the true s; only asymptotically with ng, we prove in Section 6
that the MSS estimator using simulator GRS is CUAN provided ng rises at a rate at least
as fast as log N. In addition, it will achieve the full efficiency of MLE as R — oo at any
rate.

Geman and Geman, 1984 establish various convergence results of the Gibbs resampling
scheme under mild regularity conditions for a finite sites and states problem. Given our
interest in the normality case, which is continuous, the Geman and Geman, 1984 results

are not directly applicable. We are able, however, to establish analogous results for the

20The relevance of Gibbs resampling methods to our problem was suggested to us by John Geweke.
McCulloch and Rossi, 1994 develop a Bayesian estimator for the MNP model based on the Gibbs simulator.
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continuous case, by exploiting results in Orey, 1971 about the behavior of general state-
space Markov chains.?! Consider a set A with positive Lebesgue measure. The following

definitions are standard (for example, see Orey, 1971, Futia, 1982):

Definition 1 A Markov process is uniformly recurrent if the probability of reaching state A
within ng transitions is bounded below by a positive number, uniformly in the starting point

x.

Definition 2 A density f(x) is an invariant of the Markov process if it describes the distri-

bution of the outcomes of the process irrespective of the number of transitions.

In the Gibbs sampler application, one transition corresponds to one updating cycle: start
from (Yl(o), cee YJ(O)), draw Y; from [171|Y2(0), e ,YJ(O)], draw Y; from [Y3|V], Yé(o), e ,YJ(O)],
..., draw Y; from [Y;|V3,-- -, f/}_l,Yj(E)l, e ,YJ(O)], -+, draw Y; from [Y;|Y3, - - -, Y;_1], where
the Y’s are drawn from the correct univariate conditional normal truncated density, as de-
scribed in the preliminary results preceding Proposition 1. Specifically, let [Y;|Y_,] denote the
conditional distribution of Y/J conditional on the (J—1)x 1 vector excluding the j—th random
variable. Clearly fijY,j ~ N(jj—j, Sji—;) conditional on a* < M -Y < b*, where pj_; =
1 +Qj,_j'Q:;,7j'(Y_j_,U/_j), e = (XB)k, and Ty = Q5 —Q_;-Q7F Q5. Then it fol-
lows that the truncated multivariate normal distribution Y conditional on the compact region
a* < MY < b* will be an invariant of this process, since the [}7;|}71, e ,}7]-,1, Yj(f)l, e ,YJ(O)]
distributions are by construction the one-dimensional conditionals of that joint distribution.

Proposition 2 For compact support B = [a,b], —co < a < b < oo , the joint density of
(Yl(nc), e ,Y}nc)) converges in Ly norm to the true joint density, n(z — X(3,9Q,a,b) at a

geometric rate in ng.

Proof:

Define p(ng, z,y) for (x,y) € B to be the density of Y (@) starting from Y(® = x; this is
given constructively by the Gibbs updating scheme we described. Also by construction, p is
continuous on B, p(1,z,y) > 0, and p(ne, z,y) = [ p(ne—1,z, 2)-p(1, z,y)dz > 0 for ng > 1.
Since, by assumption, B is compact, p(1, z,y) is bounded positive on B. This implies in turn
that the process is uniformly recurrent, since the probability of never reaching a set A of
positive measure in ng rounds is bounded above by [1 — yu(A)]™e, from any starting point,

where 7 is the positive lower bound on p(1,z,y) for (z,y) € B, and p(a) is the Lebesgue

21The reader is also referred to Numimelin, 1984, Tierney, 1991, and Roberts and Polson, 1994. Our results
differ from those in the cited studies in that we establish conditions for geometric rates of convergence of the
Gibbs sampler.
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measure of A. One can verify by substitution that the truncated multivariate normal with
density n(z — X 3,9, a,b) is an invariant of the Gibbs process. Then, Theorem 7.2 in Orey,
1971 implies that the L; distance ||p(na, Y, y) — n(z — X3,9,a,b)| converges to 0 as
ng — o0 at a geometric rate; in other words, there exists M > 0 and A € (0,1) such that
from any initial Y(?), one has [ p(ne, YO 4) —n(z — XB,9Q,a,b)dy < MA". a

It should be noted that this result of geometric convergence rate does not hold for a
multivariate distribution with non-compact support. For example, consider the one-factor
model €; = al + u;, i = 1,2, where ( and u; are independent standard normal variates, and
« is a parameter. In this model, as @ — oo, corr(ey, €2) = o?/(a? +1) — 1 and the rate
of convergence of the Gibbs sampler from an initial density to the limiting density becomes
slower and slower. The convergence problems would be alleviated if ¢; € [b,b] with b and b
finite. Hence, we will proceed with considering only large compact rectangles (for example,
defined by the limits of computing machine representation of floating point numbers).

It should be noted also that, like simulator SRC above, simulator GRS is by construction
continuous in the distributional parameters, 3, Q, @, M, and b. As found in Hajivassiliou
et al. , 1996, it is computationally tractable and the convergence rate of the Gibbs resamplings
is very fast. Hence, the MSS-GRS estimator possesses desirable properties in terms of
computational performance. These findings confirm our result below that consistency and
asymptotic normality of the MSS estimator based on simulator GRS using a finite number of
terminal simulations, requires that the number of Gibbs resamplings used to generate each

draw rises only faster than log N.

5.3 SAR: Acceptance-Rejection Algorithms for Generating Trun-

cated Multivariate Normal Variates

We finally present a third simulation method, which generates draws Y, directly from mul-
tivariate normal distributions conditional on linear inequality regions, based on acceptance-
rejection arguments. Then, a direct simulator of the score defined by %ZT h(f/,n — X0) will
be unbiased for any number of terminal simulations, R. We are therefore able to prove in
Section 6 that the MSS estimator that uses simulator SAR will be CUAN for any (finite or
infinite) number of simulations.

The idea for this algorithm is based on the following;:

Proposition 3 In order to generate draws from a density f(z) = c-g(z)-1¥(z), where c > 1,
g is a convenient density, and v is [0,1] valued, generate Z from g and U uniform [0,1].
Accept Z only if U < (Z) ; otherwise, continue trying with new pairs of Z and U. An
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accepted Z will have density f(z).

Proof:
For illustrative purposes, we give a proof from first principles. Let & be drawn from g(z)

with support D, and @ from uniform [0,1]. Consider the c.d.f. of the truncated r.v. Y where
- o

Y = { . e, (36)
not observed otherwise

The random variable Y describes the distribution of an accepted draw according to the

acceptance-rejection scheme of this Theorem. Then,

Fy(y) = Prob(Z < y|& accepted ) = Prob(a? <y, < (Z))/Prob(a < ¥(z))

B [?__Prob(a < ¢(z)) g(z) dz fy yde v o1 1
~ [, Prob(@ < ¢(x)) g(z )dx [ ( da: _/OO_ /() dx// Ef(gj) dz (37)
Hence, the p.d.f. of Y is fy(y (y)/ f 5 f(2) dz as required. Note that in this procedure

the expected number of trials before the ﬁrst acceptance is equal to c. O

In our case, let f(z) denote the p.d.f. of the vector Y ~ N(Xf3,) conditional on
D(y) ={a* < M -Y < b*}. This density is given by

n(z—XpB,Q) .
n(z—XB,Q) dz if 2 € D(y)’

fz) = § Bt 39
0 otherwise.
Hence, the objective will be to devise convenient densities g(z) to draw from, satisfying
f(z) = c¢-g(z) - ¥(z), with implied large expected acceptance rates, 1/c. We propose two
such choices of convenient densities g(-):
Acceptance-Rejection Method (a):

Consider the independent truncated normal density
Z ~ N(X3,A) conditional on D(y) = {a(y) < Z <b(y)}, (39)

where A is a diagonal positive definite matrix, with diagonal elements ;. This is a “con-
venient” density for simulation, with p.d.f. denoted by g¢(z), because sequential sampling
from it is straightforward using the method of discussed in Section 5 to generate univariate
normal truncated random variates, and because, given the independence of the elements of
Z, the probability of the conditioning event D(y) is also simple to calculate, since it is equal

to

Prob(Z € D(y)) = Prob(a < Z < b) = Db/ Nj] — Pla;/ N} (40)

Hz&
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Hence, the density of Z conditional on D(y) is
9(2) = n(z — XB,A)/Prob(Z € D(y)). (41)

Choose A so that A — Q) is positive definite.?? Then A > ), and
n(z — X3,0Q) 1,41
—— < =A7/Q2 =y > 1. 42
max BE—S P — A/ = > (12)
Draw a variate Z according to the g(Z) density and a @ from uniform (0,1), and accept Z if

and only if

By simple inspection, we then see that we have written f(z) as ¢- g(z) - ¥(z), where g(2) is

i< =) < L. (43)

given in (41), ¥(z) in (43), and the constant ¢ determining the expected number of draws

before the first acceptance is
Prob(Z € D(y))

Prob(Y € D(y))’
where Prob(Z € D(y)) is given by (40). Hence, by Proposition 3, the accepted Z's will have

(44)

Cc =

density (39) as required. The acceptance rate 1/c¢ can be maximized given 2 by choosing A
suitably.
Finally we give
Acceptance-Rejection Method (b):

We have shown that by defining a, b, and L as in Proposition 1, the density f(z) in (39)
can be written over its support as

f(z)=n(z,1)/ n(z,I) dz. (45)
a<Lz<b

Draw a vector € using the sequential scheme of Proposition 1, which has the (convenient)

density
J
gle) =n(e, 1)/ [ ] Qi(e;-1) (46)
j=1
with support
{a < L-e<b}. (47)

Consider a bound B such that B > Prob(y} € D(y)) = fanggb n(z,I) dz and B > Prob(a <

L-e<b) = H;.le Q;(ej—1).** The acceptance-rejection scheme (b) is then to compare the

22For example, choose A so that )\3 > Zstl Q
diagonal.

23Such a bound can be constructed as the probability of L - z lying in the smallest rectangular region
containing the support {a < L -z < b}, where z ~ N(0,I). This bound is easy to calculate given that the
region defining it is rectangular and z; is i.i.d. N(0,1).

js, implying that A — € has a weakly dominant positive
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sequentially drawn € to a uniform (0,1) variate @ and accept é if and only if
J
@< J[Qi&)/ B=v(e) <1. (43)
j=1

Thus, we have written density f(z) in (45) as ¢ - g(z) - ¥(z), where (41) gives g(z), (48)
gives 1(z), and ¢ = B / Prob(y; € D(y)). Therefore, by Proposition 3, acceptance-rejection
method (b) generates accepted €'s with density (45), which is equivalent to the desired density
(38). The method will have an expected acceptance rate of 1/c = Prob(yf € D(y))/ B,
which is larger the closer the bound is to the true conditioning probability. This bound is
tight for positively correlated elements of y}, and becomes less so for negatively correlated
y;’s. This is confirmed by the Monte-Carlo results in Hajivassiliou, 1993 and Hajivassiliou
et al. , 1996.

Though this method is not continuous in the parameters of the underlying distribution,
the results in Hajivassiliou, 1996 suggest that simulator SAR exhibits quite satisfactory
performance in practice when an optimization method is used that does not require differ-
entiability of the optimand, such as the nonlinear simplex algorithm of Nelder and Mead,
1964.

Software implementing the simulators and simulation-based estimators discussed in this
paper is publicly available over the Internet through the Web page

http://econ.lse.ac.uk/"vassilis.

6 Asymptotic Distribution of MSS-SRC, MSS-GRS,
and MSS-SAR

This paper is concerned with the case of LDV models formed from a vector of exogenous
variables x, a parameter #, and a standard normal latent vector v € R™. A finite series of
hyperplanes, of the form {v € R™|v - pg(z,0) = ck(x,0)}, with p, a normal vector of unit
length, partition R™ into regions d = 1,---, M. There may also be a linear mapping from
v to a continuous vector y that depends on z,0 and d : y = a(z,0,d) + B(z,0,d)v. Let
D(x,0,d) denote the set of v that map into d. Then, the score of observation ¢ from an

independently, identically distributed sample of size N can be written
32(0) = Eﬂ(h(v7 97 Li, di7 y2)|v € D(xh 07 dl))v (49)

where h is a vector of polynomials in v. To avoid technical difficulties, we assume for the

LDV special case (without any essential loss of empirical generality) that the multivariate
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normal distribution v is truncated to a large compact rectangle.We make the regularity
assumptions that the functions pg(zx, @), cx(z,0), a(x,d), and B(z,0) are all continuously
differentiable in #, and that these functions and their derivatives are dominated by a square-
integrable function m(z). The simulator §;(6) will be formed by one of the following methods,
corresponding to simulators SRC, GRS, and SAR in Section 5:

1. (SRC) Simulate the numerator and denominator of

Ev(h(?], 97 Ly di7 yl) ) 1(U < D(xlv 0: dl))

si(0) = E,1(v € D(z;,0,d;)) 7

(50)

employing fixed sequences of random generators v. One approach is to use an unbiased
simulator with one or more draws for the numerator and an unbiased simulator with
Ry independent draws that is uniformly bounded positive, with Ry/ VN — o ,
for the denominator. (For example, simulators based on (33) and (34) meet these
requirements.) As already explained, an alternative approach resulting in an MSS
estimator with improved statistical properties is to use the same Ry draws for the

numerator and denominator again with Ry /v N — oc.

2. (GRS) Carry out Gibbs resampling as in subsection 5.2 for ng rounds, employing a
fixed sequence of random generators v, with ng/(log N) — oo. Form the simulator

by averaging h over a fixed number of terminal draws, R.

3. (SAR) Average h over draws of v from its conditional distribution, where these draws
are obtained by acceptance-rejection methods that employ a fixed sequence of random

generators v, as in subsection 5.3.

We give some general sufficient conditions for assumption (i) of asymptotic unbiasedness
and assumption (ii) of stochastic equicontinuity in the Theorem (1) of Section (4). We show
that these sufficient conditions are satisfied in our special case of LDV models for each of
the simulation methods (1)—(3). The hypotheses of the Theorem (1) other than (i) and (ii)

are assumed to continue to hold in the following corollaries.

Corollary 1 If the simulation process is unbiased, or if the bias in an observation is dom-
inated by a positive function independent of 6 whose expectation is of order (l/m), then
the simulation bias converges to zero. In our LDV special case, this result holds for the sim-
ulator SAR that is unbiased, and holds for simulators SRC or GRS with the stated sampling

rates.

Proof:
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The result holds trivially for unbiased simulators such as simulator SAR. When the simula-
tion bias in an observation is dominated by a function with expectation of order o(1/v/N) ,

the result follows from Markov’s inequality:

N
1
P Bx(0)| > < — E]Z EZ’NZ'Q— 20 :EZ N EZ'NZ'Q— 20 — 0.
(sup| B (6)] > €) \/m; sup [Bi5(6) — s.(6)| = BV N sup [Eisi(6) — s:(0)] /¢

For simulation method SRC, one has
Ei5i(0) — 5:(0)] = ol - [Bs(1/0) = 1/:] < |lig| - Bul1/0; = 1/:] < | lig| - Bl — €3] /i,

where k£ is a positive lower bound on the simulator of /;.
But the dominance conditions and the assumption that the simulator in the denominator
uses Ry draws implies that E1E1|g2 — 4] = O,(1/v/Rn) , and Ry /v N — oo gives the result.

For simulation method GRS, one has
[Ei5i(0)—s:(0)] = |Euo(hlv € D(y:), v ~ frox)=Ey(hlv € D(yi),v ~ f)] < M'|| f"év —f|| < Me™"n,

where f"¢~ denotes the distribution of the Gibbs sampler after ng, rounds, f denotes the
true distribution of the latent variable, M’, M, and \ are positive constants, and || - || is the
Ly norm. The first inequality follows from the compactness of the support of v, the second
from Proposition 2 which states that when the support is compact, ||~ — f|| converges

to zero at a geometric rate. Then, taking ng, > (log N)/2X yields the result. 0

To obtain a sufficient condition for stochastic equicontinuity, we employ a theorem of
Ossiander, 1987 that extends results of Dudley, 1978. Some preliminary definitions and
assumptions are necessary. Let (H,V, u) denote a probability space, © a compact subset of
RF, and £(v, ) a measurable function on H x ©. Assume that ¢ is dominated by a square-
integrable function v on H. Assume that F£(V,0) = 0, and let 0 = Ev(V)2 Consider a
sequence of nested partitions of © into N; regions, for j = 1,2,---. Let ©; be a finite set
containing one point from each region of partition j, and define 6,(6) to be the mapping

from 6 to the point in ©; that is in the same partition region. Define

1/2
§ =max |E* sup [((V.0)— &V 0P| (51)
9€OG | {olo=0;(0}
where E* denotes outer expectation. Then, ¢; is a measure of the accuracy with which £ can
be approximated above and below by region-wise constant functions. Assume 6; — 0. Let

v; for i = 1,2, -+ denote independent realizations of V', and form (y(6) = ﬁ Zf\il &(v;,0).
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Ossiander establishes that (x(0) is stochastically equicontinuous, provided an integral mea-
suring the rate at which N, increases as ¢; falls is finite; an upper bound on this integral
is -

Z llog N;]"/2(8; — 6;_1) < +oc. (52)

=2
We next introduce a regularity condition on simulators that is sufficient to satisfy (52). The
simulator §;(6) is probably Lipschitz on © if there exists 8, > 0 and an integrable function
m; > 1 with a finite third moment such that |5;(0)| < m; and for 0 < § < 8, and almost
all 0 € O, there exists a probability Q;s(0) satisfying @Q;s(6) < m;6 and the condition that
15:(0") — 8:(0)] < my; -0 — 0| for |0 — 0] < 6 with probability at least 1 — Q;5(#). This
condition allows the simulator to have discontinuities, but requires that the probability of
a discontinuity within a small neighborhood of most 6 be small, and that the simulator be
moderately smooth except at discontinuities. A continuously differentiable simulator will
clearly satisfy the condition.

Corollary 2. Assume that the simulator §;(0) is probably Lipschitz on ©. Then, the
simulation residual process is stochastically equicontinuous. In the LDV special case, simula-
tors SRC and GRS are continuously differentiable, while simulator SAR is probably Lipschitz,
so that stochastic equicontinuity holds for all of the simulators.

Proof:

Without loss of generality, assume © C [0,1]*. For any integer j, partition this cube into
2F7 small cubes with sides of length 277. Let ©; be a set containing one point selected from
each cube that intersects ©. These points can be selected so that Qs(f) < K¢6" for 6 € ©,.
Define 6,(6) to be the mapping from 6 into the point in ©; that is in the same region of the
partition; then |6 — 6;(0)| <277 = 3; < 1.

Define the function

B..(6) = { m;B; if §; is Lipschitz on the cube containing 6,(6)
2m,;  otherwise.
and note that this function is region-wise constant on partition j. Using the Lipschitz
hypothesis, one has |5;(6) — 5;(0;(0))| < B;;(6). Also, for j large enough so that §; < 4,,

E B (0)* < EA(1-Qp,(0;(0))m? 57+Qp, (0;(0))2m?} < E{m?B7+2m;3;} < 303;E;m;] = 63.

Define &7 = 2E;m? for 3; > 6,. Then,
Yo rsollog NJV2(8; 1 = 65) = 3072 [ki log2]'/2(27U=1 — 279) - 3E;m} < +oo.
Then, the condition for the Ossiander result holds, and stochastic equicontinuity follows.
Consider the special case of LDV models. The simulators SRC and GRS are continuously
differentiable on ©, so they are Lipschitz with probability one, and the result follows.
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Now consider simulator SAR. Given a fixed sequence of random generators v, for r =
1,2, -, the acceptance-rejection procedure can be described as one in which trials are re-
jected until the criterion v, € D(x;,0,d;) is met, then 3;(6) = h(v,,0, z;,d;,y;) for the ac-
cepted v,. Given 6 € © and § > 0, let N5(0) denote a é-neighborhood of 0. Let Rs(x;,0,d;)
denote the probability that a trial will lead to rejection for all ' € Ns(6), equal to the inte-
gral of the truncated standard normal density over the intersection of D(z;, ¢, d;)¢ for 8" in
the neighborhood. Let As(x;, 0, d;) denote the probability that a trial will lead to acceptance
for all @ € Ns(0), equal to the integral of the truncated standard normal density over the
intersection of D(x;,0',d;) for 8 in the neighborhood. The probability of acceptance on the
same trial for all 8" € Ns() is then As(x;,0,d;)/(1 — Rs(xi,0,d;)).

Suppose that pg(z,0) - v < cx(x,0) for £ = 1,---, K defines the set D(z,0,d). The
compactness of the support of v, the continuous differentiability of p, and ¢ in 8, and the

dominance assumption, implies by Taylor’s expansions that
pe(z,0') - v = pi(x,0) - v] < m(z) - [0 — 0] < m(x) -6,

le(x,0') — c(x,0)] <m(x)- |0 — 0] <m(z)-d.

Then,
A6<x797d) = P({1J| sup 6(9)<pk(x7el) ‘U= Ck(xu 9I>) S 07 k= 17 U ,K})
0" N5 (0)
> P({U|pk(xv 0) U= Ck?(xv 0) < —Qm(x) : 67 k= 1: e vK})
Similarly,
R(S(x?e?d) = P({'Ul i IJI\lff(Q) 6(9)(pk3(x7 9/> U= Ck(l’,g,)) >0, k= L. 7K}>
'€ N
> P({v|pk¢(x:9) U= Ck?(xve) > Qm(x) ) 67 k= 1: toe 7K})>
and

Rs(x,0,d) < P({v|pk(z,0) - v —cp(z,0) >0, k=1,---,K}).
Then, the probability that the simulator has a discontinuity in Ns(6) satisfies

P{v|pk(z,0) - v —cp(z,0)] <2m(z)-6, k=1,---,K})

Qiol0) = 1=As(s, 0, i) /(1= Ro(ws, 0, di)) < ——p et e g < 0. k= 1. . K))

But pg(zx, ) - v is standard normal, implying

< S [Plen(i, 0) + 2m(x:)8) — P(cr(@s, 0) — 2m(x;) - 5)]‘
B | N END)
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The denominator of this ratio is bounded positive, and the numerator is bounded by 4 K'm/(x;)6.
This fact, together with the observation that the simulator is continuously differentiable, with
a dominated derivative, when it does not have a discontinuity on Ns(6), establishes that the
simulator is probably Lipschitz. This argument is unchanged if the direction of some of the
inequalities defining the sets D(x;,0,d;) are reversed. Therefore, the corollary is proved for
all cases of simulator SAR. O

The performance in practice of the three MSS estimators discussed here is compared
through extensive Monte-Carlo experiments in Hajivassiliou, 1996. In addition, Hajivassiliou,
1997 develops (i) tests of the adequacy of particular values of R for MSS-SRC and of R and
ne for MSS-GRS in relation to the sample size N; and (ii) diagnostics for model specification
in LDV models based on MSS estimators.

7 An Illustrative Example of Alternative Simulation
Estimation Methods

To illustrate the method of simulated scores and contrast it to other simulation estimation
methods that have been proposed in the literature, consider the simple binary probit model
for an independent cross-section of individuals, ¢ = 1,---, N, for which classical estimation

is, of course, computationally very straightforward.

yi =0+ € €~ N(0,1) (53)

yi=1 di=1 ifyf>0 (y;=2d;i—1)

Define
Int; =In ®(y; - x.0) (54)
Int; =d; - In ®(z,0)+ (1 —d;) - In(1— &(z}5)) (55)
and
s; = lig)li = ;- % -y = 2, Ee&;ly; € D(y:)) (56)
5 = D) (i — o) = wil6) - [ — BB (57)

B @p) (1 - o(2)8))

In this case, # = (3. Then maximum likelihood estimator solves the first order conditions

~

Lng(0) = ~ SN 5i(A) = 0. Equation (57) for the score of observation 7 highlights a method-

of-moments interpretation of maximum likelihood estimation when the optimal instruments
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w;(0), defined in (57), are used. Simulating the conditional expectation expressions in equa-
tion (56) corresponds to the method of scoring. It should be noted that the basic consistency
requirement that E(s;(y;;0%)|z;) = 0 is satisfied in both cases; in equation (56) it is satisfied
because P(y;|0*,x;) = ®(y; - #;0*) and in equation (57) because E(d;|0*, z;) = ®(z,0%).

The original method of simulated moments (McFadden, 1989 and Pakes and Pollard,
1989)) proposed substituting an unbiased simulator, ®(/3), for ®(z}5) and exploiting the
linearity of the score expression (57) in (d; — ®(-)). For high efficiency this method requires
that consistent estimators for the optimal instruments, w;(6*), be used. The method of
simulated scores we discuss in this paper simulates instead either directly (using simulators
SAR or GRS) the expression E(ef|ly; € D(y;)) or indirectly the components of the ratio
E(etly; € D(yi) = [, %ig / [, € (using simulator SRC). This fact implies that the optimal
instruments are now available automatically in the form of x;. To see the relation of MSS
to MLE, recall that z; - E(ef|ly; € D(y;)) = x; - ) si(yi, B; ;). The Lerman and

B(y;-zf3)
Manski, 1981 method uses unbiased and consistent frequency simulators of ®(z;3) directly

in the likelihood function (54);** van Praag and Hop, 1987 use independent simulations of
the numerator and denominator expressions in (56), as in (20).

Hajivassiliou, 1996 contrasts the method of simulated scores to the other simulation es-
timation methods available in the literature via Monte-Carlo. The results there support the
following conclusions: first, the choice of instrument functions in the methods that simulate
generalized moment conditions can be critical, as we argued above. Employing the ideal
instrument function w(-) in (57) (which of course in more realistic cases is intractable to cal-
culate) yields considerable mean-square-error advantages over the simpler choice z;, which
choice also satisfies the theoretical requirements for consistency and asymptotic normality.
Second, the simulated MLE method of Lerman and Manski, 1981 offers satisfactory perfor-
mance only when the number of simulations employed is large, if frequency simulators are
used. This number grows faster than linearly with the complexity of the LDV model under
analysis. As theory suggests, the Lerman and Manski method is improved significantly by
maintaining the same set of underlying random variates while iterating the optimization
algorithm to convergence. The method that simulated separately the denominator of the
scores by frequency methods performed unsatisfactorily, and it was easily dominated by all
the other methods tried, primarily because frequency simulators are not bounded away from
0 and 1. Before barely satisfactory performance was achieved, a huge number of simulations
for the denominator expressions had to be employed. These problems were significantly al-

leviated once a smooth simulator, bounded away from 0, like simulator SRC of Section 5,

24 A similar method has recently been proposed by Laroque and Salanié, 1989 to tackle the numerical
integration problems in multimarket disequilibrium problems.
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was used for the denominator expression. In all the cases investigated, the method of sim-
ulated scores based on simulator SRC performed impressively; it approached the (optimal)
performance of MLE with even 2 simulations per dimension of the underlying latent variable
vector. Moreover, the method was found to be numerically stable, which was to be expected

given its continuity in the underlying parameters.

8 Conclusion

In this paper we presented the method of simulated scores (MSS), established its asymptotic
properties, and developed three simulators to use for the likelihood scores. In contrast to
many simulation estimation methods proposed in the literature, the MSS estimators based
on simulators SRC and GRS are continuous in the unknown parameter vectors and hence
standard optimization methods can be employed. Furthermore, we showed that the MSS
estimator based on simulator SRC is CUAN when the number of simulations used rises at the
square root of the number of observations available, while use of simulator SAR guarantees
that MSS will be CUAN for a finite number of simulations. Finally, using simulator GRS
for MSS estimation with a finite number of simulations requires instead that the number
of Gibbs resamplings used for each simulation rise only as the logarithm of the number of
observations. Our MSS estimator based on Gibbs sampling shows for the first time that
Monte-Carlo Markov-Chain techniques can be useful for not only Bayesian but also classical
inference.

We conclude that simulation estimation techniques make feasible econometric analyses
of limited dependent variables models with theoretically more appropriate correlation struc-

tures.
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