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Quadrature techniques

I =
∫ b

a
f (x)dx ≈

n

∑
i=1

wif (xi) =
n

∑
i=1

wifi

• Nodes: xi

• Weights: wi
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Quadrature techniques

I =
∫ b

a
f (x)dx ≈

n

∑
i=1

wif (xi)

Two versions:

• Newton Cotes:
• equidistant nodes & "best" choice for the weights wi

• Gaussian Quadrature:
• "best" choice for both nodes and weights
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Monte Carlo techniques

• pseudo:
• implemetable version of true Monte Carlo

• quasi:
• looks like Monte Carlo, but is something different

• name should have been chosen better
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Power

• Newton-Cotes: With n nodes you get
• exact answer if f is (n− 1)th-order polynomial
• accurate answer f is close to a nth-order polynomial

• Gaussian: With n nodes you get
• exact answer if f is (2n− 1)th-order polynomial
• accurate answer f is close to a (2n− 1)th-order polynomial
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Power

• (Pseudo) Monte Carlo: accuracy requires lots of draws

• Quasi Monte Carlo: definitely better than (pseudo) Monte
Carlo and will dominate quadrature methods for
higher-dimensional problems
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Idea behind Newton-Cotes

• function values at n nodes =⇒ you can fit a (n− 1)th-order
polynomial & integrate the approximating polynomial

∫ b

a
f (x)dx ≈

∫ b

a
P2(x)dx

• It turns out that this can be standardized
• see Section "extra" for derivation
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Simpson for one interval (3 nodes)

∫ b

a
f (x)dx ≈

(
1
3

f0 +
4
3

f1 +
1
3

f2

)
h
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Simpson for multiple intervals (n+1 nodes)

∫ b

a
f (x)dx ≈

(
1
3

f0 +
4
3

f1 +
1
3

f2

)
h

+

(
1
3

f2 +
4
3

f3 +
1
3

f4

)
h

+ · · ·

+

(
1
3

fn−2 +
4
3

fn−1 +
1
3

fn

)
h

=

(
1
3

f0 +
4
3

f1 +
2
3

f2 +
4
3

f3 +
2
3

f4 + · · ·
2
3

fn−2 +
4
3

fn−1 +
1
3

fn

)
h
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Gaussian quadrature

• Could we do better? That is, get better accuracy with same
amount of nodes?

• Answer: Yes, if you are smart about choosing the nodes
• This is Gaussian quadrature
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Gauss-Legendre quadrature

• Let [a, b] be [−1, 1]
• can always be accomplished by scaling

• Quadrature ∫ 1

−1
f (x)dx ≈

n

∑
i=1

ωif (ζi).

• Goal: Get exact answer if f (x) is a polynomial of order 2n− 1
• That is with 5 nodes you get exact answer even if f (x) is a

9th-order polynomial
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Implementing Gauss-Legendre quadrature

• Get n nodes and n weights from a computer program
• ζ i, i = 1, · · · , n, ωi, i = 1, · · · , n

• Calculate the function values at the n nodes, fi i = 1, · · · , n
• Answer is equal to

n

∑
i=1

ωifi

• Anybody could do this
• How does the computer get the nodes and weights?
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2n equations for nodes and weights
• To get right answer for f (x) = 1∫ 1

−1
1dx =

n

∑
i=1

ωi1

• To get right answer for f (x) = x∫ 1

−1
xdx =

n

∑
i=1

ωiζ i

• To get right answer for f (x) = x2

∫ 1

−1
x2dx =

n

∑
i=1

ωiζ
2
i

• etc
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2n equations for nodes and weights

• To get right answer for f (x) = xj for j = 0, · · · , 2n− 1∫ 1

−1
xjdx =

n

∑
i=1

ωiζ
j
i j = 0, 1, · · · , 2n− 1

• This is a system of 2n equations in 2n unknowns.
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What has been accomplished so far?

• By construction we get right answer for

f (x) = 1, f (x) = x, · · · , f (x) = x2n−1

• But this is enough to get right answer for any polynomial of
order 2n− 1

f (x) =
2n−1

∑
i=0

aixi

• Why?
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Gauss-Hermite Quadrature

• Suppose we want to approximate

∫ ∞

−∞
f (x)e−x2

dx with
n

∑
i=1

ωif (ζi)

• The function e−x2
is the weighting function, it is not used in

the approximation but is captured by the ωi coeffi cients
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Gauss-Hermite Quadrature

• We can use the same procedure to find the weights and the
nodes, that is we solve them from the system:

∫ ∞

−∞
xje−x2

dx =
n

∑
i=1

ωiζ
j
i for j = 0, 1, · · · , 2n− 1

• Note that e−ζ2
i is not on the right-hand side
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Implementing Gauss-Hermite Quadrature

• Get n nodes, ζi, i = 1, · · · , n, and n weights, ωi, i = 1, · · · , n,
from a computer program

• Calculate the function values at the n nodes, fi i = 1, · · · , n
• Answer is equal to

n

∑
i=1

ωifi
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Expectation of Normally distributed variable

• How to calculate

E [h(y)] with y ∼ N(µ, σ2)

• That is, we have to calculate∫ ∞

−∞

1
σ
√

2π
h(y) exp

(
− (y− µ)2

2σ2

)
dy

• Unfortunately, this does not exactly fit the Hermite weighting
function, but a change in variable will do the trick
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Change of variables

• If y = φ(x) then

∫ b

a
g(y)dy =

∫ φ−1(b)

φ−1(a)
g(φ(x))φ′(x)dx

• Note the Jacobian is added
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Change of variables

The transformation we use here is

x =
y− µ

σ
√

2
or y = σ

√
2x+ µ
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Change of variables

E [h(y)] =
∫ ∞

−∞

1
σ
√

2π
h(y) exp

(
− (y− µ)2

2σ2

)
dy

=
∫ ∞

−∞

1
σ
√

2π
h(
√

2σx+ µ) exp
(
−x2

)
σ
√

2dx

=
∫ ∞

−∞

1√
π

h(
√

2σx+ µ) exp
(
−x2

)
dx
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What to do in practice?

• Obtains n Gauss-Hermite quadrature weights and nodes using a
numerical algorithm.

• Calculate the approximation using

E [h(y)] ≈
n

∑
i=1

1√
π

ωGH
i h

(√
2σζGH

i + µ
)

• Do not forget to divide by
√

π!
• Is this amazingly simple or what?
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Extra material

• Derivation Simpson formula
• Monte Carlo integration
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Lagrange interpolation

Let

Li(x) =
(x− x0) · · · (x− xi−1)(x− xi+1) · · · (x− xn)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

f (x) ≈ f0L0(x) + · · ·+ fnLn(x).

• What is the right-hand side?
• Do I have a perfect fit at the n+ 1 nodes?
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Simpson: 2nd-order Newton-Cotes

• x0 = a, x1 = (a+ b)/2, x2 = b, or
• x1 = x0 + h, x2 = x0 + 2h

Using the Lagrange way of writing the 2nd-order polynomial, we get∫ b

a
f (x)dx ≈

∫ b

a
f0L0(x) + f1L1(x) + f2L2(x)

= f0
∫ b

a
L0(x)dx+ f1

∫ b

a
L1(x)dx+ f2

∫ b

a
L2(x)dx
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Amazing algebra

∫ b

a
L0(x)dx =

1
3

h∫ b

a
L1(x)dx =

4
3

h∫ b

a
L2(x)dx =

1
3

h

• Why amazing?
• formula only depends on h, not on values xi and fi

• Combining gives∫ b

a
f (x)dx ≈

∫ b

a
P2(x)dx =

(
1
3

f0 +
4
3

f1 +
1
3

f2

)
h.
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True and pseudo Monte Carlo

To calculate an expectation

• Let x be a random variable with CDF F(x)
• Monte Carlo integration:∫ b

a
h(x)dF(x) ≈ ∑T

t=1 h(xt)

T
,

• Use random number generator to implement this in practice
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True and pseudo Monte Carlo

What if integral is not an expectation∫ b

a
h(x)dx = (b− a)

∫ b

a
h(x)fab(x)dx,

where fab is the density of a random variable with a uniform
distribution over [a, b], that is, fab = (b− a)−1.
Thus, one could approximate the integral with∫ b

a
h(x)dx ≈ (b− a)∑T

t=1 h(xt)

T
,

where xt is generated using a random number generator for a
variable that is uniform on [a, b].
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Quasi Monte Carlo

• Monte Carlo integration has very slow convergence properties
• In higher dimensional problems, however, it does better than
quadrature (it seems to avoid the curse of dimensionality)

• But why? Pseudo MC is simply a deterministic way to go
through the state space

• Quasi MC takes that idea and improves upon it
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Quasi Monte Carlo

• Idea: Fill the space in an effi cient way
• Equidistributed series: A scalar sequence {xt}T

t=1 is
equidistributed over [a, b] iff

lim
T−→∞

b− a
T

T

∑
t=1

f (xt) =
∫ b

a
f (x)dx

for all Rieman-integrable f (x).
• Equidistributed takes the place of uniform
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Quasi Monte Carlo

.

• Examples

• ξ, 2ξ, 3ξ, 4ξ, · · · is equidistributed modulo 1 for any irrational
number ξ.1

• The sequence of prime numbers multiplied by an irrational
number (2ξ, 3ξ, 5ξ, 7ξ, · · · )

1Frac(x) (or x Modulo 1) means that we subtract the largest integer that is
less than x. For example, frac(3.564) = 0.564.
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Multidimensional

For a d-dimensional problem, an equidistributed sequence
{xt}T

t=1 ⊂ D ⊂ Rd satisfies

lim
T−→∞

µ(D)
T

T

∑
t=1

f (xt) =
∫

D
f (x)dx,

where µ(D) is the Lebesque measure of D.
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Multidimensional equidistributed vectors

Examples for the d-dimensional unit hypercube:

Weyl:
xt = (t

√
p1, t
√

p2, · · · , t
√

pd) modulo 1,

where pi is the ith positive prime number.

Neiderreiter:

xt = (t21/(d+1), t22/(d+1), · · · , t2d/(d+1)) modulo 1
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References

• Den Haan, W.J., Numerical Integration
• Most text books on numerical methods will have a chapter on
this topic
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