
C000559 computational methods in econometrics

The computational properties of an econometric method are fundamental
determinants of its importance and practical usefulness, in conjunction with
the method’s statistical properties. Computational methods in econometrics
are advanced through successfully combining ideas and methods in econo-
metric theory, computer science, numerical analysis, and applied mathemat-
ics. The leading classes of computational methods particularly useful for
econometrics are matrix computation, numerical optimization, sorting, nu-
merical approximation and integration, and computer simulation. A com-
putational approach that holds considerable promise for econometrics is
parallel computation, either on a single computer with multiple processors,
or on separate computers networked in an intranet or over the internet.

1. Introduction

In evaluating the importance and usefulness of particular econometric meth-
ods, it is customary to focus on the set of statistical properties that a method
possesses – for example, unbiasedness, consistency, efficiency, asymptotic
normality, and so on. It is crucial to stress, however, that meaningful com-
parisons cannot be completed without paying attention also to a method’s
computational properties. Indeed the practical value of an econometric
method can be assessed only by examining the inevitable interplay between
the two classes of properties, since a method with excellent statistical prop-
erties may be computationally infeasible and vice versa. Computational
methods in econometrics are evolving over time to reflect the current tech-
nological boundaries as defined by available computer hardware and soft-
ware capabilities at a particular period, and hence are inextricably linked
with determining what the state of the art is in econometric methodology.

To give a brief illustration, roughly from the late 1950s until the early
1960s we had the ‘Stone Age’ of econometrics, when the most sophisticated
computational instrument was the slide rule, which used two rulers on a
logarithmic scale, one sliding into the other, to execute approximate mul-
tiplication and division. In this Stone Age, suitably named in honour of Sir
Richard Stone, winner of the 1984 Nobel Prize in Economics, the brightest
Ph.D. students at the University of Cambridge were toiling for days and days
in back rooms using slide rules to calculate ordinary linear regressions, a task
which nowadays can be achieved in a split second on modern personal
computers.

The classic linear regression problem serves to illustrate the crucial inter-
action between statistical and computational considerations in comparing
competing econometric methods. Given data of size S, with observations on
a dependent variable denoted by S� 1 vector y and corresponding obser-
vations on k explanatory factors denoted by S� k matrix X (koX), the
linear plane fitting exercise is defined by Gauss’s minimum quadratic distance
problem:

b̂ ¼ argmin
b
ðy� XbÞ0ðy� XbÞ � arg min

b

XS
s¼1

ðys � x0sbÞ2 ð1Þ

where x0s is the sth row of matrix X and b is a k� 1 vector of real numbers
defining the regression plane Xb. Under the assumption that X has full col-
umn rank k, the solution to this ordinary least squares minimization problem
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is the linear-in-y expression b̂ ¼ ðX 0XÞ�1X 0y, which only requires the matrix
operations of multiplication and inversion.

Suppose, however, that Gauss had chosen instead as his measure of dis-
tance the sum of absolute value of the deviations, and defined instead:

~b ¼ argmin
b

XS
s¼1

ys � x0sb
�� ��. ð2Þ

The vector ~b that solves the second minimization is known as the least
absolute deviations (LAD) estimator and has no closed-form matrix expres-
sion. In fact, calculation of ~b requires highly nonlinear operations for which
computationally efficient algorithms were developed only in the 1970s. To
give a concrete example, consider the intercept-only linear regression model
where X is the S� 1 vector of ones. Then the single b̂ coefficient that solves
(1) is the sample mean of y, while ~b that solves (2) is the sample median of y.
The latter is orders of magnitude more difficult to compute than the former
since it involves sorting y and finding the value in the middle, while the
former simply adds all elements of y and divides by the sample size. Clearly,
it could be quite misleading if b̂ and ~b where compared solely in terms of
statistical properties without any consideration of their substantially differ-
ent computational requirements.

A second example in a similar vein is the following parametric estimation
problem. Suppose a sample of size S is observed on a single variable y. It is
believed that each observation ys is drawn independently from the same
uniform distribution on the interval [y,c] where the lower value of the sup-
port is the single unknown parameter that needs to be estimated, while c is
known. Two parametric estimation methods with particularly attractive sta-
tistical properties are the generalized method of moments (GMM) and the
method of maximum likelihood (MLE). Indeed, for relatively large sample
sizes these two methods are comparably attractive in terms of statistical
properties, while they differ drastically in terms of computational require-
ments: the GMM solution is ŷgmm ¼ 2

S

PS
s¼1ys � c, thus requiring only the

simple calculation of the sample mean �y, while the MLE involves the highly
nonlinear operation of finding the minimum of the data vector y,
ŷmle ¼ minðy1; . . . ; ySÞ.

In the following section we discuss in turn the leading classes of methods
that are of particular importance in modern econometrics, while Section 3
introduces the concept of parallel processing and describes its current value
and future promise in aiding dramatically econometric computation.

2. Computational methods important for econometrics

The advancement of computational methods for econometrics relies on un-
derstanding the interplay between the disciplines of econometric theory,
computer science, numerical analysis, and applied mathematics. In the five
subsections below we discuss the leading classes of computational methods
that have proven of great value to modern econometrics.

2.1 Matrix computation and specialized languages

To start with the fundamental econometric framework of linear regression,
the sine qua non of econometric computation is the ability to program and
perform efficiently matrix operations. To this end, specialized matrix com-
puter languages have been developed which include Gauss and Matlab.

computational methods in econometrics2



Fundamental estimators of the linear regression coefficient vector b, like the
OLS ðX 0XÞ�1X 0y and its generalized least squares (GLS) variant
ðX 0O�1XÞ�1X 0O�1y, are leading examples of the usefulness of such matrix
languages, where the S�S matrix O is a positive definite, symmetric var-
iance-covariance matrix of the disturbance vector e � y� Xb. Matrix op-
erations are useful even for nonlinear econometric methods discussed below,
since a generally useful approach is to apply linearization approximations
through the use of differentiation and Taylor’s expansions.

In implementing econometric methods that involve matrix operations,
special attention needs to be paid to the dimensionality of the various ma-
trices, as well as to any special properties a matrix may posses, which can
affect very substantially the feasibility and performance of the computational
method to be adopted. Looking at the OLS and GLS formulae, we see three
different matrices that require inversion: X 0X , O, and X 0O�1X . The first and
the third are of dimension k� k, while the second is S�S. Since the number
of regressors k is typically considerably smaller than the sample size S, the
inversion of these matrices can involve vastly different burden in terms of
total number of computer operations required as well as memory locations
necessary for holding the information during those calculations. (For exam-
ple, in panel data settings where multiple observations are observed in
different time-periods for a cross-section of economic agents, it is not un-
common to have total sample sizes of 300,000 or more.) To this end, econo-
metric analysts have focused on importing from numerical analysis matrix
algorithms that are particularly efficient in handling sparse as opposed to
dense matrices. By their very nature, sparse matrices exhibit a very high
degree of compressibility and concomitantly lower memory requirements.
See Drud (1977) for the use of sparse matrix techniques in econometrics. A
matrix is called sparse if it is primarily populated by zeros, for example, the
variance-covariance matrix of a disturbance vector following the moving-
average-of-order-1 model:

Oma1 ¼ s2

1 l
1þl2

0 � � � 0

l
1þl2

1 l
1þl2

. .
. ..
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0 l
1þl2
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. . .

.
0

..

. . .
. . .

.
1 l

1þl2

0 � � � 0 l
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1

0
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1
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.

In contrast, a stationary autoregressive disturbance of order 1 has a dense
variance-covariance matrix:

Oar1 ¼ s2

1 g g2 � � � gS�1

g 1 g . .
. ..

.

g2 g . .
. . .

.
g2

..

. . .
. . .

.
1 g

gS�1 � � � g2 g 1

0
BBBBBBBBB@

1
CCCCCCCCCA

.

Other matrix algebra methods especially important in econometrics are the
Cholesky factorization (see Golub,1969) of a positive definite matrix A into
the product A=R0R where R is an upper-triangular matrix, and the singular
value decomposition that allows the calculation of pseudo-inverse of any
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matrix B which may be non-square, and if square, not positive definite (see
Belsley, 1974).

It is important to note that on occasion a brilliant theoretical development
can simplify enormously the computational burden of econometric methods
that, though possessing attractive statistical properties, were thought to be
infeasible with existing computation technology in the absence of the the-
oretical development. A case in point is the GLS/MLE estimator for the one-
factor random effects model proposed by Balestra and Nerlove (1966), which
is of great importance in the analysis of linear panel data models. The
standard formulation gives rise to the GLS formula requiring the inversion
of an equi-correlated variance covariance matrix O of dimension S�S,
where S is of the order of the product of the number of available obser-
vations in the cross-section dimension times the number available in the time
dimension. For modern panel data-sets, this can exceed 300,000, thus making
the calculation of O�1 infeasible even on today’s super-computers, let alone
with the slide rules available in 1966. Fuller and Battese (1973), however,
showed that the equi-correlated nature of the one-factor random effects
model made calculation of the GLS estimator equivalent to an OLS problem,
where the dependent variable ~y and the regressors ~X are simple linear com-
binations of the original data yit, x1it,y, xkit and its time averages
�yi:; �x1i:; . . . ; �xki: defined by �yi: � 1

T

PT
t¼1yit and ~yit � yit � l �yi:, and analogously

for the regressor variables. This realization allowed the calculation of the
GLS estimator without the need for inverting the usually problematically
large O matrix.

Another important case where a theoretical development in methodology
led to a dramatic lowering of the computational burden and hence allowed
the calculation of models that would otherwise have had to wait perhaps for
decades for sufficient advancements in computer technology is the simula-
tion-based inference for Limited Dependent Variable models, associated with
the name of Daniel McFadden (1989). See Section 2.5 below, MCFADDEN,
DANIEL and SIMULATION-BASED ESTIMATION.

2.2 Optimization

Many econometric estimators with attractive statistical properties require the
optimization of a (generally) nonlinear function of the form:

q � argmax
y

Fðy; dataÞ ð3Þ

over a vector of unknown parameters y of dimension p, typically consid-
erably larger than 1. Examples are: the method of maximum likelihood,
minimum-distance (OLS, LAD, GMM), and other extremum estimators.
(The need to optimize functions numerically is also important for certain
problems in computational economics, for example, the problem of optimal
control.) Algorithms for optimizing functions of many variables are a key
component in the collection of tools for econometric computation. The
suitability of a certain algorithm to a specific optimization econometric
problem depends on the following classification:

1. Algorithms that require the calculation of first and possibly second deriv-
atives Versus algorithms that do not. Clearly, if the function to be opt-
imized is not twice continuously differentiable (as is the case with LAD) or
even discontinuous (as is the case with the maximum score estimator for
the semiparametric analysis of the binary response model – see Manski,
1975), algorithms that require differentiability will not be suitable. The
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leading example of an algorithm not relying on derivatives is the nonlinear
simplex method of Nelder and Meade (1965).

2. Local Versus global algorithms. Optimization algorithms of the first type
(for example, Gauss-Newton, Newton-Raphson, and Berndt et al. (1974))
search for an optimum in the vicinity of the starting values fed into the
algorithm. This strategy may not necessarily lead to a global optimum
over the full set of parameter space. This is of particular importance if the
function to be optimized has multiple local optima, where typically the
estimator with the desirable statistical properties corresponds to locating
the overall optimum of the function. In such cases, global optimization
algorithms (for example, simulated annealing and genetic optimization
algorithm) should be employed instead.

Special methods are necessary for constrained optimization, where a func-
tion must be maximized or minimized subject to a set of equality or ine-
quality constraints. These problems, in general considerably more
demanding than unconstrained optimization, can be handled through three
main alternative approaches: interior, exterior, and re-parameterization
methods.

Comprehensive reviews of optimization methods in econometrics can be
found in Goldfeld and Quandt (1972), Quandt (1983), and Dennis and
Schnabel (1984). These studies also discuss the related issue of the numerical
approximation of derivatives and illustrate the fundamental link in terms of
computation between optimization and the problem of solving linear and
nonlinear equations. For similar methods used in economics, see NUMERICAL

OPTIMIZATION METHODS IN ECONOMICS and NONLINEAR PROGRAMMING.

2.3 Sorting

Of special importance for computing the class of estimators known as robust
or semiparametric methods is the ability to sort data rapidly and compu-
tationally efficiently. Such a need arises in the calculation of order statistics,
for example, the sample median and sample minimum required by the first
two estimation examples given above. The leading sorting algorithms, bub-
ble-, heap-, and quick-sort, have fundamentally different properties in terms
of computation speed and memory requirements, in general depending on
how close to being sorted the original data series happens to be. For a
practical review of the leading sorting algorithms, see Press et al. (2001, ch.
8).

2.4. Numerical approximation and integration

Numerical approximation is necessary for any mathematical function that
does not have a closed form solution, for example, exponential, natural
logarithm, and error functions. See Abramowitz and Stegun (1964) for an
exhaustive study of mathematical functions and their efficient approxima-
tion. Judd (1996) focuses on numerical approximation methods particularly
useful in economics and econometrics.

Numerical integration, also known as numerical quadrature, is a related
approximation problem that is crucial to modern econometrics. There are
two key fields of econometrics where integrals without a closed form must be
evaluated numerically. The first is Bayesian inference where moments of
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posterior densities need to be evaluated, which take the form of high-di-
mensional integrals. See, inter alia, Zellner, Bauwens and VanDijk (1988).
The second main class is classical inference in limited dependent variable
(LDV) models; for example, Hajivassiliou and Ruud (1994). See Geweke
(1996) for an exhaustive review of numerical integration methods in com-
putational economics and econometrics, and Davis and Rabinowitz (1984)
for earlier results.

It is important to highlight a crucial difference between the numerical
integration problems in Bayesian inference and those in classical inference
for LDV models, which makes various integration-by-simulation algorithms
be useful to one field and not the other: in the Bayesian case, typically a
single or a few high-dimensional integrals have to be evaluated accurately. In
contrast, in the classical LDV inference case, quite frequently hundreds of
thousands of such integrals need to be approximated.

2.5 Computer simulation

The need for efficient generation of pseudo-random numbers with good sta-
tistical properties on a computer appears very routinely in econometrics.
Leading examples include:

� Statistical methods based on resampling, primarily the ‘jackknife’ and the
‘bootstrap’, as introduced by Efron (1982). These methods have proven of
special value in improving the small sample properties of certain econo-
metric estimators and test procedures, for example in reducing estimation
bias. They are also used to approximate the small sample variance of
estimators for which no closed form expressions can be derived.

� Evaluation of econometric estimators through Monte Carlo experiments,
where hypothetical data-sets with certain characteristics are simulated re-
peatedly and the econometric estimators under study are calculated for
each set. This allows the calculation of empirical (simulated) properties of
the estimators, either to compare to theoretical mathematical calculations
or because the latter are intractable.

� Calculation of frequency probabilities of possible outcomes in large-scale
decision trees, for which the outcome probabilities are impossible to char-
acterize theoretically.

� Sensitivity analyses and what-if studies, where an econometric model is
‘run’ on a computer under different scenarios of policy measures.

� Simulation-based Bayesian and classical inference, where integrals are
approximated through computer simulation (known as Monte Carlo in-
tegration). Particularly important methods in this context are the follow-
ing: frequency simulation; importance sampling; and Markov chain
Monte Carlo methods (the leading exponents being Gibbs resampling
and the Metropolis/Hastings algorithm). A related class of methods,
known as variance-reduction simulation techniques, includes control vari-
ates and antithetics. See Geweke (1988) and Hajivassiliou, McFadden and
Ruud (1996) for reviews. See also SIMULATION-BASED ESTIMATION.

3. Parallel computation

Parallel processing, where a computation task is broken up and distributed
across different computers, is a technique that can afford huge savings in
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terms of total time required for solving particularly difficult econometric
problems. For example, the simulation-based estimators mentioned in the
previous section exhibit the potential of significant computational benefits by
calculating them on computers with massively parallel architectures, because
the necessary calculations can be organized in essentially an independent
pattern. An example of such a computer is the Connection Machine CM-5 at
the National Center for Supercomputing Applications in Illinois with 1,024
identical processors in a multiple-instruction/multiple-data (MIMDI) con-
figuration. The benefits of such a parallel architecture on the problem of
solving an econometric optimization classical estimator not involving sim-
ulation can also be substantial, since such estimators involve the evaluation
of contributions to the criterion (for example, likelihood) function in the case
of independently and identically distributed (i.i.d.) observations. Since typ-
ical applications in modern applied econometrics using cross-sectional and
longitudinal data sets involve several thousands of i.i.d. observations, the
potential benefits of parallel calculations of such estimators should be ob-
vious. The benefits of a massively parallel computer architecture become
even more pronounced in the case of simulation-based estimators. See Nag-
urney (1996) for a discussion of parallel computation in econometrics.

An alternative approach for parallel computation that does not involve a
single computer with many processors has been developed recently and offers
considerable promise for computational econometrics. Through the use of
specialized computer languages, many separate computers are harnessed to-
gether over an organization’s intranet or even over the internet, and an
econometric computation task is distributed across them. The benefits of this
approach depend critically on the relative burden of the overhead of com-
municating across the individual computers when organizing the splitting of
the tasks and then collecting and processing the separate partial results. Such
distributed parallel computation has the exciting potential of affording for-
midable super-computing powers to econometric researchers with only mod-
est computer hardware.

Vassilis A. Hajivassiliou

See also

<xref=xyyyyyy> longitudinal data analysis;
<xref=xyyyyyy> McFadden, Daniel;
<xref=xyyyyyy> nonlinear programming;
<xref=xyyyyyy> numerical optimization methods in economics;
<xref=xyyyyyy> robust estimators in econometrics;
<xref=xyyyyyy> simulation-based estimation.
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Index terms

Bayesian inference
bootstrap
classical inference
computational methods
generalized least squares
generalized method of moments
importance sampling simulation
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jackknife
least absolute deviations
maximum likelihood
numerical integration
optimal control
ordinary least squares
random effects models
simulation-based estimation
Stone, J. R. N.
Markov chain Monte Carlo methods
parallel computation
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