Numerical Integration

Wouter J. Den Haan
London School of Economics

© 2011 by Wouter J. Den Haan

June 3, 2011
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Quadrature techniques

1= [ flode~ Y wf(x) = Y. wf
a i=1 =1

e Nodes: x;
o Weights: w;
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Quadrature techniques

1= [ fode = 3w

Two versions:

e Newton Cotes:
e equidistant nodes & "best" choice for the weights w;
e Gaussian Quadrature:

e "best" choice for both nodes and weights
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Monte Carlo techniques

e pseudo:
e implemetable version of true Monte Carlo
e quasi:
o looks like Monte Carlo, but is something different

e name should have been chosen better
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Power

e Newton-Cotes: With 7 nodes you get

e exact answer if f is (n — 1)™-order polynomial
e accurate answer f is close to a nt"-order polynomial

e Gaussian: With 7 nodes you get
e exact answer if f is (2n — 1)™-order polynomial

. th .
e accurate answer f is close to a (2n — 1) "-order polynomial
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Power

e (Pseudo) Monte Carlo: accuracy requires lots of draws

e Quasi Monte Carlo: definitely better than (pseudo) Monte
Carlo and will dominate quadrature methods for
higher-dimensional problems
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Idea behind Newton-Cotes

e function values at 7 nodes = you can fit a (n — 1)*-order
polynomial & integrate the approximating polynomial

/abf(x)dx A /ab Py(x)dx

e It turns out that this can be standardized

e see Section "extra" for derivation
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Simpson for one interval (3 nodes)

/abf(x)dx ~ (%fo + §f1 + %fz) h
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Simpson for multiple intervals (n+1 nodes)

/abf(x)dx ~ (%fo + gfl + %fz) h

+ (%fz + gf?s + %f4) h
: .(éfn—Z + %Lfn—l + %fn) h

1 4 2 4 2 2 4 1
== = = = = T SRS Hr 2 [ /)
<3f0+3f1+3fz+3f3+3f4+ an 2+3fn 1+3fn>
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Gaussian quadrature

e Could we do better? That is, get better accuracy with same
amount of nodes?

e Answer: Yes, if you are smart about choosing the nodes

e This is Gaussian quadrature
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Gauss-Legendre quadrature

Let [a,b] be [—1,1]

e can always be accomplished by scaling

Quadrature )
[ f @ Y (@)

Goal: Get exact answer if f(x) is a polynomial of order 2n — 1

That is with 5 nodes you get exact answer even if f(x) is a
9th_order polynomial
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Implementing Gauss-Legendre quadrature

Get n nodes and n weights from a computer program

d gi/i:]v"'/nvwivizlr"'/n

Calculate the function values at the n nodes, fii=1,---,n

e Answer is equal to

Anybody could do this
e How does the computer get the nodes and weights?
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2n equations for nodes and weights
e To get right answer for f(x) =1

1 n
/ ldx =) wjl
-1 i=1
e To get right answer for f(x) = x
1 n
/ xdx = Zw,@
-1 i=1
e To get right answer for f(x) = x?

1 n
/ Pdx =Y w7
1 4
=1

e etc
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2n equations for nodes and weights

e To get right answer for f(x) =/ forj=0,---,2n —1

1 n .
/1x]dx: ;wigfi j=0,1,---,2n—1
1=

e This is a system of 2n equations in 21 unknowns.

Extra
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What has been accomplished so far?

e By construction we get right answer for

f(x)=1, f(x) =x, -~ ,f(x) =21

e But this is enough to get right answer for any polynomial of

order 2n — 1
2n—1

flx) = Z a;x'
i=0

o Why?
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Gauss-Hermite Quadrature

e Suppose we want to approximate
[ee] > n
/ f(x)e ™ dx with Y wif (7))
- i=1

e The function e is the weighting function, it is not used in

the approximation but is captured by the w; coefficients
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Gauss-Hermite Quadrature

e We can use the same procedure to find the weights and the
nodes, that is we solve them from the system:

—00

[ I n ,
/ xe ™ dy = Zwigji forj=0,1,---,2n—1
i=1

o Note that ¢4 is not on the right-hand side
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Implementing Gauss-Hermite Quadrature

e Get n nodes, {;,i=1,---,n, and n weights, w;, i=1,--- ,n,
from a computer program
o Calculate the function values at the n nodes, fii=1,---,n

e Answer is equal to
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Expectation of Normally distributed variable

e How to calculate
E[h(y)] with y ~ N(,0?)

e That is, we have to calculate

/0o —h(y) exp (—%) dy

—co /27T

e Unfortunately, this does not exactly fit the Hermite weighting
function, but a change in variable will do the trick
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Change of variables

o If y = ¢(x) then

/abg y)dy = /jlz(: (0 (1)

e Note the Jacobian is added
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Change of variables

The transformation we use here is

Yy—H
o2

oryza\/§x+]/t

X =
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Change of variables

Efrw)] = | U\}Eh(y) exp (— @’2;;”2) dy

— /O:o U\/lﬂh(\/iax + 1) exp (—x2> oV/2dx

—/ \/_ax—{—y)exp( )dx
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What to do in practice?

Obtains n Gauss-Hermite quadrature weights and nodes using a
numerical algorithm.

Calculate the approximation using

=) & ) e (VaoZ + p)

Do not forget to divide by /7!

Is this amazingly simple or what?
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Extra material

e Derivation Simpson formula

e Monte Carlo integration
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Lagrange interpolation

Let

(x = x0) -+ (= %0) (6= %i4)

(x —xy)

Extra

Li(x) =

f(x) =~ foLo(x) + - -+ + fuLn(x).

e What is the right-hand side?
e Do | have a perfect fit at the n 4+ 1 nodes?

(xi _XO) ce (xi —xl;l)(xi — xiJrl) e

(x; — xn)
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Simpson: 2nd-order Newton-Cotes
e xo=a,x;=(a+Db)/2,x=0, or
e x1=x9+h, xp =x0+2h
Using the Lagrange way of writing the 2"9-order polynomial, we get
b b
| fdx x| fLo(x) + AL () +fLa(x)
a a
b b b
= fo/ Lo(x)dx +f1/ Ly (x)dx +f2/ Lz(x)dx
a a a
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Amazing algebra

e Why amazing?
e formula only depends on /, not on values x; and f;

e Combining gives

[ s [ Paax= (3+ 3+ 38 ) B
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True and pseudo Monte Carlo

To calculate an expectation

e Let x be a random variable with CDF F(x)
e Monte Carlo integration:

Tz,
/ () dE(x) ~ Zt%h()

e Use random number generator to implement this in practice
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True and pseudo Monte Carlo

What if integral is not an expectation

/abh(x)dx — (b—a) /abh(x) o (x)dx

where f,}, is the density of a random variable with a uniform
distribution over [a,b], that is, fap = (b —a) 1.
Thus, one could approximate the integral with

/ﬂbh(x)dXN( )Zt 1 ( )

where x; is generated using a random number generator for a
variable that is uniform on [a, b].
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Quasi Monte Carlo

Monte Carlo integration has very slow convergence properties

In higher dimensional problems, however, it does better than
quadrature (it seems to avoid the curse of dimensionality)

But why? Pseudo MC is simply a deterministic way to go
through the state space

Quasi MC takes that idea and improves upon it
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Quasi Monte Carlo

o Idea: Fill the space in an efficient way

o Equidistributed series: A scalar sequence {x;}L_, is
equidistributed over [a, b] iff

lim b—a
T—soo T

T b
Xp) = x)dx
Yr) = [ )

for all Rieman-integrable f(x).
e Equidistributed takes the place of uniform
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Quasi Monte Carlo

e Examples

e (,28,3¢,4¢,- - - is equidistributed modulo 1 for any irrational
number ¢!

e The sequence of prime numbers multiplied by an irrational
number (2¢,3¢&,5¢,7¢,- )

LFrac(x) (or x Modulo 1) means that we subtract the largest integer that is
less than x. For example, frac(3.564) = 0.564.
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Multidimensional

For a d-dimensional problem, an equidistributed sequence
{x}L, C D C R? satisfies

T—00

(D) ¢ _
lim Tt_zlf(xt) — /D F(x)dx,

where (D) is the Lebesque measure of D.



Overview Newton-Cotes Gaussian quadrature Extra

Multidimensional equidistributed vectors

Examples for the d-dimensional unit hypercube:

Weyl:
xt = (t\/p1,t\/P2,- - ,t\/Pa) modulo 1,

where p; is the it positive prime number.
pi P

Neiderreiter:

xp = (21D 1p2/d+1) o 4od/([d+1)) modulo 1
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References

e Den Haan, W.J., Numerical Integration

e Most text books on numerical methods will have a chapter on
this topic
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