

# Numerical Integration

Wouter J. Den Haan  
London School of Economics

© 2011 by Wouter J. Den Haan

June 3, 2011

# Quadrature techniques

$$I = \int_a^b f(x)dx \approx \sum_{i=1}^n w_i f(x_i) = \sum_{i=1}^n w_i f_i$$

- Nodes:  $x_i$
- Weights:  $w_i$

# Quadrature techniques

$$I = \int_a^b f(x)dx \approx \sum_{i=1}^n w_i f(x_i)$$

Two versions:

- Newton Cotes:
  - equidistant nodes & "best" choice for the weights  $w_i$
- Gaussian Quadrature:
  - "best" choice for both nodes and weights

# Monte Carlo techniques

- pseudo:
  - implemetable version of true Monte Carlo
- quasi:
  - looks like Monte Carlo, but is something different
    - name should have been chosen better

# Power

- Newton-Cotes: With  $n$  nodes you get
  - exact answer if  $f$  is  $(n - 1)^{\text{th}}$ -order polynomial
  - accurate answer  $f$  is close to a  $n^{\text{th}}$ -order polynomial
- Gaussian: With  $n$  nodes you get
  - exact answer if  $f$  is  $(2n - 1)^{\text{th}}$ -order polynomial
  - accurate answer  $f$  is close to a  $(2n - 1)^{\text{th}}$ -order polynomial

# Power

- (Pseudo) Monte Carlo: accuracy requires lots of draws
- Quasi Monte Carlo: definitely better than (pseudo) Monte Carlo and will dominate quadrature methods for higher-dimensional problems

# Idea behind Newton-Cotes

- function values at  $n$  nodes  $\implies$  you can fit a  $(n - 1)^{\text{th}}$ -order polynomial & integrate the approximating polynomial

$$\int_a^b f(x)dx \approx \int_a^b P_2(x)dx$$

- It turns out that this can be standardized
  - see Section "extra" for derivation

# Simpson for one interval (3 nodes)

$$\int_a^b f(x)dx \approx \left( \frac{1}{3}f_0 + \frac{4}{3}f_1 + \frac{1}{3}f_2 \right) h$$

# Simpson for multiple intervals (n+1 nodes)

$$\begin{aligned}\int_a^b f(x)dx &\approx \left( \frac{1}{3}f_0 + \frac{4}{3}f_1 + \frac{1}{3}f_2 \right) h \\ &\quad + \left( \frac{1}{3}f_2 + \frac{4}{3}f_3 + \frac{1}{3}f_4 \right) h \\ &\quad + \dots \\ &\quad + \left( \frac{1}{3}f_{n-2} + \frac{4}{3}f_{n-1} + \frac{1}{3}f_n \right) h \\ \\ &= \left( \frac{1}{3}f_0 + \frac{4}{3}f_1 + \frac{2}{3}f_2 + \frac{4}{3}f_3 + \frac{2}{3}f_4 + \dots + \frac{2}{3}f_{n-2} + \frac{4}{3}f_{n-1} + \frac{1}{3}f_n \right) h\end{aligned}$$

# Gaussian quadrature

- Could we do better? That is, get better accuracy with same amount of nodes?
- **Answer:** Yes, if you are smart about choosing the nodes
  - This is Gaussian quadrature

# Gauss-Legendre quadrature

- Let  $[a, b]$  be  $[-1, 1]$ 
  - can always be accomplished by scaling
- Quadrature

$$\int_{-1}^1 f(x)dx \approx \sum_{i=1}^n \omega_i f(\zeta_i).$$

- **Goal:** Get exact answer if  $f(x)$  is a polynomial of order  $2n - 1$
- That is with 5 nodes you get exact answer even if  $f(x)$  is a 9<sup>th</sup>-order polynomial

# Implementing Gauss-Legendre quadrature

- Get  $n$  nodes and  $n$  weights from a computer program
  - $\zeta_i, i = 1, \dots, n, \omega_i, i = 1, \dots, n$
- Calculate the function values at the  $n$  nodes,  $f_i i = 1, \dots, n$
- Answer is equal to

$$\sum_{i=1}^n \omega_i f_i$$

- Anybody could do this
- How does the computer get the nodes and weights?

## 2n equations for nodes and weights

- To get right answer for  $f(x) = 1$

$$\int_{-1}^1 1 dx = \sum_{i=1}^n \omega_i 1$$

- To get right answer for  $f(x) = x$

$$\int_{-1}^1 x dx = \sum_{i=1}^n \omega_i \zeta_i$$

- To get right answer for  $f(x) = x^2$

$$\int_{-1}^1 x^2 dx = \sum_{i=1}^n \omega_i \zeta_i^2$$

- etc

# 2n equations for nodes and weights

- To get right answer for  $f(x) = x^j$  for  $j = 0, \dots, 2n - 1$

$$\int_{-1}^1 x^j dx = \sum_{i=1}^n \omega_i \zeta_i^j \quad j = 0, 1, \dots, 2n - 1$$

- This is a system of  $2n$  equations in  $2n$  unknowns.

# What has been accomplished so far?

- By construction we get right answer for

$$f(x) = 1, f(x) = x, \dots, f(x) = x^{2n-1}$$

- But this is enough to get right answer for *any* polynomial of order  $2n - 1$

$$f(x) = \sum_{i=0}^{2n-1} a_i x^i$$

- Why?

# Gauss-Hermite Quadrature

- Suppose we want to approximate

$$\int_{-\infty}^{\infty} f(x)e^{-x^2} dx \text{ with } \sum_{i=1}^n \omega_i f(\zeta_i)$$

- The function  $e^{-x^2}$  is the *weighting function*, it is not used in the approximation but is captured by the  $\omega_i$  coefficients

# Gauss-Hermite Quadrature

- We can use the same procedure to find the weights and the nodes, that is we solve them from the system:

$$\int_{-\infty}^{\infty} x^j e^{-x^2} dx = \sum_{i=1}^n \omega_i \zeta_i^j \text{ for } j = 0, 1, \dots, 2n-1$$

- Note that  $e^{-\zeta_i^2}$  is *not* on the right-hand side

# Implementing Gauss-Hermite Quadrature

- Get  $n$  nodes,  $\zeta_i, i = 1, \dots, n$ , and  $n$  weights,  $\omega_i, i = 1, \dots, n$ , from a computer program
- Calculate the function values at the  $n$  nodes,  $f_i, i = 1, \dots, n$
- Answer is equal to

$$\sum_{i=1}^n \omega_i f_i$$

# Expectation of Normally distributed variable

- How to calculate

$$E[h(y)] \text{ with } y \sim N(\mu, \sigma^2)$$

- That is, we have to calculate

$$\int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} h(y) \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right) dy$$

- Unfortunately, this does not exactly fit the Hermite weighting function, but a change in variable will do the trick

# Change of variables

- If  $y = \phi(x)$  then

$$\int_a^b g(y)dy = \int_{\phi^{-1}(a)}^{\phi^{-1}(b)} g(\phi(x))\phi'(x)dx$$

- Note the Jacobian is added

# Change of variables

The transformation we use here is

$$x = \frac{y - \mu}{\sigma\sqrt{2}} \text{ or } y = \sigma\sqrt{2}x + \mu$$

# Change of variables

$$\begin{aligned} \mathbb{E}[h(y)] &= \int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} h(y) \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right) dy \\ &= \int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} h(\sqrt{2}\sigma x + \mu) \exp\left(-x^2\right) \sigma\sqrt{2} dx \\ &= \int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi}} h(\sqrt{2}\sigma x + \mu) \exp\left(-x^2\right) dx \end{aligned}$$

# What to do in practice?

- Obtains  $n$  Gauss-Hermite quadrature weights and nodes using a numerical algorithm.
- Calculate the approximation using

$$\mathbb{E}[h(y)] \approx \sum_{i=1}^n \frac{1}{\sqrt{\pi}} \omega_i^{GH} h\left(\sqrt{2}\sigma\zeta_i^{GH} + \mu\right)$$

- Do not forget to divide by  $\sqrt{\pi}$ !
- Is this amazingly simple or what?

# Extra material

- Derivation Simpson formula
- Monte Carlo integration

# Lagrange interpolation

Let

$$L_i(x) = \frac{(x - x_0) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_0) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)}$$

$$f(x) \approx f_0 L_0(x) + \cdots + f_n L_n(x).$$

- What is the right-hand side?
- Do I have a perfect fit at the  $n + 1$  nodes?

## Simpson: 2nd-order Newton-Cotes

- $x_0 = a, x_1 = (a + b)/2, x_2 = b$ , or
- $x_1 = x_0 + h, x_2 = x_0 + 2h$

Using the Lagrange way of writing the 2<sup>nd</sup>-order polynomial, we get

$$\begin{aligned}\int_a^b f(x)dx &\approx \int_a^b f_0 L_0(x) + f_1 L_1(x) + f_2 L_2(x) \\ &= f_0 \int_a^b L_0(x)dx + f_1 \int_a^b L_1(x)dx + f_2 \int_a^b L_2(x)dx\end{aligned}$$

# Amazing algebra

$$\int_a^b L_0(x)dx = \frac{1}{3}h$$

$$\int_a^b L_1(x)dx = \frac{4}{3}h$$

$$\int_a^b L_2(x)dx = \frac{1}{3}h$$

- Why amazing?
  - formula only depends on  $h$ , not on values  $x_i$  and  $f_i$
- Combining gives

$$\int_a^b f(x)dx \approx \int_a^b P_2(x)dx = \left( \frac{1}{3}f_0 + \frac{4}{3}f_1 + \frac{1}{3}f_2 \right) h.$$

# True and pseudo Monte Carlo

## To calculate an expectation

- Let  $x$  be a random variable with CDF  $F(x)$
- Monte Carlo integration:

$$\int_a^b h(x)dF(x) \approx \frac{\sum_{t=1}^T h(x_t)}{T},$$

- Use random number generator to implement this in practice

# True and pseudo Monte Carlo

## What if integral is not an expectation

$$\int_a^b h(x)dx = (b - a) \int_a^b h(x)f_{ab}(x)dx,$$

where  $f_{ab}$  is the density of a random variable with a uniform distribution over  $[a, b]$ , that is,  $f_{ab} = (b - a)^{-1}$ .

Thus, one could approximate the integral with

$$\int_a^b h(x)dx \approx (b - a) \frac{\sum_{t=1}^T h(x_t)}{T},$$

where  $x_t$  is generated using a random number generator for a variable that is uniform on  $[a, b]$ .

# Quasi Monte Carlo

- Monte Carlo integration has very slow convergence properties
- In higher dimensional problems, however, it does better than quadrature (it seems to avoid the curse of dimensionality)
- But why? Pseudo MC is simply a deterministic way to go through the state space
- Quasi MC takes that idea and improves upon it

# Quasi Monte Carlo

- Idea: Fill the space in an *efficient* way
- *Equidistributed* series: A scalar sequence  $\{x_t\}_{t=1}^T$  is equidistributed over  $[a, b]$  iff

$$\lim_{T \rightarrow \infty} \frac{b-a}{T} \sum_{t=1}^T f(x_t) = \int_a^b f(x) dx$$

for all Riemann-integrable  $f(x)$ .

- Equidistributed takes the place of uniform

# Quasi Monte Carlo

- Examples

- $\xi, 2\xi, 3\xi, 4\xi, \dots$  is equidistributed modulo 1 for any irrational number  $\xi$ .<sup>1</sup>
- The sequence of prime numbers multiplied by an irrational number  $(2\xi, 3\xi, 5\xi, 7\xi, \dots)$

---

<sup>1</sup> $Frac(x)$  (or  $x$  Modulo 1) means that we subtract the largest integer that is less than  $x$ . For example,  $frac(3.564) = 0.564$ .

# Multidimensional

For a  $d$ -dimensional problem, an equidistributed sequence  $\{x_t\}_{t=1}^T \subset D \subset \mathbb{R}^d$  satisfies

$$\lim_{T \rightarrow \infty} \frac{\mu(D)}{T} \sum_{t=1}^T f(x_t) = \int_D f(x) dx,$$

where  $\mu(D)$  is the Lebesgue measure of  $D$ .

# Multidimensional equidistributed vectors

Examples for the  $d$ -dimensional unit hypercube:

**Weyl:**

$$x_t = (t\sqrt{p_1}, t\sqrt{p_2}, \dots, t\sqrt{p_d}) \text{ modulo 1,}$$

where  $p_i$  is the  $i^{\text{th}}$  positive prime number.

**Neiderreiter:**

$$x_t = (t2^{1/(d+1)}, t2^{2/(d+1)}, \dots, t2^{d/(d+1)}) \text{ modulo 1}$$

# References

- Den Haan, W.J., Numerical Integration
- Most text books on numerical methods will have a chapter on this topic