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Introduction

• What do we mean with non-unique solutions?
• multiple solution versus multiple steady states

• What are sun spots?
• Are models with sun spots scientific?
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Terminology

• Definitions are very clear
• (use in practice can be sloppy)

Model:

H(p+1, p) = 0

Solution:
p+1 = f (p)



Multiplicity Getting started General Derivation Examples

Unique solution & multiple steady states
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Multiple solutions & unique (non-zero) steady state
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Multiple steady states & sometimes multiple solutions
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Large sun spots (around 2000 at the peak)
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Sun spot cycle (almost at peak again)



Multiplicity Getting started General Derivation Examples

Sun spots in economics

• Definition: a solution is a sun spot solution if it depends on a
stochastic variable from outside system

• Model:

0 = EH(pt+1, pt, dt+1, dt)

dt : exogenous random variable
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Sun spots in economics

• Non-sun-spot solution:

pt = f (pt−1, pt−2, · · · , dt, dt−1, · · · )

• Sun spot:

pt = f (pt−1, pt−2, · · · , dt, dt−1, · · · , st)

st : random variable with E [st+1] = 0
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Sun spots and science

Why are sun spots attractive

• sun spots: st matters, just because agents believe this

• self-fulfilling expectations don’t seem that unreasonable

• sun spots provide many sources of shocks
• number of sizable fundamental shocks small
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Sun spots and science

Why are sun spots not so attractive

• Purpose of science is to come up with predictions
• If there is one sun spot solution, there are zillion others as well

• Support for the conditions that make them happen not
overwhelming

• you need suffi ciently large increasing returns to scale or
externality
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Overview

1 Getting started

• simple examples

2 General derivation of Blanchard-Kahn solution

• When unique solution?
• When multiple solution?
• When no (stable) solution?

3 When do sun spots occur?

4 Numerical algorithms and sun spots
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Getting started

•
Model: yt = ρyt−1

• infinite number of solutions, independent of the value of ρ
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Getting started

•
Model: yt = ρyt−1

• infinite number of solutions, independent of the value of ρ
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Getting started

•
Model: yt+1 = ρyt

y0 is given

• unique solution, independent of the value of ρ
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Getting started

•
Model: yt+1 = ρyt

y0 is given

• unique solution, independent of the value of ρ
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Getting started

• Blanchard-Kahn conditions apply to models that add as a
requirement that the series do not explode

yt+1 = ρyt
Model:

yt cannot explode

• ρ > 1: nique solution, namely yt = 0 for all t
• ρ < 1: many solutions
• ρ = 1: many solutions

• be careful with ρ = 1, uncertainty matters
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State-space representation

Ayt+1 + Byt = εt+1

E [εt+1|It] = 0

yt : is an n× 1 vector
m ≤ n elements are not determined

some elements of εt+1 are not exogenous shocks but prediction errors
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Neoclassical growth model and state space representation

(
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Neoclassical growth model and state space representation

Linearized model:

kt+1 = a1kt + a2kt−1 + a3zt+1 + a4zt + eE,t+1

zt+1 = ρzt + ez,t+1

k0 is given

• kt is end-of-period t capital
• =⇒ kt is chosen in t
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Neoclassical growth model and state space representation
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Dynamics of the state-space system

Ayt+1 + Byt = εt+1

yt+1 = −A−1Byt +A−1εt+1

= Dyt +A−1εt+1

Thus

yt+1 = Dty1 +
t+1

∑
l=1

Dt+1−lA−1εl
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Jordan matrix decomposition

D = PΛP−1

• Λ is a diagonal matrix with the eigen values of D
• without loss of generality assume that |λ1| ≥ |λ2| ≥ · · · |λn|

Let

P−1 =

 p̃1
...

p̃n


where p̃i is a (1× n) vector
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Dynamics of the state-space system

yt+1 = Dty1 +
t+1

∑
l=1

Dt+1−lA−1εl

= PΛtP−1y1 +
t+1

∑
l=1

PΛt+1−lP−1A−1εl
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Dynamics of the state-space system

multiplying dynamic state-space system with P−1 gives

P−1yt+1 = ΛtP−1y1 +
t+1

∑
l=1

Λt+1−lP−1A−1εl

or

p̃iyt+1 = λt
i p̃iy1 +

t+1

∑
l=1

λt+1−l
i p̃iA−1εl

recall that yt is n× 1 and p̃i is 1× n. Thus, p̃iyt is a scalar
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Model

1 p̃iyt+1 = λt
i p̃iy1 +∑t+1

l=1 λt+1−l
i p̃iA−1εl

2 E[εt+1|It] = 0
3 m elements of y1 are not determined

4 yt cannot explode
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Reasons for multiplicity

1 There are free elements in y1

2 The only constraint on eE,t+1 is that it is a prediction error.

• This leaves lots of freedom
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Eigen values and multiplicity

• Suppose that |λ1| > 1
• To avoid explosive behavior it must be the case that

1 p̃1y1 = 0 and

2 p̃1A−1εl = 0 ∀l
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How to think about #1?

p̃1y1 = 0

• Simply an additional equation to pin down some of the free
elements

• Much better: This is the policy rule in the first period
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How to think about #1?

p̃1y1 = 0

Neoclassical growth model:

• y1 = [k1, k0, z1]
T

• |λ1| > 1, |λ2| < 1, λ3 = ρ < 1
• p̃1y1 pins down k1 as a function of k0 and z1

• this is the policy function in the first period
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How to think about #2?

p̃1A−1εl = 0 ∀l

• This pins down eE,t as a function of εz,t

• That is, the prediction error must be a function of the
structural shock, εz,t, and cannot be a function of other shocks,

• i.e., there are no sunspots
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How to think about #2?

p̃1A−1εl = 0 ∀l

Neoclassical growth model:

• p̃1A−1εt says that the prediction error eE,t of period t is a fixed
function of the innovation in period t of the exogenous process,
ez,t
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How to think about #1 combined with #2?

p̃1yt = 0 ∀t

• Without sun spots
• i.e. with p̃1A−1εt = 0 ∀t

• kt is pinned down by kt−1 and zt in every period.
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Blanchard-Kahn conditions

• Uniqueness: For every free element in y1, you need one λi > 1
• Multiplicity: Not enough eigenvalues larger than one
• No stable solution: Too many eigenvalues larger than one
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How come this is so simple?
• In practice, it is easy to get

Ayt+1 + Byt = εt+1

• How about the next step?

yt+1 = −A−1Byt +A−1εt+1

• Bad news: A is often not invertible
• Good news: Same set of results can be derived

• Schur decomposition (See Klein 2000)
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How to check in Dynare

Use the following command after the model & initial conditions part

check;
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Example - x predetermined - 1st order

xt−1 = Et [φxt + zt+1]

zt = 0.9zt−1 + εt

• |φ| > 1 : Unique stable fixed point
• |φ| < 1 : No stable solutions; too many eigenvalues > 1
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Example - x predetermined - 2nd order

φ2xt−1 = Et [φ1xt + xt+1 + zt+1]

zt = 0.9zt−1 + εt

• φ1 = −2.25, φ2 = −0.5 : Unique stable fixed point
(1+ φ1L− φ2L2)x = (1− 2L)(1− 1

4L)
• φ1 = −3.5, φ2 = −3 : No stable solution; too many
eigenvalues > 1
(1+ φ1L− φ2L2)x = (1− 2L)(1− 1.5L)

• φ1 = −1, φ2 = −0.25 : Multiple stable solutions; too few
eigenvalues > 1
(1+ φ1L− φ2L2)x = (1− 0.5L)(1− 0.5L)
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Example - x not predetermined - 1st order

xt = Et [φxt+1 + zt+1]

zt = 0.9zt−1 + εt

• |φ| < 1 : Unique stable fixed point
• |φ| > 1 : Multiple stable solutions; too few eigenvalues > 1
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