Parameterized Expectations Algorithm

Wouter J. Den Haan
London School of Economics

(C) 2011 by Wouter J. Den Haan

$$
\text { June 29, } 2011
$$

Overview

- Two PEA algorithms
- Explaining stochastic simulations PEA
- Advantages and disadvantages
- Improvements of Maliar, Maliar \& Judd
- Extensions
- learning
- combining with perturbation

Model

$$
\begin{aligned}
c_{t}^{-v}= & \mathrm{E}_{t}\left[\beta c_{t+1}^{-v}\left(\alpha z_{t+1} k_{t+1}^{\alpha-1}+1-\delta\right)\right] \\
c_{t}+k_{t+1}= & z_{t} k_{t}^{\alpha}+(1-\delta) k_{t} \\
\ln \left(z_{t+1}\right)= & \rho \ln \left(z_{t}\right)+\varepsilon_{t+1} \\
& \varepsilon_{t+1} \sim N\left(0, \sigma^{2}\right) \\
& k_{1}, z_{1} \text { given }
\end{aligned}
$$

k_{t} is beginning-of-period t capital stock

Two types of PEA

(1) Standard projections algorithm:
(1) parameterize $\mathrm{E}_{t}[\cdot]$ with $P_{n}\left(k_{t}, z_{t} ; \eta_{n}\right)$
(2) solve c_{t} from

$$
c_{t}=\left(P_{n}\left(k_{t}, z_{t} ; \eta_{n}\right)\right)^{-1 / v}
$$

and k_{t+1} from budget constraint
(2) Simulations PEA

Stochastic simulations PEA

(1) Simulate $\left\{z_{t}\right\}_{t=1}^{T}$
(2) Let η_{n}^{1} be initial guess for η_{n}

Stochastic simulations PEA

(3) Iterate until η_{n}^{i} converges using following scheme
(1) Generate $\left\{c_{t}, k_{t+1}\right\}_{t=1}^{T}$ using

$$
\begin{aligned}
c_{t}^{-v} & =P_{n}\left(k_{t}, z_{t} ; \eta_{n}^{i}\right) \\
k_{t+1} & =z_{t} k_{t}^{\alpha}+(1-\delta) k_{t}-c_{t}
\end{aligned}
$$

(2) Generate $\left\{y_{t+1}\right\}_{t=1}^{T-1}$ using

$$
y_{t+1}=\beta c_{t+1}^{-v}\left(\alpha z_{t+1} k_{t+1}^{\alpha-1}+1-\delta\right)
$$

(3) Let

$$
\hat{\eta}_{n}^{i}=\arg \min _{\eta} \sum_{t=T_{\text {begin }}}^{T} \frac{\left(y_{t+1}-P_{n}\left(k_{t}, z_{t} ; \eta\right)\right)^{2}}{T}
$$

(4) Update upsing

$$
\eta_{n}^{i+1}=\omega \hat{\eta}_{n}^{i}+(1-\omega) \eta_{n}^{i} \text { with } 0<\omega \leq 1
$$

Stochastic simulations PEA

- $T_{\text {begin }} \gg 1$ (say 500 or 1,000)
- ensures possible bad period 1 values don't matter
- $\omega<1$ improves stability

Stochastic simulations PEA

- Idea of regression:

$$
y_{t+1} \approx P_{n}\left(k_{t}, z_{t} ; \eta\right)+u_{t+1}
$$

- u_{t+1} is a prediction $\Longrightarrow u_{t+1}$ is orthogonal to regressors
- Suppose

$$
P_{n}\left(k_{t}, z_{t} ; \eta\right)=\exp \left(a_{0}+a_{1} \ln k_{t}+a_{2} \ln z_{t}\right) .
$$

- You are not allowed to run the linear regression

$$
\ln y_{t+1}=a_{0}+a_{1} \ln k_{t}+a_{2} \ln z_{t}+\tilde{u}_{t+1}
$$

Why not?

PEA \& RE

- Suppose η_{n}^{*} is the fixed point we are looking for
- So $P_{n}\left(k_{t}, z_{t} ; \eta_{n}^{*}\right)$ is best predictor of $\mathrm{E}_{t}[\cdot]$
- Does this mean that solution is a rational expectations equilibrium?

Disadvantages of stoch. sim. PEA

- The inverse of $X^{\prime} X$ may be hard to calculate for higher-order approximations
- Regression points are clustered \Longrightarrow low precission
- recall that even equidistant nodes is not enough for uniform convergence "nodes" are even less spread out with simulations PEA)

Disadvantages of stoch. sim. PEA

- Projection step has sampling error
- this disappears at slow rate (especially with serial correlation)

Advantages of stoch. sim. PEA

- Regression points are clustered
\Longrightarrow better fit where it matters IF functional form is poor (with good functional form it is better to spread out points)

Advantages of stoch. sim. PEA

- Grid: you may include impossible points Simulation: model iself tells you which nodes to include
- (approximation also important and away from fixed point you may still get in weird places of the state space)

Odd shapes ergodic set in matching model

Improvements proposed by Maliar, Maliar \& Judd

(1) Use flexibility given to you
(2) Use $\widehat{E}\left[y_{t+1}\right]$ instead of y_{t+1} as regressand

- $\widehat{\mathrm{E}}\left[y_{t+1}\right]$ is numerical approximation of $\mathrm{E}\left[y_{t+1}\right]$
- even with poor approximation the results improve !!!
(3) Improve regression step

Use flexibility

(1) Many E[]'s to approximate.
(1) Standard approach:

$$
c_{t}^{-v}=\mathrm{E}_{t}\left[\beta c_{t+1}^{-v} \alpha \beta c_{t+1}^{-v}\left(\alpha z_{t+1} k_{t+1}^{\alpha-1}+1-\delta\right)\right]
$$

(2) Alternative:

$$
k_{t+1}=\mathrm{E}_{t}\left[k_{t+1} \beta \alpha \beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-v}\left(\alpha z_{t+1} k_{t+1}^{\alpha-1}+1-\delta\right)\right]
$$

- Such transformations can make computations easier but can also affect stability of algorithm (for better or worse)
(2) $P_{n}(k, z ; \eta)$ could be linear (before or after transformation)

$E[y]$ instead of y as regressor

- $\mathrm{E}\left[y_{t+1}\right]=\mathrm{E}\left[f\left(\varepsilon_{t+1}\right)\right]$ with $\varepsilon_{t+1} \sim N\left(0, \sigma^{2}\right)$
\Longrightarrow Hermite Gaussian quadrature can be used (MMJ: using $\widehat{\mathrm{E}}\left[y_{t+1}\right]$ calculated using one node is better than using y_{t+1})
- Key thing to remember: sampling uncertainty is hard to get rid off

$E[y]$ instead of y as regressor

- Suppose:

$$
\begin{aligned}
& y_{t+1}=\exp \left(a_{o}+a_{1} \ln k_{t}+a_{2} \ln z_{t}\right)+u_{t+1} \\
& u_{t+1}=\text { prediction error }
\end{aligned}
$$

- Then you cannot estimate coefficients using LS based on

$$
\ln \left(y_{t+1}\right)=a_{o}+a_{1} \ln k_{t}+a_{2} \ln z_{t}+u_{t+1}^{*}
$$

- You have to use non-linear least squares

$\mathrm{E}[\mathrm{y}]$ instead of y as regressor

- Suppose:

$$
\begin{aligned}
\mathrm{E}\left[y_{t+1}\right] & =\exp \left(a_{0}+a_{1} \ln k_{t}+a_{2} \ln z_{t}\right)+\bar{u}_{t+1} \\
\bar{u}_{t+1} & =\text { numerical error }
\end{aligned}
$$

- Then you can estimate coefficients using LS based on

$$
\mathrm{E}\left[\ln \left(y_{t+1}\right)\right]=a_{0}+a_{1} \ln k_{t}+a_{2} \ln z_{t}+\bar{u}_{t+1}^{*}
$$

- Big practical advantage

Simple ways to improve regression

(1) Hermite polynomials and scaling
(2) LS-Singular Value Decomposition
(3) Principle components

Simple ways to improve regression

- The main underlying problem is that $X^{\prime} X$ is ill conditioned which makes it difficult to calculate $X^{\prime} X$
- This problem is reduced by
(1) Scaling so that each variable has zero mean and unit variance
(2) Hermite polynomials

Hermite polynomials; Definition

$$
P_{n}(x)=\sum_{j=0}^{n} a_{j} H_{j}(x)
$$

where the basis functions, $H_{j}(x)$, satisfy

$$
\begin{aligned}
\mathrm{E}\left[H_{i}(x) H_{j}(x)\right] & =0 \text { for } i \neq j \\
\text { if } x & \sim N(0,1)
\end{aligned}
$$

Hermite polynomials; Construction

$$
\begin{aligned}
H_{0}(x) & =1 \\
H_{1}(x) & =x \\
H_{m+1}(x) & =x H_{m}(x)-m H_{m-1}(x) \text { for } j>1
\end{aligned}
$$

This gives

$$
\begin{aligned}
& H_{0}(x)=1 \\
& H_{1}(x)=x \\
& H_{2}(x)=x^{2}-1 \\
& H_{3}(x)=x^{3}-3 x \\
& H_{4}(x)=x^{4}-6 x^{2}+3 \\
& H_{5}(x)=x^{5}-10 x_{3}+15 x
\end{aligned}
$$

One tricky aspect about scaling

Suppose one of the explanatory variables is

$$
\begin{aligned}
x_{t} & =\frac{k_{t}-M_{T}}{S_{T}} \\
M_{T} & =\sum_{t=1}^{T} k_{t} / T \& S_{T}=\left(\sum_{t=1}^{T}\left(k_{t}-M\left(k_{t}\right)^{2} / T\right)^{1 / 2}\right.
\end{aligned}
$$

One tricky aspect about scaling

- \Longrightarrow each iteration the explanatory variables change (since M and S change)
- \Longrightarrow taking a weighted average of old and new coefficient is odd
- I found that convergence properties can be quite bad actually better without taking a weighted average, but that only works for well behaved models
- In principle you can avoid problem by rewriting polynomial, but that is tedious for higher-order
- So better to keep M_{T} and S_{T} fixed across iterations

Two graphs say it all; regular polynomials

Two graphs say it all; Hermite polynomials

LS-Singular Values Decomposition

- Goal: avoid calculating $X^{\prime} X$ explicitly
- SVD of the $(T \times n)$ matrix X :
$X=U S V^{\prime}$
U : $(T \times n)$ orthogonal matrix
$S:(n \times n)$ diagonal matrix with singular values $s_{1} \geq s_{2} \geq \cdots$
V : $(n \times n)$ orthogonal matrix
- s_{i} is the sqrt of $i^{\text {th }}$ eigen value

LS-Singular Values Decomposition

$$
\widehat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y=V S^{-1} U^{\prime} Y
$$

- Goal: avoid calculating $X^{\prime} X$ explicitly
- SVD of the $(T \times n)$ matrix X :
$X=U S V^{\prime}$
$U:(T \times n)$ orthogonal matrix
$S:(n \times n)$ diagonal matrix with singular values $s_{1} \geq s_{2} \geq \cdots$
$V:(n \times n)$ orthogonal matrix
- s_{i} is the sqrt of $i^{\text {th }}$ eigen value

LS-Singular Values Decomposition

In Matlab

$$
[\mathrm{U}, \mathrm{~S}, \mathrm{~V}]=\operatorname{svd}(\mathrm{X}, 0) ;
$$

Principle components

- With many explanatory variables use principle components
- SVD: $X=U S V^{\prime}$ where X is demeaned
- Principle components: $Z=X V$
- Properties Z_{i} : mean zero and variance s_{i}^{2}
- Idea: exclude principle components corresponding to lower eigenvalues
- But check with how much R^{2} drops

PEA and learning

- Traditional algorithm:
- simulate an economy using belief η_{n}^{i}
- formulate new belief η_{n}^{i+1}
- simulate same economy using belief η_{n}^{i+1}

PEA and learning

- Alternative algorithm to find fixed point
- simulate T observations using belief η_{n}^{T-1}
- formulate new belief η_{n}^{T}
- generate 1 more observation
- use $T+1$ observations to formulate new belief η^{T+1}
- continue
- Convergence properties can be problematic

PEA and learning

- Modification of alternative algorithm is economically interesting
- simulate T observations using belief η_{n}^{T-1}
- use τ observations to formulate new belief η_{n}^{T}
- generate 1 more observation
- use last τ observations to formulate new belief η^{T+1}
- continue
- Beliefs are based on limited past \Longrightarrow time-varying beliefs

PEA and learning

- Suppose the model has different regimes
- e.g. high productivity and low productivity regime
- agents do not observe regime \Longrightarrow it makes sense to use limited number of past observations
- With the above algorithm agents gradually learn new law of motion

PEA and perturbation

- True in many macroeconomic models:
- perturbation generates accurate solution of real side of the economy
- perturbation does not generates accurate solution of asset prices
- real side does not at all or not much depend on asset prices
- Then solve for real economy using perturbation and for asset prices using PEA
- one-step algorithm (no iteration needed)

References

- Den Haan, W.J. and A. Marcet, 1990, Solving the stochastic growth model with parameterized expectations, Journal of Business and Economic Statistics.
- Den Haan, W.J., Parameterized expectations, lecture notes.
- Heer, B., and A. Maussner, 2009, Dynamic General Equilibrium Modeling.
- Judd, K. L. Maliar, and S. Maliar, 2011, One-node quadrature beats Monte Carlo: A generlized stochastic simulation algorithm, NBER WP 16708
- Judd, K. L. Maliar, and S. Maliar, 2010, Numerically stable stochastic methods for solving dynamics models, NBER WP 15296

