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Goal

Obtain an approximation for

f(x)
when

e f(x) is unknown, but we have some information, or

e f(x) is known, but too complex to work with
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Information available

e Either finite set of derivatives

e usually at one point

e or finite set of function values

® fi, - ,fm at m nodes, x1,- -+, Xy

Extra
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Classes of approximating functions

©® polynomials

e this still gives lots of flexibility

e examples of second-order polynomials
® qg+ajx+ 6123(2
o ay+ayIn(x) +a (In (x))?
* exp (ao + a1 In(x) +a; (In (x))Z)

@® splines, e.g., linear interpolation
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Classes of approximating functions

e Polynomials and splines can be expressed as
n
f(x) = ) wiTi(x)
i=0

e T;(x): the basis functions that define the class of functions
used, e.g., for regular polynomials:

Ti(x) = x'.

e 1; : the coefficients that pin down the particular approximation
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Reducing the dimensionality

unknown f (x): infinite dimensional object

L oaiTi(x): n+ 1 elements
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General procedure

Fix the order of the approximation n

Find the coefficients ag, - - - , ay,

Evaluate the approximation

If necessary, increase n to get a better approximation
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Weierstrass (sloppy definition but true)

Let f : [a,b] — R be any real-valued function. For large enough n,
it is approximated arbitrarily well with the polynomial

n .
Y .
i=0

Thus, we can get an accurate approximation if
e f is not a polynomial
e f is discontinuous

How can this be true?
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How to find the coefficients of the
approximating polynomial?

e With derivatives:

o use the Taylor expansion

e With a set of points (nodes), xq, - - - , X, and function values,
fO/ T /fm?

® use projection
e Lagrange way of writing the polynomial (see last part of slides)
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Function fitting as a projection

Let
pl | b T
Y = X = |
J To(.xm) Ty (xm)
then
Y ~ X«

Extra

e We need m > n. Is m = n as bad as it is in empirical work?

e What problem do you run into if n increases?
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Orthogonal polynomials

e Construct basis functions so that they are orthogonal to each
other, i.e.,

/b Ti(x)Ti(x)w(x)dx =0 Vi,j>i#]

e This requires a particular weighting function (density), w(x),
and range on which variables are defined, [a, ]
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Chebyshev orthogonal polynomials

1

[a,b] = [—1,1] and w(x) = m

e What if function of interest is not defined on [—1,1]?
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Constructing Chebyshev polynomials

e The basis functions of the Chebyshev polynomials are given by
To(x) = 1
Ti(x) = «x
Tia(x) = 2xTi(x) = Ti_4(x) i>1
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Chebyshev versus regular polynomials

e Chebyshev polynomials, i.e.,
n
fx) =} 4T (x),
j=0
can be rewritten as regular polynomials, i.e.,

flx) ~ ib]-xj,
j=0
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Chebyshev nodes

e The n"—order Chebyshev basis function has # solutions to
T,(x) =0

e These are the n Chebyshev nodes
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Discrete orthogonality property

e Evaluated at the Chebyshev nodes, the Chebyshev polynomials

satisfy:
;T;(xi)T;(xi) =0forj#k
e Thus, if
To(xo) Ti(xo) --- Tu(xo)
¥ To(x1) Ti(x1) -+ Tu(x1)
To(xm) TaCow) -+ Talxm)

then X’X is a diagonal matrix
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Uniform convergence

o Weierstrass = there is a good polynomial approximation
o Weierstrass # f(x) = limy— o0 pn(x) for every sequence p;(x)

e If polynomials are fitted on Chebyshev nodes=—> even uniform
convergence is guaranteed
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Splines

Inputs:

O n+ 1 nodes, xp,- -+ ,xp
® n + 1 function values, f(xo) - - - ,f (xx)

e nodes are fixed = the n + 1 function values are the
coefficients of the spline
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Piece-wise linear

e For x € [x;,xi}1]

X — X; X — X;
x) ~ 1_—1> .+(—1>.1_
f() ( Xiy1 — X f Xit1 — X fix

e That is, a separate linear function is fitted on the 7 intervals

e Still it is easier/better to think of the coefficients of the
approximating function as the n + 1 function values
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Piece-wise linear versus polynomial

e Advantage: Shape preserving

e in particular monotonicity & concavity (strict?)

e Disadvantage: not differentiable
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Extra material

@ Lagrange interpolation
® Higher dimensional polynomials

© Higher-order splines

Extra



Overview Polynomial approximations Splines Extra

Lagrange interpolation

(x = x0) - - (¥ = X)) (¥ = Xi41) - - - (% — Xn)

Li(x) = (xi _ xO) Ce (xl- — xifl)(xi — Xi+1) T (xi - x”)

and

f(x) = foLo(x) + - -+ + fuLn(x).

e Right-hand side is an nt"-order polynomial
e By construction perfect fit at the n + 1 nodes?
e = the RHS is the ntM-order approximation
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Higher-dimensional functions

e second-order complete polynomial in x and y:

Y. ai,jxiyj

0<i+j<2

e second-order tensor product polynomial in x and y:

2 2 P
2 ) Xy

i=0j=0
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Complete versus tensor product

e tensor product can make programming easier

e simple double loop instead of condition on sum

e n'" tensor has higher order term than (1 + 1)th complete

e 2" order tensor has fourth-order power
e at least locally, lower-order powers are more important
= complete polynomial may be more efficient
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Higher-order spline

Cubic (for example)

e !ll Same inputs as with linear spline, i.e. n + 1 function values
at n 4+ 1 nodes which can still be thought of as the n 4 1
coefficients that determine approximating function

e Now fit 3™-order polynomials on each of the 1 intervals
f(x) ~ a; + bx 4 cix* +dix® for x € [xi_1, xi].

What conditions can we use to pin down these coefficients?
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Cubic spline conditions: levels
e We have 2+ 2(n — 1) conditions to ensure that the function
values correspond to the given function values at the nodes.

e For the intermediate nodes we need that the cubic
approximations of both adjacent segments give the correct
answer. For example, we need that

fi = a+bix+ c1x% + dlxi’ and
fi = ax+byxy +coxd +doxi

e For the two endpoints, xg and X, 1, we only have one cubic
that has to fit it correctly.
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Cubic spline conditions: 1%t-order derivatives

e To ensure differentiability at the intermediate nodes we need

bix; +2cix; + 3dl-x12 = bj1x;+2ci 1%+ 3di+1x? for x; € {xl, SR

which gives us n — 1 conditions.
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Cubic spline conditions: 2"4-order derivatives

e To ensure that second derivatives are equal we need
bi+2c;+6d;x; = bj 1 +2¢i 1 +6d;q1x; for x; € {x1,--+ ,x,-1}.

e We now have 2 +4(n — 1) = 4n — 2 conditions to find 4n
unknowns.

e We need two additional conditions; e.g. that 2nd_order
derivatives at end points are zero.
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Splines - additional issues

e (standard) higher-order splines do not preserve shape
e higher-order difficult for multi-dimensional problems
o first-order trivial for multi-dimensional problems

o if interval is small then nondifferentiability often doesn't matter
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References

e Den Haan, W.J., Function approximation

e Any text book on numerical methods will have a chapter on
this topic



	Overview
	Polynomial approximations
	Splines
	Extra

