# Stability, Multiplicity, and Sun Spots (Blanchard-Kahn conditions) 

Wouter J. Den Haan<br>London School of Economics

(c) 2011 by Wouter J. Den Haan

August 29, 2011

## Introduction

- What do we mean with non-unique solutions?
- multiple solution versus multiple steady states
-What are sun spots?
- Are models with sun spots scientific?


## Terminology

- Definitions are very clear
- (use in practice can be sloppy)

Model:

$$
H\left(p_{+1}, p\right)=0
$$

## Solution:

$$
p_{+1}=f(p)
$$

## Unique solution \& multiple steady states



## Multiple solutions \& unique (non-zero) steady state



## Multiple steady states \& sometimes multiple solutions



From Den Haan (2007)

## Large sun spots (around 2000 at the peak)



## Sun spot cycle (almost at peak again)

ISES Solar Cycle Sunspot Number Progression


## Sun spots in economics

- Definition: a solution is a sun spot solution if it depends on a stochastic variable from outside system
- Model:

$$
\begin{aligned}
0 & =\mathrm{E} H\left(p_{t+1}, p_{t}, d_{t+1}, d_{t}\right) \\
d_{t} & : \text { exogenous random variable }
\end{aligned}
$$

## Sun spots in economics

- Non-sun-spot solution:

$$
p_{t}=f\left(p_{t-1}, p_{t-2}, \cdots, d_{t}, d_{t-1}, \cdots\right)
$$

- Sun spot:

$$
\begin{aligned}
p_{t} & =f\left(p_{t-1}, p_{t-2}, \cdots, d_{t}, d_{t-1}, \cdots, s_{t}\right) \\
s_{t} & : \quad \text { random variable with } \mathrm{E}\left[s_{t+1}\right]=0
\end{aligned}
$$

## Sun spots and science

## Why are sun spots attractive

- sun spots: $s_{t}$ matters, just because agents believe this
- self-fulfilling expectations don't seem that unreasonable
- sun spots provide many sources of shocks
- number of sizable fundamental shocks small


## Sun spots and science

## Why are sun spots not so attractive

- Purpose of science is to come up with predictions
- If there is one sun spot solution, there are zillion others as well
- Support for the conditions that make them happen not overwhelming
- you need sufficiently large increasing returns to scale or externality


## Overview

(1) Getting started

- simple examples
(2) General derivation of Blanchard-Kahn solution
- When unique solution?
- When multiple solution?
- When no (stable) solution?
(3) When do sun spots occur?
(4) Numerical algorithms and sun spots


## Getting started

Model: $\quad y_{t}=\rho y_{t-1}$

## Getting started

## Model: $\quad y_{t}=\rho y_{t-1}$

- infinite number of solutions, independent of the value of $\rho$


## Getting started

Model: $\begin{aligned} & y_{t+1}=\rho y_{t} \\ & \\ & y_{0} \text { is given }\end{aligned}$

## Getting started

$$
\begin{array}{ll}
\text { Model: } & y_{t+1}=\rho y_{t} \\
& y_{0} \text { is given }
\end{array}
$$

- unique solution, independent of the value of $\rho$


## Getting started

- Blanchard-Kahn conditions apply to models that add as a requirement that the series do not explode

$$
y_{t+1}=\rho y_{t}
$$

## Model:

$y_{t}$ cannot explode

- $\rho>1$ : nique solution, namely $y_{t}=0$ for all $t$
- $\rho<1$ : many solutions
- $\rho=1$ : many solutions
- be careful with $\rho=1$, uncertainty matters


## State-space representation

$$
\begin{gathered}
A y_{t+1}+B y_{t}=\varepsilon_{t+1} \\
\mathrm{E}\left[\varepsilon_{t+1} \mid I_{t}\right]=0 \\
y_{t}: \quad \begin{array}{l}
\text { is an } n \times 1 \text { vector } \\
m \leq n \text { elements are not determined }
\end{array}
\end{gathered}
$$

some elements of $\varepsilon_{t+1}$ are not exogenous shocks but prediction errors

## Neoclassical growth model and state space representation

$$
\begin{gathered}
\left(\exp \left(z_{t}\right) k_{t-1}^{\alpha}+(1-\delta) k_{t-1}-k_{t}\right)^{-\gamma}= \\
\mathrm{E}\left[\begin{array}{c}
\beta\left(\exp \left(z_{t+1}\right) k_{t}^{\alpha}+(1-\delta) k_{t}-k_{t+1}\right)^{-\gamma} \\
\times\left(\alpha \exp \left(z_{t+1}\right) k_{t}^{\alpha-1}+1-\delta\right)
\end{array}\right. \\
\left.I_{t}\right]
\end{gathered}
$$

or equivalently without $E[\cdot]$

$$
\begin{gathered}
\left(\exp \left(z_{t}\right) k_{t-1}^{\alpha}+(1-\delta) k_{t-1}-k_{t}\right)^{-\gamma}= \\
\beta\left(\exp \left(z_{t+1}\right) k_{t}^{\alpha}+(1-\delta) k_{t}-k_{t+1}\right)^{-\gamma} \\
\times\left(\alpha \exp \left(z_{t+1}\right) k_{t}^{\alpha-1}+1-\delta\right) \\
+e_{\mathrm{E}, t+1}
\end{gathered}
$$

## Neoclassical growth model and state space representation

## Linearized model:

$$
\begin{gathered}
k_{t+1}=a_{1} k_{t}+a_{2} k_{t-1}+a_{3} z_{t+1}+a_{4} z_{t}+e_{\mathrm{E}, t+1} \\
z_{t+1}=\rho z_{t}+e_{z, t+1} \\
k_{0} \text { is given }
\end{gathered}
$$

- $k_{t}$ is end-of-period $t$ capital
- $\Longrightarrow k_{t}$ is chosen in $t$


## Neoclassical growth model and state space representation

$$
\left[\begin{array}{ccc}
1 & 0 & a_{3} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
k_{t+1} \\
k_{t} \\
z_{t+1}
\end{array}\right]+\left[\begin{array}{ccc}
a_{1} & a_{2} & a_{4} \\
-1 & 0 & 0 \\
0 & 0 & -\rho
\end{array}\right]\left[\begin{array}{c}
k_{t} \\
k_{t-1} \\
z_{t}
\end{array}\right]=\left[\begin{array}{c}
e_{\mathrm{E}, t+1} \\
0 \\
e_{z, t+1}
\end{array}\right]
$$

## Dynamics of the state-space system

$$
\begin{gathered}
A y_{t+1}+B y_{t}=\varepsilon_{t+1} \\
y_{t+1}=-A^{-1} B y_{t}+A^{-1} \varepsilon_{t+1} \\
=D y_{t}+A^{-1} \varepsilon_{t+1}
\end{gathered}
$$

Thus

$$
y_{t+1}=D^{t} y_{1}+\sum_{l=1}^{t+1} D^{t+1-l} A^{-1} \varepsilon_{l}
$$

## Jordan matrix decomposition

$$
D=P \Lambda P^{-1}
$$

- $\Lambda$ is a diagonal matrix with the eigen values of $D$
- without loss of generality assume that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots\left|\lambda_{n}\right|$

Let

$$
P^{-1}=\left[\begin{array}{c}
\tilde{p}_{1} \\
\vdots \\
\tilde{p}_{n}
\end{array}\right]
$$

where $\tilde{p}_{i}$ is a $(1 \times n)$ vector

## Dynamics of the state-space system

$$
\begin{aligned}
y_{t+1} & =D^{t} y_{1}+\sum_{l=1}^{t+1} D^{t+1-l} A^{-1} \varepsilon_{l} \\
& =P \Lambda^{t} P^{-1} y_{1}+\sum_{l=1}^{t+1} P \Lambda^{t+1-l} P^{-1} A^{-1} \varepsilon_{l}
\end{aligned}
$$

## Dynamics of the state-space system

multiplying dynamic state-space system with $P^{-1}$ gives

$$
P^{-1} y_{t+1}=\Lambda^{t} P^{-1} y_{1}+\sum_{l=1}^{t+1} \Lambda^{t+1-l} P^{-1} A^{-1} \varepsilon_{l}
$$

or

$$
\tilde{p}_{i} y_{t+1}=\lambda_{i}^{t} \tilde{p}_{i} y_{1}+\sum_{l=1}^{t+1} \lambda_{i}^{t+1-l} \tilde{p}_{i} A^{-1} \varepsilon_{l}
$$

recall that $y_{t}$ is $n \times 1$ and $\tilde{p}_{i}$ is $1 \times n$. Thus, $\tilde{p}_{i} y_{t}$ is a scalar

## Model

(1) $\tilde{p}_{i} y_{t+1}=\lambda_{i}^{t} \tilde{p}_{i} y_{1}+\sum_{l=1}^{t+1} \lambda_{i}^{t+1-l} \tilde{p}_{i} A^{-1} \varepsilon_{l}$
(2) $\mathrm{E}\left[\varepsilon_{t+1} \mid I_{t}\right]=0$
(3) $m$ elements of $y_{1}$ are not determined
(4) $y_{t}$ cannot explode

## Reasons for multiplicity

(1) There are free elements in $y_{1}$
(2) The only constraint on $e_{\mathrm{E}, t+1}$ is that it is a prediction error.

- This leaves lots of freedom


## Eigen values and multiplicity

- Suppose that $\left|\lambda_{1}\right|>1$
- To avoid explosive behavior it must be the case that
(1) $\tilde{p}_{1} y_{1}=0$ and
(2) $\tilde{p}_{1} A^{-1} \varepsilon_{l}=0 \quad \forall l$


## How to think about \#1?

$$
\tilde{p}_{1} y_{1}=0
$$

- Simply an additional equation to pin down some of the free elements
- Much better: This is the policy rule in the first period


## How to think about \#1?

$$
\tilde{p}_{1} y_{1}=0
$$

Neoclassical growth model:

- $y_{1}=\left[k_{1}, k_{0}, z_{1}\right]^{T}$
- $\left|\lambda_{1}\right|>1,\left|\lambda_{2}\right|<1, \lambda_{3}=\rho<1$
- $\tilde{p}_{1} y_{1}$ pins down $k_{1}$ as a function of $k_{0}$ and $z_{1}$
- this is the policy function in the first period


## How to think about \#2?

$$
\tilde{p}_{1} A^{-1} \varepsilon_{l}=0 \quad \forall l
$$

- This pins down $e_{\mathrm{E}, t}$ as a function of $\varepsilon_{z, t}$
- That is, the prediction error must be a function of the structural shock, $\varepsilon_{z, t}$, and cannot be a function of other shocks,
- i.e., there are no sunspots


## How to think about \#2?

$$
\tilde{p}_{1} A^{-1} \varepsilon_{l}=0 \quad \forall l
$$

## Neoclassical growth model:

- $\tilde{p}_{1} A^{-1} \mathcal{E}_{t}$ says that the prediction error $e_{\mathrm{E}, t}$ of period $t$ is a fixed function of the innovation in period $t$ of the exogenous process, $e_{z, t}$


## How to think about \#1 combined with \#2?

$$
\tilde{p}_{1} y_{t}=0 \quad \forall t
$$

- Without sun spots
- i.e. with $\tilde{p}_{1} A^{-1} \varepsilon_{t}=0 \quad \forall t$
- $k_{t}$ is pinned down by $k_{t-1}$ and $z_{t}$ in every period.


## Blanchard-Kahn conditions

- Uniqueness: For every free element in $y_{1}$, you need one $\lambda_{i}>1$
- Multiplicity: Not enough eigenvalues larger than one
- No stable solution: Too many eigenvalues larger than one


## How come this is so simple?

- In practice, it is easy to get

$$
A y_{t+1}+B y_{t}=\varepsilon_{t+1}
$$

- How about the next step?

$$
y_{t+1}=-A^{-1} B y_{t}+A^{-1} \varepsilon_{t+1}
$$

- Bad news: $A$ is often not invertible
- Good news: Same set of results can be derived
- Schur decomposition (See Klein 2000)


## How to check in Dynare

Use the following command after the model \& initial conditions part
check;

## Example - x predetermined - 1st order

$$
\begin{aligned}
x_{t-1} & =E_{t}\left[\phi x_{t}+z_{t+1}\right] \\
z_{t} & =0.9 z_{t-1}+\varepsilon_{t}
\end{aligned}
$$

- $|\phi|>1$ : Unique stable fixed point
- $|\phi|<1$ : No stable solutions; too many eigenvalues $>1$


## Example - x predetermined - 2nd order

$$
\begin{aligned}
\phi_{2} x_{t-1} & =E_{t}\left[\phi_{1} x_{t}+x_{t+1}+z_{t+1}\right] \\
z_{t} & =0.9 z_{t-1}+\varepsilon_{t}
\end{aligned}
$$

- $\phi_{1}=-2.25, \phi_{2}=-0.5$ : Unique stable fixed point $\left(1+\phi_{1} L-\phi_{2} L^{2}\right) x=(1-2 L)\left(1-\frac{1}{4} L\right)$
- $\phi_{1}=-3.5, \phi_{2}=-3$ : No stable solution; too many eigenvalues $>1$

$$
\left(1+\phi_{1} L-\phi_{2} L^{2}\right) x=(1-2 L)(1-1.5 L)
$$

- $\phi_{1}=-1, \phi_{2}=-0.25$ : Multiple stable solutions; too few eigenvalues $>1$

$$
\left(1+\phi_{1} L-\phi_{2} L^{2}\right) x=(1-0.5 L)(1-0.5 L)
$$

## Example - x not predetermined - 1st order

$$
\begin{aligned}
x_{t} & =E_{t}\left[\phi x_{t+1}+z_{t+1}\right] \\
z_{t} & =0.9 z_{t-1}+\varepsilon_{t}
\end{aligned}
$$

- $|\phi|<1$ : Unique stable fixed point
- $|\phi|>1$ : Multiple stable solutions; too few eigenvalues $>1$


## References

- Blanchard, Olivier and Charles M. Kahn, 1980,The Solution of Linear Difference Models under Rational Expectations, Econometrica, 1305-1313.
- Den Haan, Wouter J., 2007, Shocks and the Unavoidable Road to Higher Taxes and Higher Unemployment, Review of Economic Dynamics, 348-366.
- simple model in which the size of the shocks has long-term consequences
- Farmer, Roger, 1993, The Macroeconomics of Self-Fulfilling Prophecies, The MIT Press.
- textbook by the pioneer
- Klein, Paul, 2000, Using the Generalized Schur form to Solve a Multivariate Linear Rational Expectations Model
- in case you want to do the analysis without the simplifying assumption that $A$ is invertible

