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Abstract

An extensive literature in econometrics and in numerical analysis has considered
the computationally difficult problem of evaluating the multiple integral representing
the probability of a multivariate normal random vector constrained to lie in a rectan-
gular region. A leading case of such an integral is the negative orthant probability,
implied by the multinomial probit (MNP) model used in econometrics and biomet-
rics. Classical parametric estimation of this model requires, for each trial parameter
vector and each observation in a sample, evaluation of a normal orthant probability
and its derivatives with respect to the mean vector and the variance-covariance ma-
trix. Several Monte Carlo simulators have been developed to approximate the orthant
probability integral and its linear and logarithmic derivatives that limit computation
while possessing properties that facilitate their use in iterative calculations for sta-
tistical inference. In this paper, I discuss Gauss and FORTRAN implementations of
13 simulation algorithms, and I present results on the impact of vectorization on the
relative computational performance of the simulation algorithms. I show that the 13
simulators differ greatly with respect to the degree of vectorizability: in some cases
activating the CRAY-Y/MP4 vector facility achieves a speed-up factor in excess of 10
times, while in others the gains in speed are negligible. Evaluating the algorithms in
terms of lowest simulation root-mean-squared-error for given computation time, I find
that (1) GHK, an importance sampling recursive triangularization simulator, remains
the best method for simulating probabilities irrespective of vectorization; (2) the crude
Monte-Carlo simulator CFS offers the greatest benefits from vectorization; and (3) the
GSS algorithm, based on “Gibbs resampling,” emerges as one of the preferred methods
for simulating logarithmic derivatives, especially in the absence of vectorization.
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Simulating Normal Rectangle Probabilities and Their Derivatives:
The Effects of Vectorization

1 Introduction

An extensive literature in econometrics and in numerical analysis! has considered the

problem of evaluating the multiple integral
b
P=PBin®) = [ 0o uQdv=ByL(V € B) 1)

where V' is a m-dimensional normal random vector with mean pu, covariance matrix €2,
and density n(v — p, ), and 1(V € B) is an indicator for the event B = {V | a <
V < b}. A leading case of such an integral is the negative orthant probability, where
B = {V | V < 0}.2 The problem is computationally difficult unless the dimension of
the integral is less than four or the covariance matrix () has a special structure, such
as a factorial structure with a small number of factors.

The multinomial probit (MNP) model, which is of particular interest in econometrics
and biometrics for modelling discrete response behaviour, has cell probabilities that
are negative orthant probabilities, with p and €2 depending on unknown parameters
and, in general, on covariates.> In this model, a random sample of observations on
N individuals, indexed by ¢ = 1,---, N, is available. Each individual evaluates all
J (finite) available (mutually exclusive and exhaustive) choices, and selects the one

that gives the highest utility. Alternative j has observable attributes X, and yields

1See Clark (1961), Daganzo (1980), Davis and Rabinowitz (1984), Dutt (1973, 1976), Fishman
(1973), Hammersley and Handscomb (1964), Horowitz, Sparmonn, and Daganzo (1981), Moran (1984),
Owen (1956), Rubinstein (1981), Stroud (1971), and Thisted (1988).

2Where convenient, 1 write P(B; i, Q) as P(a,b; 1, Q), or when a = —o0, as P(b; i1, Q). Note that
P(b;p, Q) = P(0; u—0,9Q) is the cumulative multivariate normal distribution, also denoted N (b; i, ).
This setup covers all cases of interest, since components V; for which both limits are infinite can be
margined out analytically, and components V; with a; finite and b; = +oo can be converted to the
previous case by a reversal of sign.

3For example, see McFadden (1986).



(random) latent utility y5 = X;3 + ¢;. Observed choice is represented by the index &
such that {k|y; = maz{y},---,y5}}.

Classical estimation of this model requires, for each trial parameter vector and each
observation in a sample, evaluation of (1) and of its linear and logarithmic derivatives
with respect to pu and Q.* Hajivassiliou (1993) explains that in a typical example with
J =16, N = 1000, and X consisting of 20 explanatory variables, classical estimation
of 3 and Q) = Fee by standard numerical quadrature® would require longer than 3
months of CRAY-1 CPU!

Before the advent of simulation estimation methods, researchers tried to ease this
computational burden by relying on distributional assumptions, which unfortunately
implied typically unrealistic restrictions on the allowed choice pattern. Examples are
the extreme-value assumptions of McFadden (1973) leading to analytic expressions for
P(B; 11,2) in the form of the multinomial logit model; the scalar €2 structure of Haus-
man and Wise (1978), and the factor-analytic structure of Heckman (1981), either im-
plying computationally tractable (1). McFadden (1989) and Pakes and Pollard (1989)
developed the method of simulated moments, which requires only unbiased, though
not necessarily highly accurate, simulations for (1). In view of this, an extensive sur-
vey study by Hajivassiliou, McFadden, and Ruud (1992) examined the performance
of 13 simulation algorithms that have been developed for approximation of (1) and
its derivatives that limit computation while possessing properties that facilitate their
use in iterative calculations for statistical inference. Section 2 overviews these simu-
lation methods and summarizes some of the Hajivassiliou et al (1992) findings, which
were obtained on PC-486 microcomputers using the GAUSS matrix language. Sec-
tion 3 describes the test problems used to investigate the operational properties of the
methods and outlines GAUSS and FORTRAN implementations of them. Section 4

discusses the issue of vectorizability of the various simulators using the coding of three

4 Alternative Bayesian estimation methods exist for this problem as well. These methods require the
evaluation of integrals like (1) only for the calculation of the posterior density, instead of repeatedly.
The dimension of the integration needed is now augmented from m by the number of unknown
parameters that are to be estimated. See McCulloch and Rossi (1993) and Geweke, Keane, and
Runkle (1993).

Swhich would be highly inaccurate in such context



particular algorithms as illustration.® This Section also discusses timing experiments
that suggest that vectorization can have a very significant impact on the computa-
tional performance of the various algorithms. Section 5 overviews the comparative
root-mean-square (RMSFE) characteristics of the 13 algorithms for a given expendi-
ture in computation time and investigates the impact of vectorization on their relative
performance. A key finding is that the rankings change significantly depending on

whether vectorization is activated or not. Section 6 concludes the paper.

2 Simulation Methods

Subsection 2.1 gives a brief overview of the characteristics of the 13 simulators. The
linear and logarithmic derivatives of choice probabilities are listed in Subsection 2.2.
Subsection 2.3 discusses very briefly the simulation approaches considered in this pa-
per. A more detailed presentation of the algorithms and their properties is given in
Hajivassiliou (1993), Section 4.

2.1 Overview

The general principles involved in the construction of the simulation algorithms are
the following: sequential sampling, acceptance/rejection, the distinction between un-
biased and asymptotically unbiased simulation, the method of importance sampling,
and variance-reduction methods, specifically antithetic variates and control variates.
See Hendry (1984) for a discussion of fundamental concepts in Monte-Carlo integra-
tion and its use in econometrics. Table 1 summarizes the methods and the mnemonics
adopted. A complete listing of all acronyms used in this paper appears in the last ta-
ble (8). The reader is referred to Hajivassiliou (1993) for more detailed descriptions of
the simulation algorithms and their properties. In summary, the first method, termed

the crude frequency simulator, is the most direct one in that it computes the sample

6See Modi (1988) for a detailed discussion of the concepts of “vectorization” and “parallel-
processing”.



frequency of simulated draws and uses them as approximations for the true probabili-
ties. Next, a generalization of the CF'S employs the technique of importance sampling,
thereby converting the sample frequency to a weighted sample frequency that can have
a smaller sampling variance. This is called the normal importance sampling (NIS)
simulator. The kernel-smoothed frequency simulator (KFS) generalizes the CFS by
replacing the discrete zero-one outcome of the binomial experiment by a continuous
outcome on the [0,1] interval. This simulator is designed to overcome the discontinu-
ities in the CF'S with respect to the parameters of the underlying normal distribution.
The fourth through seventh simulators, the Stern-decomposition simulator (SDS), the
Geweke-Hajivassiliou-Keane simulator (GHK), the parabolic cylinder function (PCF)
simulator, and the Dedk Chi-Square Simulator (DCS), are also applications of impor-
tance sampling like the NIS and possess the property of smoothness, also possessed
by the KFS. Whereas the KFS is generally a biased simulator, these simulators are
both smooth and unbiased. These simulators differ according to the importance sam-
pling distribution that they use. All of the simulators, with the exception of ARS and
GSS, are simulators of P and its derivatives. Methods GSS and ARS do not produce

estimates for probabilities and derivatives, but only of the logarithmic derivatives.”

The simulators in a second group apply specifically to the logarithmic derivatives of
P, because these simulators address directly the problem of sampling from a truncated
normal distribution. The acceptance/rejection simulator (ARS) is another importance
sampling technique which additionally filters out draws that fall outside an acceptance
region determined by the truncation. The Gibbs sampler simulator (GSS) is an alter-
native method for sampling from the truncated multivariate normal distribution. The
GSS is smooth in the distribution parameters, but the ARS is not.

A third approach is taken in the sequentially unbiased simulators (SUS), which
construct unbiased simulators of 1/P. The last method, approximately unbiased sim-
ulators (AUS), comprises a family of simulators that are approximately unbiased for

1/P. The members of this family can be constructed from most of the simulators of P

"Two versions of ARS are actually studied, ARSE, based on an exponential comparison density,
and ARST, based on a truncated normal comparison density.



Table 1

Simulators for P, V,P, VqoP, V , log P, and Vqlog P

Name of Simulator Mnemonic | Unbiased | Unbiased | Unbiased
for P for VP | for Vlog P
Crude Frequency Simulator CFS y n n
Normal Importance Sampling Simulator | NIS y n n
Kernel-Smoothed Frequency Simulator | KFS yk n n
Stern Decomposition Simulator SDS y n n
Geweke-Hajivassiliou-Keane Simulator | GHK y n n
Parabolic Cylinder Function Simulator | PCF y n n
Dedk Chi-square Simulator DCS y n n
Acceptance/Rejection Simulator ARS - - y
Gibbs Sampler Simulator GSS Yok
Sequentially Unbiased Simulator SUS n n n
Approximately Unbiased Simulator AUS n n n

* Window parameter must approach 0.

s Number of Gibbs resamplings must approach co.

in the first group.

2.2 Derivatives of Rectangle Probabilities

The derivatives of (1) with respect to p and €2 can be written:

V.P(B;u, Q) =

Q! /_+OO 1(v € B)(v — p)n(v — p, Qdv = Q 'Eyv1(V € B)(V — p),

oo

VoP(B; 1, Q) =

(1/2)9_1/ ) 1(veB)[(v—p)(v—p) —Qnv—puQdv- Q' =

—00

(1/2)2 "Ev1(V € B)[(V = m)(V —p) = Q] - Q"

These formulas imply

V,log P(B;p,Q) =V, P(B;u,Q)/PB;u,Q) =Q 'Eyp(V — ),
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Valog P(B;u, Q) =V,P(B;u,Q)/P(B;u,Q) =
(1/2)Q " Eyg[(V —p)(V —p) — Q- Q77 (5)

where “EyB” denotes expectation with respect to the conditional density n(v—p, 2, B)
=1(v € B)n(v — 1, Q)/P(B; u, Q). Note that (2) and (3) are partial moments of the
density, and (4) and (5) are conditional moments. A full derivation of these formulae
appears in Hajivassiliou and McFadden (1990).

It is useful for statistical applications to develop techniques for approximating (4)—
(5) as well as (1)—(3). See Hajivassiliou (1993) for a review of available simulation
estimation methods for LDV models, where it is explained how these estimators rely
on simulators for expressions (1)—(5). Table 2 summarizes these results. I use the
following acronyms: MSM refers to the Method of Simulated Moments of McFadden
(1989) and Pakes and Pollard (1989); SSML denotes the Smoothly Simulated Maximum
Likelihood estimator of Borsch-Supan and Hajivassiliou (1992); MSS1 is the Method
of Simulated Scores approach of Hajivassiliou and McFadden (1990); SEM1 represents
the Simulated EM algorithm of Ruud (1991); finally, MSS2 refers to an alternative
MSS estimator due to van Praag et al (1986) and Hajivassiliou and McFadden (1990);
and SEM2 is an alternative SEM algorithm proposed by van Praag et al (1992).

Table 2: Simulation Estimators for LDV Models

Estimator | Simulated Functions

MSM
SSML
MSS1 (4
SEM1 (4
MSS2 (1
SEM?2 (1

Define h(v) to be the polynomial array



Then, equations (1)—(3) can be written

H=H(B;u,Q) = /+00 1(v € B)h(v)n(v — u, Q)dv = Ey1(V € B)h(V), (7)

—00

and equations (4) and (5) can be written
He =Eysh(V) = H/P(B; 1, ), (8)

This implies that the northwest element of H gives (1), the remainder of the first row

gives (2), and the southeast subarray gives (3), as follows:

o

2" )
The analogous elements of Hq give one, (4), and (5):
[ @
i~y ) 1o

Both the GAUSS and FORTRAN implementations of the thirteen simulation algo-
rithms discussed in subsection 3.2 below were designed to return H and H¢ as defined

here.

2.3 Simulation Procedures

For statistical inference, it is often unnecessary to achieve high numerical accuracy in
evaluating (1)—(5). For example, simulating P by the frequency of the event 1(v € B)
in a number of Monte Carlo draws comparable to sample size will tend to produce
statistics in which the variance introduced by simulation is at worst of the same mag-
nitude as the variance due to the observed data. Further, when probabilities appear
linearly across observations in an estimation criterion, independent unbiased simulation
errors are averaged out. Then, a small, fixed number of draws per probability to be
evaluated will be sufficient with increasing sample size to reduce simulation noise at the

same rate as noise from the observed data.® This makes it computationally feasible to

81n outline, suppose 6 is an M-estimator that solves

0= Nl/zENs(é,n)7
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treat statistical problems that require repeated evaluation of high-dimensional normal
rectangle probabilities. McFadden (1989), Pakes and Pollard (1989), and McFadden
and Ruud (1990) analyze the statistical properties of such estimators, and Hajivassiliou
(1993) and Hajivassiliou and Ruud (1993) survey simulation estimation methods for
LDV models.

The first seven methods considered here, CFS through DCS, simulate H. Methods
ARS and GSS simulate Ho by drawing from the conditional distribution of V' given
V € B. Method SUS approximates Ho = H/P using independent unbiased simulators
of H and 1/P. Method AUS is similar but uses a biased simulator of 1/P to speed
computation. Some versions of AUS require a positive simulator of P. This is guar-
anteed by NIS, SDS, GHK, PCF, DCS, and by KFS if a positive kernel is used. The
number of draws required in ARS is random. The remaining methods will in general
use a fixed number of repetitions, which may in statistical applications increase with
sample size.

To understand what is perhaps the most intuitive simulation method, write the
random vector V' as

V=pu+TIn, (11)

where 7 is an independent standard normal vector of dimension m and I" is a lower

triangular Choleski factor of €2, so 2 = I'"". A simple approach to approximating (1) is

where s is an approximation (involving Monte Carlo elements 1) to a function o(f) of P and its
derivatives that has expectation zero at the true parameter #°, and Ex denotes empirical expectation
over an independent sample of size N. Then, one can write

0= NY2Eyns(0,1) = NV?Exo(6°) + NY2Ex[s(6°,n) — 0(0°)] + NY?Ex[o(d) — 0(6°)]

N2 Ex[s(0,n) - 0(6) - (0% ) + 0(6°)]

Under standard regularity conditions, the first term is asymptotically normal, reflecting the noise in
the observations, and the third term is proportional to v/ N (é — 0°). The last term will be of order
0p(1) for simulators that satisfy a stochastic equicontinuity condition. When s is a smooth function of
crude frequency simulators of P, V, P, etc., obtained using R Monte Carlo draws, the second term will
behave like /N/R times an expression that is asymptotically normal, so that it will be comparable
in magnitude to the first term when R and N are proportional. If, in addition, there is any averaging
out of simulation noise across observations, the second term may be of order o,(1) when R and N are
proportional, or comparable in magnitude to the first term for fixed R. This argument summarizes
Theorem 1, Section 5 of Hajivassilion and McFadden (1990).



to make repeated Monte Carlo draws for 7, use (11) to calculate V' for each parameter
vector, and then form an empirical analogue of the expectation in (7). Below I call
this the crude frequency simulator (CFS) of P(B;u,?) and its derivatives. Similarly,
a crude frequency simulator for Ho can be formed by rejecting draws of V' that do not
satisfy the conditioning event V' € B, and then forming an empirical analogue of the
conditional expectation in (8) using the accepted draws. Crude frequency simulators
have both advantages and disadvantages. Their main advantage is that they are quick
to compute and ideal for vectorization. Section 4 below justifies this claim.® They
are not continuous in parameters, however, as they exhibit jumps at parameter values
yielding draws of V on the boundary of B.!® These discontinuities, however, can slow
iterative parameter search.!' In principle, the accuracy of the CFS can be improved by
use of antithetic and control variates, which are general simulation variance-reduction
techniques. See Hendry (1984) for a description of these variance-reduction approaches,
and Hajivassiliou et al (1992) for explicit constructions of random antithetic grids and

of suitable control variates.

3 Monte Carlo Experiments

Subsection 3.1 describes the test problems used to evaluate the operational charac-
teristics of these algorithms, and subsection 3.2 summarizes their implementations in
a series of GAUSS and FORTRAN procedures for simulation of multivariate normal

rectangle probabilities and the derivatives of these probabilities with respect to the

9To ensure this property, one should use direct methods for the generation of normal variates,
e.g., the inverse c.d.f. technique, as opposed to accept/reject techniques. See Devroye (1986) for an
overview of such methods.

0T hese discontinuities do not prevent use of these simulators for statistical inference. If 7 is not
redrawn when parameters change so that “chatter” is avoided, then these simulators are piecewise
constant in parameters, and the manifolds on which discontinuities occur are linear. These properties
imply a stochastic equicontinuity property that is sufficient to make the simulators well-behaved in
statistical inference; see McFadden (1989).

HSee Quandt(1984) for a discussion of iterative parameter search algorithms and their requirements
in terms of continuity and differentiability of the function to be searched over.
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mean and covariances of the normal distribution.!?

3.1 Description of the Test Problems

A case that yields multivariate normal orthant probabilities that are easily calculated

analytically or by quadrature is the one-factor model,
V =+ 5Sn+ Ae, (12)

where S is an m x m diagonal matrix with diagonal elements s;, A is an m x 1 array
of factor loadings, p is an m x 1 vector of means, n is an m X 1 vector of independent
standard normal variates, and € is an independent standard normal scalar variate.

Given €, the constraints require
S™Ha—p—Ae) <n<STHb— pu— Ae). (13)

The expressions for P, 0P/, and 0P/0\,, can be evaluated by one-dimensional
Gaussian quadrature, and in a few cases evaluated analytically, which will provide
benchmarks to gauge the accuracy of the 13 simulation algorithms in the experiments
below. One analytic case occurs when the factor is loaded only on the last alternative,
so that it is equivalent to a change in the scale of V;,,. Hajivassiliou et al (1992) show

/2 and A to zero yields analytic expressions

how the transformation s,, to (s2, + \2))
for P and its derivatives.

A second analytic case occurs when a = —oo, b = 0, p = 0, S is the identity
matrix, and A is a vector of ones. This corresponds, of course, to the independent
normal distribution restricted on the negative orthant. Then,'

P = /+00 O(—€)"p(—€)de =1/(m+ 1), (14)

oo

12Both versions of the programs are available from the author upon request, or by anonymous FTP
from the site econ.yale.edu, subdirectory pub/vassilis/simulation.

13The Hajivassiliou et al (1992) study also considered the case of a random effect combined with
an autoregressive structure of order one, for which no analytic solution exists. I do not consider this
model here, since it does not offer any significant additional insights with respect to the importance
of vectorization, which is the focus of the present paper. The key feature of this model is to allow one
to consider increasing the dimension m. Typically, however, m is much smaller than the number of
repetitions VR, and so the potential impact of vectorization is primarily over NR.

11



“+o00

OP) Oy, = / B(—e)" N g(—o)de,

—00
—+00

OP/ON,, = / O(—e)™ L p(—e)?ede.

—00

3.2 Description of Simulation Algorithms

The simulation methods presented in this paper have been coded in GAUSS and in
FORTRAN. Both versions of the programs are available from the author upon request
or by anonymous FTP from the site econ.yale.edu:pub/vassilis/simulation. Each

simulator procedure requires the following standard inputs; the interpretation of some

inputs may vary from routine to routine, and not all are used in all routines:

M
VMU

WI

NR
U

Dimension of the multivariate normal

Mean of multivariate normal, an M x 1 vector

Covariance matrix of multivariate normal, an M X M array

Inverse of W

Lower triangular Choleski factor of W, an M x M array

Lower bound of rectangle, an M x 1 vector. {When the lower bound is
—00, set A = (—1.0E10) x ONES(M, 1).}

Upper bound of rectangle, an M x 1 vector. {When the upper bound is
o0, set B = (1.0E10) % ONES(M, 1).}

Number of repetitions

Random variates, an M X R array

PARM Parameters and constants for the simulation

The simulators all return {P,HU,HC}, where P is the scalar rectangle probability,
HU is the (M+ 1) X (M+ 1) array of unconditional partial moments (6), and HC is the
(M+ 1) x (M+ 1) array of conditional moments (7). Parts of the output not provided

by a simulator are set to —999.

In the FORTRAN implementation, two additional inputs are required, MMAX and

NRMAX, specifying the maximum values of M and NR allocated at compilation time.

The programs include code for all statistical functions, spherical transformations,

12



and antithetics routines that are required by the simulation algorithms, and hence are

self-contained.

3.3 Comparative Performance

For each computational experiment I used five hundred Monte Carlo repetitions of all
thirteen simulation algorithms. The number of simulations in calculating empirical
expectations of the H matrix function was chosen endogenously by the programs, so
as to require approximately the same time for each simulation method. Hence, the
simulators can be ranked in terms of lowest RMSE for a given investment in com-
putation time. The specific results summarized in this Section were obtained through
the GAUSS implementation of the routines on 486/33MHz Personal Computers. The
FORTRAN timings reported in Section 4 were obtained on the CRAY-Y/MP4 super-
computer with 4 processors at the National Center for Supercomputer Applications
(NCSA) of the University of Illinois at Urbana-Champaign.

Figures 1 and 2 describe the first series of experiments I consider here, in which trun-
cated normal vectors V' of dimension m = 2 were generated having the factor structure
(12). Figure 1 gives the 6 types of variance/covariance structure'* studied, with w; =1,
wy ={1 or 8}, and p15 ={0, .6, or .9}, where var V; = w; and cov(Vi, V2) = p1a - wy - wo.
Figure 2 describes the 14 different rectangles/restrictions'® investigated. These rect-
angles were chosen so as to analyze the effect of symmetry around either or both axes,
as well as the location of them either close to the center of the distribution or far out
in the tails. Hence, the experiments incorporate the 84 cases {Al, A2,..., N5, N6}
obtained by combining these 6 correlation structures with the 14 sets of restrictions.

Table 3 gives the true probability P(B;u,(2) for each of the 84 cases, calculated
analytically when possible or by 40-point Gaussian Hermite quadrature. It also gives
other characteristics of the experiments, e.g., the condition number and determinant
of each of the six {2’s studied. The probabilities range from about 1072 to above 0.95.

Mindexed by a number from 1 to 6
3indexed by a letter from A to N

13



Table 3: Characteristics of 84 Experiments
Restrictions {A-N} x Variance-Covariances {1-6}
Exact Probability of Each Case*

|| V.-Cov.1 | V.-Cov.2 | V.-Cov.3 | V.-Cov.4 | V.-Cov.5 | V.-Cov.6 ||

Restr. A (3 x 2) 0.01133 | 0.02113 | 0.02143 | 0.04625 | 0.05656 | 0.07206
Restr. B (3 x 2) 0.34042 | 0.34112 | 0.34135 | 0.04960 | 0.04973 | 0.04974
Restr. C (3 x 2) 0.01133 | 0.00095 | 8.601e-08 | 0.04625 | 0.03617 | 0.02069
Restr. D (3 x 2) | 4.101e-05 | 0.00081 0.00174 | 0.00017 | 3.674e-05 | 9.799e-11
Restr. E (3 x 2) 0.00092 | 0.00023 | 2.662e-08 | 0.00013 | 1.366e-05 | 1.118e-11
Restr. F (3 x 2) 4.101e-05 | 1.036e-09 | 1.123e-13 | 0.00017 | 4.088e-06 | 1.633e-12
Restr. G (5 x 5) 0.12977 | 0.15259 | 0.15422 | 0.03720 | 0.03134 | 0.00792
Restr. H (5 x 5) 0.12977 | 0.08309 | 0.04057 | 0.03720 | 0.01960 | 0.00129
Restr. T (10 x 2) 0.02272 | 0.02272 | 0.02272 | 0.09276 | 0.09276 | 0.09276
Restr. J (10 x 2) 0.68269 | 0.68269 | 0.68269 | 0.09948 | 0.09948 | 0.09948
Restr. K (10 x 2) | 0.02272 | 0.02272 | 0.02272 | 0.09276 | 0.09276 | 0.09276
Restr. L (6 x 4) 0.00135 | 0.00121 0.00074 | 0.16260 | 0.16295 | 0.16304
Restr. M (6 x 4) 0.95192 | 0.95311 0.95444 | 0.19688 | 0.19738 | 0.19741

Restr. N (6 x 4) 0.00135 | 0.00121 0.00074 | 0.16260 | 0.16295 | 0.16304
Cond.Num.(92) 1.000 3.999 18.999 63.999 101.139 | 345.446
Det.(2) 1.000 0.640 0.190 64.000 40.960 12.160

* After the name of each restriction type, the dimensions of the rectangle appear in parentheses.

For each one of the 84 cases studied, the methods were rated in terms of root-mean-
squared-error relative to the best method for that case, e.g., a RMSFE Rating of 0.5
means that the method in question exhibited double the RMSFE of the method with
the lowest RM SE for that case.'® Overall, in the 84 cases studied the average ratings
of the various methods are obtained for simulating the probability expression (1) and
the logarithmic derivatives (4)—(5).17

Each figure presenting the relative RMSFE ratings consists of fours parts: In the

6Interested readers may request from the authors considerably more detailed tables that report bias,
variance, mean-squared-error, quantiles, robust statistics, and timing results for all cases studied.

17Simulation of the linear derivatives (2)—(3) is more akin to simulating the probability (1) itself
compared to simulating the logarithmic derivatives. Hence, the linear derivative results are not re-
ported here. Interested readers can request them from the author.
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first, average ratings are given for each of the 6 variance-covariance structures across all
14 restrictions. Hence this part allows one to select the simulator with the best RMSE
performance irrespective of the type of restriction for specific variance-covariance struc-
ture. The second and third parts of each figure allow one to do the converse, namely
select the best simulator for specific types of restrictions, irrespective of the variance-
covariance structure. The fourth and final part of each figure reports summary ratings

of the simulators averaged across all 84 restriction and covariance types.

Table 4: Average RMSFE Ratings® across 84 Cases
PC Gauss Results

Probabilities | Logarithmic Derivatives
GSS ** | ARSE 0.021
ARSR 1 AUS 0.087
ARSE k| SUS 0.088
KFS 0.025 | ARSR 0.122
SDS 0.143 | DCS 0.138
CFS 0.203 | KFS 0.169
DCS 0.204 | CFS 0.250
PCF 0.297 | SDS 0.367
NISE  0.357 | NIST 0.410
NIST  0.610 | NISE 0.430
SUS 0.762 | GHK 0.442
AUS 0.762 | GSS 0.461
GHK  0.934 | PCF 0.669

* Average RMSE Rating = 8—14 iil RM SE(given method in case k)/RMSE(best method for case k).

** ARSE, ARSR, and GSS not applicable.

Figures 3 and 4 summarize the RMSFE results from these 84 experiments first re-
ported in Hajivassiliou et al (1992), performed on 486/33 PC microcomputers using
the GAUSS matrix language. The main findings are: GHK can be recommended as
unambiguously the best performing method for simulating normal orthant probabili-
ties, achieving an overall RMSE rating of 93%, compared to about only 76% for the
next best methods, AUS and SUS. For simulating derivative expressions, the PC'F
method exhibited the highest overall rating, 67%, while GSS and GHK came next.

It is interesting to note that the normal importance sampling methods, NISFE and
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NIST, seemed to perform fairly well, bettered only by 3 methods in the case of prob-
abilities, and by 2 methods in the case of derivatives. GHK appeared more robust
than all other methods, in that it performed at or near the top in each one of the 84
cases studied.'® In particular, it performed even more impressively relative to the other
algorithms in the most difficult cases of either high correlation among the elements of
V and/or very low probability mass in the restriction region. The consequences for the
performance of the simulation methods of increasing the number of simulations used
is another important issue studied by Hajivassiliou et al (1992).

In the next two Sections, I discuss the concept of vectorization and investigate the

impact vectorization has on the questions raised above.

4 Vectorization Issues

The 13 simulation algorithms discussed in Section 3.2 differ greatly in the extent to

4

which they can be “vectorized.” This term refers to certain characteristics of an algo-
rithm that lead to greater speed benefits on modern supercomputers equipped with a
so-called “vector facility,” as, for example, the one on the CRAY-Y/MP4 at the NCSA
in Illinois. Such a mechanism achieves quicker calculations on adjacent elements of
a vector. For a good introduction to the concepts of “vectorization” and “parallel-
processing,” see Modi (1988).

Without delving deeply into computer science issues, a simple illustration is the
following. Of the 13 simulation algorithms studied, an algorithm that is highly vector-
izable is CF'S, since there exists complete independence between the generation of each
draw. In contrast to this, the GSS method is highly non-vectorizable because, while
it requires independent operations across different simulations, for a given simulation
the operations are dependent in the Markov chain structure that defines the Gibbs
resampling technique.

It is important to note that the PC-GAUSS results discussed in the previous section

discriminate against methods like GSS, that are not substantially vectorizable, since

BIndeed, GHK achieved a first-place rating in over 70 of the 84 cases studied.
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GAUSS is particularly efficient for vector operations. In timings reported in Table 5
below using GAUSS, vectorized-, and non-vectorized-FORTRAN codes, I confirm that
methods that are difficult to vectorize then gain in relative speed. The impact of
vectorization techniques on the performance of the simulation algorithms studied is
potentially a very important issue that I investigate in this paper.

To illustrate the differing degrees of vectorizability of algorithms, I present pseudo-
code in matrix GAUSS-like language for three of the thirteen simulators considered in

this paper, CFS, GHK, and GSS. First, I give some notation:

e Problem: Draw random deviates from the truncated density y* ~ N( MU , W )
M x1 Mx1 MxM

such that A <y*< B

M x1 _M><1

e R = number of simulations, G = number of Gibbs resamplings.

. MKVEC : vector {1,2,---, M}, excluding K.
(M—-1)x1

e RMATU = {M x R matrix of U[0, 1] random variates},
RMATN = {M x R matrix of N[0, 1] random variates}.

e Cholesky factor C : defined by W=CxC and WI =W~
M x M

e SUMC(X), MAXC(X), MINC=(X): calculate M x 1 vectors of the SUMS, MAXIMA,
and MINIMA respectively of the columns of the M x N matrix X.

e PHEE(X): calculate the N(0,1) c.d.f., i.e., ®(X).

e PHEEINV(X): calculate the N(0,1) inverse c.d.f., i.e., ®7(X).

As the following shows, the CFS algorithm requires only vector operations, without

the need for any DO-loops:
The CFS Algorithm
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V=CxU;
AA=(A-MU)*ONES(1,NR) ;
BB=(B-MU) *ONES (1,NR) ;

FF=(V.<BB) .x (V.>AA);
FF=MINC(FF) ;
P=SUMC (FF) /NR;

The GHK algorithm is also quite vectorizable, only requiring a DO-loop over the

(small) dimension M:

The GHK Algorithm

J=1;
IVEC=1;
TA=PHEE((A1-MU1/C1)*0NES(1,NR) ;
TB=PHEE ((B1-MU1/C1)*0NES(1,NR) ;
TT=PHEEINV(U[1,.] .* TA + (1-U[1,.]) .* TB);
WGT=TB-TA;
DO WHILE J<M;
J=J+1;
TA=PHEE ((AJ-MUJ/CJ) *0ONES(1,NR) ;
TB=PHEE ((BJ-MUJ/CJ) *0ONES (1,NR) ;
IVEC=IVEC|J;
WGT=WGT .* (TB-TA);
ENDO;
P=SUMC (WGT’) /NR;

In complete contrast to the two algorithms above, the GSS method cannot be vec-
torized to any significant degree: it requires three DO-loops, over simulations R, Gibbs
resamplings G, and dimension M. The key problem is that unlike M, which is “small,”
the outer loops are “large” (over NR and G). This is because Gibbs resamplings follow

a Markov scheme, and are thus by nature not independent:
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The GSS Algorithm

I=0;
V=(A+B)/2-MU; % initial vector
DO WHILE I<R; % loop over repetitions
I=1+1;
J=0;
DO WHILE J<G; % loop over resamplings
J=J+1;
K=K+0;
DO WHILE K<M; % loop over k
K=K+1;
MKVEC=(1,...,M excluding K);
CSDk=sigma(k given -k); % see text
CMUk=mu(k given -k); % see text
TA=PHEE ( (Ak-MUk-CMUk) /CSDXk) ;
TB=PHEE ( (Bk-MUk-CMUk) /CSDXk) ;
UKJ=U[k,j];
Vk=CMUk + CSDk*PHEEINV(UKJ*TA + (1-UKJ)=*TB);
ENDO;
ENDO;
VBAR=VBAR+V;
ENDO;

VBAR=INV (W) *VBAR/NR;

To investigate the impact different vectorizability has on the operational charac-
teristics of the 13 simulators, I performed the following timing experiment: The 13
algorithms were run over all the 84 correlation/restrictions configurations described
above and their computational performance was noted. Two different implementations
of the algorithms were compared, the first in the (vectorized) matrix language GAUSS,
and the second in FORTRAN. In the FORTRAN case, the experiments were repeated
once with and once without activating the vector-processor on the CRAY-Y/MP4.
Table 5 gives the relative speed characteristics of the various simulators in both the
vectorized GAUSS implementation as well as the vectorized and non-vectorized FOR-
TRAN versions, averaged over all 84 correlation/restriction configurations described
above. The common characteristic of all the numbers reported is that the time re-

quired to generate z simulations using the CFS algorithm is the same along a given

19



column, where z = {500, 1000, 2000, 5000, and 10000}. For example, I found that
with GAUSS vectorization one can generate on the average 148 GHK, 12 GSS, and
69 ARSRE simulations in the same amount of time taken for 10,000 CFS simulations.
With FORTRAN vectorized on the CRAY-Y/MP4 these numbers remain comparable
(123, 56, and 10 respectively). These numbers, however, change dramatically when the
vector facility is switch off: they now become 1651 for GHK, 144 for GSS, and 1,000
for ARSE simulations. Hence, this simple experiment suggests that the RMSFE rank-
ings could change substantially without vectorization. In particular, note that without
vectorization GSS rises considerably in prominence, which accords with the findings in
Hajivassiliou and Ruud (1993) of very satisfactory performance of the MSS variants

based on GSS simulations. This question is the focus of the next Section.

Number of simulations matching the time taken by a given number of CFS simulatio:

Method PC-GAUSS-V Cray-FORTRAN-S Cray-FORTRAN-V

CFS 500 | 1000 | 2000 | 5000 [ 10000 | 500 | 1000 | 2000 | 5000 | 10000 | 500 | 1000 | 2000 | 5000 | 10000
NISE 26 40 92| 218 429 | 129 | 257 | 513 | 1283 | 2572 | 13 24 44 1 105 202

NIST 10 11 21 20 98 | 50 99 | 199 | 497 993 | 10 10 15 37 73
KFS 24 42 84 | 208 409 | 220 | 437 | 874 | 2184 | 4377 | 20 34 67 | 160 287
SDS 10 10 15 35 70| 52| 104 | 206 | 515| 1036 | 10 10 13 31 99
GHK 10 16 31 73 148 | 83| 165 | 329 | 822 | 1651 | 10 14 26 63 123
PCF 20 36 59 | 169 333|134 | 270 | 542 | 1350 | 2697 | 14 21 46 | 110 184
DCS 10 10 14 35 64| 47| 103 | 192 | 511 932 | 10 10 11 29 53

ARSE 10 10 14 35 69| 50| 100 | 200 | 498 | 1000 | 10 10 12 28 56
ARSR 10 10 10 24 48 | 30 61 | 122 | 305 611 | 10 10 10 20 40

GSS 10 10 10 10 12| 14 14 29 71 144 | 10 10 10 10 10
AUS 10 10 10 10 10| 10 10 10 10 10| 10 10 10 10 10
SUS 10 10 10 10 10| 10 10 10 10 10 | 10 10 10 10 10

PC-GAUSS-V: Results on a 486/33 PC using the matrix language GAUSS
Cray-FORTRAN-S: Results on CRAY-Y/MP4 in FORTRANTT7, Vector Facility not active
Cray-FORTRAN-V: Results on CRAY-Y/MP4 in FORTRAN77, Vector Facility active
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Table 5

5 Results

The 13 simulation algorithms in the FORTRAN implementation were run on the
CRAY-Y/MP4 of NCSA. Each parameter configuration was always run in pairs: one
with vectorization activated achieved by using the -Zp switch on the CF77 compiler,
and another with vectorization deactivated (option -Zc)'. The effects on the perfor-
mance of the algorithms of activating and deactivating vectorization on the CRAY are
summarized in Tables 6 and 7, to be contrasted to the results reported in Table 4,
obtained on the 486/33 PC’s using GAUSS. Recall that the ratings are in terms of
simulation RM SFE for given investment of CPU time.

The first major finding is that GHK, the importance sampling recursive triangu-
larization simulator, remains the best method for simulating probabilities irrespective
of vectorization: Its overall RMSE performance rating is always at the top, being
0.934 with PC-GAUSS, dropping to 0.761 with Cray-Scalar, and rising to 0.835 with
Cray-Vector. The second major finding is that the crude Monte-Carlo simulator CFS
offers the greatest benefits from full vectorization: Activating the vector-facility on the
Cray moves CFS from 7th best with a rating of only 0.187 all the way to 2nd best, with
a rating of 0.404. The final key finding is that the GSS algorithm, based on “Gibbs
resampling,” emerges as the preferred method for simulating logarithmic derivatives in
the absence of vectorization: In the PC-GAUSS and Cray-Vectorized cases it comes out
2nd and 3rd best with ratings of 0.461 and 0.321 respectively, while in the Cray-Scalar
case it jumps to the top of the rankings with a rating of 0.742.

Figures 3-8 give more analytic results, with the PC-Gauss results summarized in
Figures 3-4, the Cray-Scalar in Figures 5-6, and the Cray-Vectorized results in Fig-
ures 7-8. Figures 3, 5, and 7, present RMSE performance results on simulating the

probability expression (1), while the last figure of each set, namely Figures 4, 6, and

9Tn addition to vectorization, the option -Zp also allows “micro-tasking” across the 4 processors.
I experimented with turning this feature off through the switch -Zv but this had only insignificant
effects on the results.
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8, give the results for simulating the logarithmic derivatives (4) and (5). As explained
earlier, in each such figure the results are presented in four parts, (a) to (d). The first
two report performance ratings for each of the 14 restriction types, averaging across all
6 correlation structures, with parts (a) and (b) giving cases A—G and H-N respectively.
Part (c) reports performance for each of the 6 types of correlation, averaging across
the 14 restriction types. Finally, in part (d) I report overall performance, averaging
across all 84 correlation/restriction cases. These Figures allow one to assess the per-
formance of the various simulation algorithms for the different correlation/restriction
configurations, as well as the summary performance averaged across all configurations.
The impact vectorization has on the relative RMSFE rankings of the simulators is quite

striking.

Table 6: Average RMSFE Ratings* across 84 Cases
CRAY-Y/MP4 FORTRAN, Vector Facility Active

Probabilities | Logarithmic Derivatives
GSS <1 ARSE 0.011
ARSR k| SUS 0.024
ARSE 1 AUS 0.026
KFS 0.006 | DCS 0.041
SDS 0.033 | ARSR 0.049
DCS 0.045 | KFS 0.058
NISE  0.113 | SDS 0.165
SUS 0.185 | NISE 0.177
AUS 0.200 | NIST 0.200
PCF 0.254 | GHK 0.310
NIST  0.256 | GSS 0.321
CFS 0.404 | CFS 0.610
GHK  0.835 | PCF 0.726
* Average RMSE Rating = & 3+ | RMSE(given method in case k)/RMSFE(best method for case k).

** ARSE, ARSR, and GSS not applicable.
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Table 7: Average RMSFE Ratings® across 84 Cases
CRAY-Y/MP4 FORTRAN, Vector Facility Active

Probabilities | Logarithmic Derivatives
GSS ** | ARSE 0.016
ARSR 1 AUS 0.038
ARSE k| SUS 0.045
KFS 0.001 | DCS 0.059
SDS 0.106 | KFS 0.061
DCS 0.114 | ARSR 0.092
CFS 0.187 | CFS 0.182
PCF 0.366 | GHK 0.252
NISE  0.384 | SDS 0.276
AUS 0.473 | NIST 0.300
SUS 0.551 | NISE 0.359
NIST  0.591 | PCF 0.697
GHK  0.761 | GSS 0.742

* Average RMSE Rating = 8—14 Eiil RM SE(given method in case k)/RMSE(best method for case k).
** ARSE, ARSR, and GSS not applicable.

6 Conclusions

The problem of evaluating multivariate normal probabilities and their derivatives is
an important one in econometrics and biometrics because such expressions appear in
leading econometric models, such as the multinomial probit (MNP) and other limited
dependent variable models based on normality. Classical estimation of these models
requires, for each trial parameter vector and each observation in a sample, evaluation
of such probability expressions and their derivatives. The problem is computationally
difficult unless the dimension of the integral is less than four or the covariance matrix
() has a special structure, such as a factorial structure with a low number of factors.
This paper examined the vectorizability properties of Gauss and FORTRAN im-
plementations of the 13 Monte Carlo techniques surveyed in Hajivassiliou et al (1992),
and presented results on the impact of vectorization on the relative computational per-
formance of these simulation algorithms. I used several test problems to investigate

the operational properties of the methods, focussing on RMSFE rankings for a given
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expenditure of CPU time, and summarized the computational experience with them. I
also examined the impact of increasing the number of simulations NR. I confirmed the
main finding in Hajivassiliou et al (1992) that for simulating orthant probabilities the
GHK simulator, based on an importance sampling recursive triangularization scheme,
appears overall the best method. This result holds irrespective of vectorization. In ad-
dition, I found that the crude Monte-Carlo algorithm offers the greatest benefits from
vectorization, while the GSS simulator performs excellently in simulating logarithmic
derivatives unbiasedly, especially in the absence of vectorization.

In this paper I concentrated on the importance of the degree of vectorizability of
the simulation algorithms for their relative performance rankings. Another interesting
issue to study would be the computational advantages of using simultaneous processing
on massively parallel computers, like the Connection Machine CM5 at the NCSA, to
distribute the computations of each of the NR repetitions. This could open up the
calculation of econometric models of hitherto unmanageable complexity. I leave this

for future research.
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Table 8: List of Acronyms

Acronym

Description

ARSE
ARSR
AUS
CFS
DCS
GHK
GSS
KFS
LDV
MNP
MSM
MSS1
MSS2
NCSA
NISE
NIST
PCF
RMSE
SDS
SEM1
SEM2
SSML
SUS

Acceptance/Rejection Simulator, Exponential Comparison Density
Acceptance/Rejection Simulator, Recursive Normal Comparison Density
Approximately Unbiased Simulator

Crude Frequency Simulator

Deak Chi-squared Simulator

Geweke-Hajivassiliou-Keane Simulator

Gibbs Sampling Simulator

Kernel-smoothed Frequency Simulator

Limited Dependent Variable Model

Multinomial Probit Model

Method of Simulated Moments'

Method of Simulated Scores?

Alternative Method of Simulated Scores®

National Center for Supercomputer Applications, University of Illinois*
Normal Importance Sampling Simulator with Exponential Sampler
Normal Importance Sampling Simulator with Truncated Normal Sampler
Parabolic Cylinder Function Simulator

Root Mean Squared Error

Stern Decomposition Simulator®

Simulated EM-algorithm®

Simulated EM-algorithm”

Smoothly Simulated Maximum Likelihood Estimation®

Sequentially Unbiased Simulator

! McFadden (1989), Pakes and Pollard (1989)

2 Hajivassiliou and McFadden (1990)

3 Hajivassiliou and McFadden (1990), van Praag and Hop (1987)
4 Urbana-Champaign

5 Stern (1992)

6 Ruud (1992)

7 van Praag et al (1992)

8 Borsch-Supan and Hajivassiliou (1993)
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Figure 1
Variance/Covariance Structures Studied
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Figure 2
Rectangles/Restrictions Studied

Restrictions A-F




Figure 2 (continued)
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Figure 3
RMSE Ratings: PC-Gauss Results
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Figure 3 (continued)
RMSE Ratings: PC-Gauss Results
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Figure 4
RMSE Ratings: PC-Gauss Results
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Figure 4 (continued)
RMSE Ratings: PC-Gauss Results
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Figure 5
RMSE Ratings: Cray-Y/MP Scalar Results
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Figure 5 (continued)
RMSE Ratings: Cray-Y/MP Scalar Results
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Figure 6
RMSE Ratings: Cray-Y/MP Scalar Results
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Figure 6 (continued)
RMSE Ratings: Cray-Y/MP Scalar Results
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Figure 7
RMSE Ratings: Cray-Y/MP Vector Results
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Figure 7 (continued)
RMSE Ratings: Cray-Y/MP Vector Results
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Figure 8
RMSE Ratings: Cray-Y/MP Vector Results
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Figure 8 (continued)
RMSE Ratings: Cray-Y/MP Vector Results
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