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What is it? Pros and Cons Improvements Extensions

Overview

• Two PEA algorithms
• Explaining stochastic simulations PEA
• Advantages and disadvantages
• Improvements of Maliar, Maliar & Judd
• Extensions

• learning
• combining with perturbation
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Model

c−ν
t = Et

[
βc−ν

t+1

(
αzt+1kα−1

t+1 + 1− δ
)]

ct + kt+1 = ztkα
t + (1− δ) kt

ln(zt+1) = ρ ln (zt) + εt+1

εt+1 ∼ N(0, σ2)

k1, z1 given

kt is beginning-of-period t capital stock
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Two types of PEA

1 Standard projections algorithm:

1 parameterize Et [·] with Pn(kt, zt; ηn)
2 solve ct from

ct = (Pn(kt, zt; ηn))
−1/ν

and kt+1 from budget constraint

2 Simulations PEA
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Stochastic simulations PEA

1 Simulate {zt}T
t=1

2 Let η1
n be initial guess for ηn
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Stochastic simulations PEA

3 Iterate until ηi
n converges using following scheme

1 Generate {ct, kt+1}T
t=1 using

c−ν
t = Pn(kt, zt; ηi

n)

kt+1 = ztkα
t + (1− δ) kt − ct

2 Generate {yt+1}T−1
t=1 using

yt+1 = βc−ν
t+1

(
αzt+1kα−1

t+1 + 1− δ
)

3 Let

η̂i
n = arg min

η

T

∑
t=Tbegin

(yt+1 − Pn(kt, zt; η))2

T

4 Update upsing

ηi+1
n = ωη̂i

n + (1−ω) ηi
n with 0 < ω ≤ 1
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Stochastic simulations PEA

• Tbegin >> 1 (say 500 or 1,000)
• ensures possible bad period 1 values don’t matter

• ω < 1 improves stability
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Stochastic simulations PEA

• Idea of regression:

yt+1 ≈ Pn(kt, zt; η) + ut+1,

• ut+1 is a prediction =⇒ ut+1 is orthogonal to regressors
• Suppose

Pn(kt, zt; η) = exp (a0 + a1 ln kt + a2 ln zt) .

• You are not allowed to run the linear regression

ln yt+1 = a0 + a1 ln kt + a2 ln zt + ũt+1

Why not?
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PEA & RE

• Suppose η∗n is the fixed point we are looking for
• So Pn(kt, zt; η∗n) is best predictor of Et [·]
• Does this mean that solution is a rational expectations
equilibrium?
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Disadvantages of stoch. sim. PEA

• The inverse of X′X may be hard to calculate for higher-order
approximations

• Regression points are clustered =⇒ low precission

• recall that even equidistant nodes is not enough for uniform
convergence
"nodes" are even less spread out with simulations PEA)
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Disadvantages of stoch. sim. PEA

• Projection step has sampling error
• this disappears at slow rate (especially with serial correlation)
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Advantages of stoch. sim. PEA

• Regression points are clustered
=⇒ better fit where it matters IF functional form is poor
(with good functional form it is better to spread out points)
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Advantages of stoch. sim. PEA

• Grid: you may include impossible points
Simulation: model iself tells you which nodes to include

• (approximation also important and away from fixed point you
may still get in weird places of the state space)
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Odd shapes ergodic set in matching model
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Improvements proposed by Maliar, Maliar
& Judd

1 Use flexibility given to you

2 Use Ê [yt+1] instead of yt+1 as regressand

• Ê [yt+1] is numerical approximation of E[yt+1]
• even with poor approximation the results improve !!!

3 Improve regression step
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Use flexibility

1 Many E[]’s to approximate.

1 Standard approach:

c−ν
t = Et

[
βc−v

t+1αβc−ν
t+1

(
αzt+1kα−1

t+1 + 1− δ
)]

2 Alternative:

kt+1 = Et

[
kt+1βαβ

(
ct+1

ct

)−ν (
αzt+1kα−1

t+1 + 1− δ
)]

• Such transformations can make computations easier but can
also affect stability of algorithm (for better or worse)

2 Pn(k, z; η) could be linear (before or after transformation)
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E[y] instead of y as regressor

• E[yt+1] = E[f (εt+1)] with εt+1 ∼ N(0, σ2)
=⇒ Hermite Gaussian quadrature can be used
(MMJ: using Ê [yt+1] calculated using one node is better than
using yt+1)

• Key thing to remember: sampling uncertainty is hard to get rid
off
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E[y] instead of y as regressor

• Suppose:

yt+1 = exp (ao + a1 ln kt + a2 ln zt) + ut+1

ut+1 = prediction error

• Then you cannot estimate coeffi cients using LS based on

ln (yt+1) = ao + a1 ln kt + a2 ln zt + u∗t+1

• You have to use non-linear least squares
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E[y] instead of y as regressor

• Suppose:

E [yt+1] = exp (ao + a1 ln kt + a2 ln zt) + ūt+1

ūt+1 = numerical error

• Then you can estimate coeffi cients using LS based on

E [ln (yt+1)] = ao + a1 ln kt + a2 ln zt + ū∗t+1

• Big practical advantage
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Simple ways to improve regression

1 Hermite polynomials and scaling

2 LS-Singular Value Decomposition

3 Principle components
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Simple ways to improve regression

• The main underlying problem is that X′X is ill conditioned
which makes it diffi cult to calculate X′X

• This problem is reduced by

1 Scaling so that each variable has zero mean and unit variance

2 Hermite polynomials
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Hermite polynomials; Definition

Pn(x) =
n

∑
j=0

ajHj(x)

where the basis functions, Hj(x), satisfy

E
[
Hi(x)Hj (x)

]
= 0 for i 6= j

if x ∼ N(0, 1)
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Hermite polynomials; Construction

H0(x) = 1
H1(x) = x

Hm+1(x) = xHm(x)−mHm−1(x) for j > 1

This gives

H0(x) = 1
H1(x) = x
H2(x) = x2 − 1
H3(x) = x3 − 3x
H4(x) = x4 − 6x2 + 3
H5(x) = x5 − 10x3 + 15x
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One tricky aspect about scaling

Suppose one of the explanatory variables is

xt =
kt −MT

ST

MT =
T

∑
t=1

kt/T & ST =

(
T

∑
t=1
(kt −M(kt)

2 /T

)1/2
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One tricky aspect about scaling

• =⇒ each iteration the explanatory variables change (since M
and S change)

• =⇒ taking a weighted average of old and new coeffi cient is odd

• I found that convergence properties can be quite bad
actually better without taking a weighted average,
but that only works for well behaved models

• In principle you can avoid problem by rewriting polynomial,
but that is tedious for higher-order

• So better to keep MT and ST fixed across iterations
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Two graphs say it all; regular polynomials
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Two graphs say it all; Hermite polynomials
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LS-Singular Values Decomposition

• Goal: avoid calculating X′X explicitly
• SVD of the (T× n) matrix X :

X = USV′

U : (T× n) orthogonal matrix
S : (n× n) diagonal matrix with singular values s1 ≥ s2 ≥ · · · ≥ sn

V : (n× n) orthogonal matrix

• si is the sqrt of ith eigen value
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LS-Singular Values Decomposition

β̂ =
(
X′X

)−1 X′Y = VS−1U′Y

• Goal: avoid calculating X′X explicitly
• SVD of the (T× n) matrix X :

X = USV′

U : (T× n) orthogonal matrix
S : (n× n) diagonal matrix with singular values s1 ≥ s2 ≥ · · · ≥ sn

V : (n× n) orthogonal matrix

• si is the sqrt of ith eigen value
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LS-Singular Values Decomposition

In Matlab
[U,S,V]=svd(X,0);
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Principle components

• With many explanatory variables use principle components
• SVD: X = USV′ where X is demeaned
• Principle components: Z = XV
• Properties Zi : mean zero and variance s2

i

• Idea: exclude principle components corresponding to lower
eigenvalues

• But check with how much R2 drops
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PEA and learning

• Traditional algorithm:
• simulate an economy using belief ηi

n
• formulate new belief ηi+1

n
• simulate same economy using belief ηi+1

n
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PEA and learning

• Alternative algorithm to find fixed point
• simulate T observations using belief ηT−1

n
• formulate new belief ηT

n
• generate 1 more observation
• use T+ 1 observations to formulate new belief ηT+1

• continue

• Convergence properties can be problematic



What is it? Pros and Cons Improvements Extensions

PEA and learning

• Modification of alternative algorithm is economically interesting
• simulate T observations using belief ηT−1

n
• use τ observations to formulate new belief ηT

n
• generate 1 more observation
• use last τ observations to formulate new belief ηT+1

• continue

• Beliefs are based on limited past =⇒ time-varying beliefs
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PEA and learning

• Suppose the model has different regimes
• e.g. high productivity and low productivity regime
• agents do not observe regime=⇒ it makes sense to use limited
number of past observations

• With the above algorithm agents gradually learn new law of
motion
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PEA and perturbation

• True in many macroeconomic models:
• perturbation generates accurate solution of real side of the
economy

• perturbation does not generates accurate solution of asset
prices

• real side does not at all or not much depend on asset prices

• Then solve for real economy using perturbation and for asset
prices using PEA

• one-step algorithm (no iteration needed)
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