Models with Heterogeneous Agents Introduction

Wouter J. Den Haan London School of Economics

© 2011 by Wouter J. Den Haan

August 23, 2011

Overview

- "Simple" model with heterogeneous agents
 - understanding the complexity of these models
 - role of aggregate uncertainty
 - role of incomplete markets
- Solving the Aiyagari model
 - basic numerical techniques (refresher)
- Does heterogeneity matter?

Overview continued

- Avoiding complexity
 - heterogeneity only within the period
 - partial equilibrium
 - are two agents enough?
- Other models with heterogeneity
 - New Keynesian model
 - Multiplicity & domino effects due to tax externality
 - macro model with search frictions

First model with heterogeneous agents

- Agents are *ex ante* the same, but face different idiosyncratic shocks
 agents are different *ex post*
- Incomplete markets
 - \implies heterogeneity cannot be insured away

Individual agent

- Subject to employment shocks:
 - $e_{i,t} \in \{0,1\}$
- Incomplete markets
 - only way to save is through holding capital
 - borrowing constraint $k_{i,t+1} \ge 0$

Aggregate shock

- $z_t \in \{z^b, z^g\}$
- z_t affects
 - **1** aggregate productivity
 - 2 probability of being employed

Laws of motion

- z_t can take on two values
- et can take on two values
- probability of being (un)employed depends on z_t
- transition probabilities are such that
 - unemployment rate only depends on current z_t
 - thus

•
$$u_t = u^b$$
 if $z_t = z^b$ &

•
$$u_t = u^g$$
 if $z_t = z^g$

• with $u^b > u^g$

Firm problem

$$r_t = \alpha z_t K_t^{\alpha - 1} L_t^{1 - \alpha}$$

$$w_t = (1 - \alpha) K_t^{\alpha} L_t^{1 - \alpha}$$

These are identical to those of the rep. agent version

Government

$$\tau_t w_t \overline{l}(1 - u(a_t)) = \mu w_t u(a_t)$$

$$\tau_t = \frac{\mu u(a_t)}{\overline{l}(1 - u(a_t))}$$

Individual agent

$$\max_{\{c_{i,t},k_{i,t+1}\}_{t=0}^{\infty}} \mathsf{E} \sum_{t=0}^{\infty} \beta^t \ln(c_{i,t})$$

s.t.

$$c_{i,t} + k_{i,t+1} = r_t k_{i,t} + (1 - \tau_t) w_t \overline{l} e_{i,t} + \mu w_t (1 - e_{i,t}) + (1 - \delta) k_{i,t}$$

$$k_{i,t+1} \ge 0$$

this is a relatively simple problem
 if processes for r_t and w_t are given

 $C_{i,t}$

Individual agent - foc

$$\begin{aligned} \frac{1}{c_{i,t}} &\geq \beta \mathsf{E}_t \left[\frac{1}{c_{i,t+1}} \left(r_{t+1} + 1 - \delta \right) \right] \\ 0 &= k_{i,t+1} \left(\frac{1}{c_{i,t}} - \beta \mathsf{E}_t \left[\frac{1}{c_{i,t+1}} \left(r_{t+1} + 1 - \delta \right) \right] \right) \\ + k_{i,t+1} &= r_t k_{i,t} + (1 - \tau_t) w_t \overline{l} e_{i,t} + \mu w_t (1 - e_{i,t}) + (1 - \delta) k_{i,t} \\ k_{i,t+1} &\geq 0 \end{aligned}$$

What aggregate info do agents care about?

- current **and** future values of r_t and w_t
- the period-t values of r_t and w_t
 - only depend on aggregate capital stock, K_t , & z_t
 - !!! This is not true in general for equilibrium prices

Other models

- the future values, i.e., $r_{t+ au}$ and $w_{t+ au}$ with au>0 depend on
 - future values of mean capital stock, i.e. $K_{t+ au}$, & $z_{t+ au}$
- \implies agents are interested in all information that forecasts K_t
- ⇒ typically this includes the complete cross-sectional distribution of employment status and capital levels (even when you only forecast futures means like you do here)

Equilibrium - first part

- Individual policy functions that solve agent's max problem
- A wage and a rental rate given by equations above.

Equilibrium - second part

• A transition law for the cross-sectional distribution of capital, that is consistent with the investment policy function.

$$f_{t+1} = \mathbf{Y}(z_{t+1}, z_t, f_t)$$

- f_t = cross-sectional distribution of beginning-of-period capital and the employment status *after* the employment status has been realized.
- z_{t+1} does *not* affect the cross-sectional distribution of capital
- z_{t+1} does affect the *joint* cross-sectional distribution of capital and employment status

Transition law & timing

- $f_t \& z_t \Longrightarrow f_t^{\text{end-of-period}}$
- $f_t^{\text{end-of-period}} \& z_{t+1} \Longrightarrow f_{t+1}^{\text{beginning-of-period}} \equiv f_{t+1}$

Transition law & timing

- Let g_t be the cross-sectional distribution of capital (so without any info on employment status)
- Why can I write

$$g_{t+1} = \mathbf{Y}_g(z_t, g_t)?$$

Transition law & continuum of agents

$$g_{t+1} = Y_g(z_t, g_t)$$

$$f_{t+1} = Y(z_{t+1}, z_t, f_t)$$

Why are these exact equations without additional noise?

- continuum of agents => rely on law of large numbers to average out idiosyncratic risk
- are we allowed to do this?

Recursive equilibrium?

Questions

- Does an equilibrium exist?
 - If yes, is it unique?
- **2** Does a recursive equilibrium exist?
 - If yes, is it unique?
 - 2 If yes, what are the state variables?

Recursive equilibrium?

Jianjun Miao (JET, 2006): a recursive equilibrium exist for following state variables:

- usual set of state variables, namely
 - individual shock, $e_{i,t}$
 - individual capital holdings, $k_{i,t}$
 - aggregate productivity, z_t
 - joint distribution of income and capital holdings, f_t
- and cross-sectional distribution of expected payoffs

Unique?

Heterogeneity \implies more reasons to expect multiplicity

- my actions depend on what I think others will do
- heterogeneity tends to go together with frictions and multiplicity more likely with frictions
 - e.g. market externalities

Wealth-recursive (WR) equilibrium

- WR equilibrium is a recursive equilibrium with only e_{i,t}, k_{i,t}, z_t, and f_t as state variables.
 (Also referred to as Krusell-Smith (KS) recursive equilibrium)
- Not proven that WR equilbrium exists in model discussed here (at least not without making unverifiable assumptions such as equilibrium is unique for all possible initial conditions)
- Kubler & Schmedders (2002) give examples of equilibria that are *not* recursive in wealth (i.e., wealth distribution by itself is not sufficient)

Wealth distribution not sufficient - Example

- Static economy two agents, i = 1, 2, two commodities, j = A, B
- Utility: $\ln q_A + \ln q_B$
- Endowments in state I: $\omega_{1,A} = \omega_{2,A} = 1; \omega_{1,B} = \omega_{2,B} = 1$
- Endowments in state II:

 $\omega_{1,A} = \omega_{2,A} = 1; \omega_{1,B} = \omega_{2,B} = 10/9$

• Normalization: $p_A = 1$

- State I:
 - equilibrium: $p_B = 1$; $q_{1,A} = q_{2,A} = 1$; $q_{1,B} = q_{2,B} = 1$ wealth of each agent: = 2
- State II:
 - equilibrium: $p_B = 0.9$; $q_{1,A} = q_{2,A} = 1$; $q_{1,B} = q_{2,B} = 10/9$ wealth of each agent: = 2
- Thus: same wealth levels, but different outcome

How to proceed?

- Wealth distribution may not be sufficient!
- For numerical analysis less problematic: It typically leaves stuff out After obtaining solution, you should check whether the approximation is accurate or not
- My *hunch* is that for many models of interest the wealth distribution should capture most of the relevant cross-sectional information

How to proceed?

- For now we assume that a wealth recursive equilibrium exists (or an approximation based on it is accurate)
- This is still a tough numerical problem

If a wealth recursive equilibrium exists

• Suppose that recursive RE for usual state space exists

•
$$s_{i,t} = \{e_{i,t}, k_{i,t}, s_t\} = \{e_{i,t}, k_{i,t}, z_t, f_t\}$$

- Equilibrium:
 - $c(s_{i,t})$
 - $k(s_{i,t})$
 - $r(s_t)$
 - $w(s_t)$
 - $Y(z_{t+1}, z_t, f_t)$

Alternative representation state space

• Suppose that recursive RE for usual state space exist

or

•
$$s_{i,t} = \{e_{i,t}, k_{i,t}, s_t\} = \{e_{i,t}, k_{i,t}, z_t, f_t\}$$

• What determines current shape f_t ?

•
$$z_t, z_{t-1}, f_{t-1}$$
 or
• $z_t, z_{t-1}, z_{t-2}, f_{t-2}$ or
• $z_t, z_{t-1}, z_{t-2}, z_{t-3}, f_{t-3}$ or
• $z_t, z_{t-1}, z_{t-2}, z_{t-3}, z_{t-4}, f_{t-4}$

No aggregate uncertainty

$$s_t = \lim_{n \longrightarrow \infty} \{z_t, z_{t-1}, \cdots, z_{t-n}, f_{t-n}\}$$

- Why is this useful from a numerical point of view?
 - when z_t is stochastic
 - when z_t is not stochastic (case of no aggregate uncertainty)

No aggregate uncertainty

State variables

$$\lim_{n\longrightarrow\infty} \{z_t, z_{t-1}, \cdots, z_{t-n}, f_{t-n}\}$$

• If

1 $z_t = z \ \forall t$ and

2 effect of initial distribution dies out

- then s_t constant
 - distribution still matters!
 - but it is no longer a *time-varying* argument

Does it matter?

Aggregation

Statement:

The representative agent model is silly, because there is no trade in this model, while there is lots of trade in financial assets in reality

Aggregation

Statement:

The representative agent model is silly, because there is no trade in this model, while there is lots of trade in financial assets in reality

Problem with statement:

RA is justified by complete markets which relies on lots of trade

Complete markets & exact aggregation

- economy with ex ante identical agents
- I different states
- complete markets \implies *I* contingent claims

Complete markets & exact aggregation

$$\max_{\substack{c^{i}, b_{+1}^{1,i}, \cdots, b_{+1}^{J,i} \\ \text{s.t.}}} \frac{(c^{i})^{1-\gamma}}{1-\gamma} + \beta \mathsf{E}v(b_{+1}^{1,i}, \cdots, b_{+1}^{J,i})$$
s.t. $c^{i} + \sum_{j=1}^{J} q^{j} b_{+1}^{j,i} = y^{i} + \sum_{j=1}^{J} I(j^{*}) b^{j,i}$
 $b_{+1}^{j,i} > \overline{b} \text{ with } \overline{b} < 0$

Euler equations individual

$$q^{j}\left(c^{i}
ight)^{-\gamma}=eta\left(c^{j,i}_{+1}
ight)^{-\gamma}\operatorname{prob}(j)\qquad orall j$$

This can be written as follows:

$$c^{i} = \left(rac{eta ext{prob}(j)}{q^{j}}
ight)^{-1/\gamma} c^{j,i}_{+1} \qquad orall j$$

Aggregation

Aggregation across individual i of

$$c^{i} = \left(rac{eta ext{prob}(j)}{q^{j}}
ight)^{-1/\gamma} c^{j,i}_{+1} \quad orall j$$

gives

$$C = \left(rac{eta extsf{prob}(j)}{q^j}
ight)^{-1/\gamma} C^j_{+1} \quad orall j,$$

which can be rewritten as

$$q^{j}\left(C
ight)^{-\gamma}=eta\left(C_{+1}^{j}
ight)^{-\gamma} ext{prob}(j) \hspace{0.4cm}orall j$$

Use equilibrium condition

- In equilibrium:
 - aggregate consumption equals aggregate income or
 - contingent claims are in zero net supply
- Thus

$$q^{j}\left(Y
ight)^{-\gamma}=eta\left(Y^{j}_{+1}
ight)^{-\gamma}\operatorname{prob}(j) \hspace{0.4cm}orall j$$

Back to represenative agent model

• Idential FOCs come out of this RA model:

$$\max_{\substack{C,B_{+1}^1, \cdots, B_{+1}^j}} \frac{(C)^{1-\gamma}}{1-\gamma} + \beta \mathsf{E}v(B_{+1}^1, \cdots, B_{+1}^J)$$

s.t. $C^i + \sum_{j=1}^J q^j B_{+1}^j = Y + \sum_{j=1}^J I(j^*) B^j$
 $B_{+1}^j > \overline{b}$ with $\overline{b} < 0$

Back to model with heterogeneous agents

- (For now) no aggregate risk Aiyagari model
- We simplify the standard setup as follows:
 - Replace borrowing constraint by penalty function
 ⇒ going short is possible but costly
 - workers have productivity insteady of unemployment shocks $e_{i,t}$ with $\mathsf{E}[e_{i,t}]=1$

Individual agent

$$\max_{\substack{\{c_{i,t},k_{i,t+1}\}_{t=0}^{\infty} \\ s.t.}} E \sum_{t=0}^{\infty} \beta^{t} \ln(c_{i,t}) - \frac{\zeta_{1}}{\zeta_{0}} \exp(-\zeta_{0}k_{i,t}) - \zeta_{2}k_{i,t}$$
s.t.
$$c_{i,t} + k_{i,t} = r_{t}k_{i,t-1} + w_{t}e_{i,t} + (1-\delta)k_{i,t-1}$$

First-order condition

$$-\frac{1}{c_{i,t}} + \zeta_1 \exp(-\zeta_0 k_{i,t}) - \zeta_2 + \mathsf{E}_t \left[\frac{\beta}{c_{i,t+1}} \left(r_{t+1} + 1 - \delta\right)\right] = 0$$

Penalty function

- advantage of ζ_2 term:
 - suppose \bar{k} and \bar{r} are steady states of rep agent model • if

$$\zeta_2 = \zeta_1 \exp(-\zeta_0 \bar{k})$$

then steady state of this model is same

Equilibrium

- Unit mass of workers, $L_t = 1$
- Competitive firm \Longrightarrow agent faces competitive prices

•
$$w_t = (1 - \alpha) K_t^{\alpha} L_t^{1 - \alpha} = (1 - \alpha) K_t^{\alpha}$$

• $r_t = \alpha K_t^{\alpha - 1} L_t^{\alpha} = \alpha K_t^{\alpha - 1}$

• No aggregate risk so

$$K_t = K$$

• How to find the equilibrium K?

Algorithm

- Guess a value for r
- This implies values for K^{demand} and w
- Solve the individual problem with these values for $r \And w$
- Simulate economy & calculate the supply of capital, K^{supply}
- If $K^{\text{supply}} < K^{\text{demand}}$ then r too low so raise r, say

$$r^{\mathsf{new}} = r + \lambda (K^{\mathsf{demand}} - K^{\mathsf{supply}})$$

• Iterate until convergence

Algorithm

Using

$$r^{\mathsf{new}} = r + \lambda (K^{\mathsf{demand}} - K^{\mathsf{supply}})$$

to solve

$$K^{\mathsf{demand}}(r) = K^{\mathsf{supply}}(r)$$

not very efficient

- Value of λ may have to be very low
- More efficient to use equation solver to solve fro r

Use Dynare to solve indiv. policy rule

- Specify guess for r in mother Matlab file
- Make *r* parameter in *.mod file
- In mother Matlab file write r using

save r file r

Use Dynare to solve indiv. policy rule

In * mod file use

load r_file set_param_value('r',r)

instead of

r = 0.013;

Simulate yourself using Dynare solution

- ① Use values stored by Dynare or
- **2** Replace Dynare's disp_dr.m with my alternative
- this saves the policy functions exactly as shown on the screen
 - asa matrix
 - in a Matlab data file dynarerocks.mat
 - under the name decision

Does heterogeneity matter?

- Important to distinguish between
 - (i) theoretical results
 - (ii) their quantitative importance
- Examples
 - no aggregation in presence of incomplete markets
 - Arrow's impossibility theorem

Does incompleteness/heterogeneity matter?

- Take model with
 - infinitely-lived agents
 - no complete markets
 - e.g. agents can only borrow/lend through a safe asset
- \implies no aggregation to RA model possible
- But in many models effects small
 - why does infinitely-lived agent assumption matter?

Does incompleteness/heterogeneity matter?

- Effects often small for
 - asset prices
 - aggregate series
 - except possibly some impact on means
- Effects much bigger for
 - individual series, e.g. $VAR(c_{i,t}) >> VAR(C_t)$

Aiyagari model Does it matter?

Avoiding complexity

- heterogeneity only within the period
- partial equilibrium
- two agents?

Avoiding complexity

- Lesson learned above:
 - incomplete asset markets don't do much in many environments
- This implies you should
 - either use more interesting environment
 - or use complete asset markets
- This does *NOT* imply you should eliminate heterogeneity from your models

Only heterogeneity within period

- Household with heterogeneous members within the period:
 - members are on their own and face frictions. E.g.
 - cannot transfer funds to each other
 - cannot transfer information
- At the end of period:
 - all members bring this period's revenues to household who makes savings decision

Partial equilibrium

Which of the following two would you prefer?

- General equilibrium asset pricing model that generates *unrealistic* asset prices
- Partial equilibrium model that uses *realistic* asset prices as exogenous processes

Partial of general equilibrium?

What about follwing example

- Government sets interest rates
 - !!! Government cannot set current r_t nor r_{t+1} .
 - Suppose it sets $E_t [r_{t+1}]$. E.g.,

$$\mathsf{E}_{t}\left[r_{t+1}\right] = (1 - \rho_{r})r^{*} + \rho_{r}r_{t} + \varepsilon_{r,t}$$

• Government supplies capital to implement this.

Partial of general equilibrium?

- These expenditures are financed by lump sum taxes.
- State variables are
 - $k_{i,t}$
 - *e*_{*i*.*t*}
 - Zt
 - *K_t* but no higher-order moments
 - $E_t[r_{t+1}]$ or ???

Small number of agents

Consider following endowment economy

- Type 1 agent receives $z_{1,t}$
- Type 2 agent receives $z_{2,t}$
- average endowment z_t

$$z_t = 0.5 z_{1,t} + 0.5 z_{2,t}$$

• agents smooth idiosyncratic risk by trading in safe bonds

Small number of agents

$$c_{i,t}^{-\gamma} \ge q_t \beta \mathsf{E}_t \left[c_{i,t+1}^{-\gamma}
ight]$$

$$egin{aligned} & \left(b_{i,t+1} - ar{b}
ight)\left(c_{i,t}^{-\gamma} - q_teta\mathsf{E}_t\left[c_{i,t+1}^{-\gamma}
ight]
ight) = 0 \ & b_{i,t+1} \geq ar{b} \end{aligned}$$

 $b_{1,t+1} + b_{2,t+1} = 0$

Idiosyncratic risk

- You want to study effect of idiosyncratic risk.
- Suppose agent 1 repeatedly gets the bad shock
- Difference with model with lots of types?
 - here: *lots* of agents always get *same* shock at *same* time
 - so what?

Idiosyncratic risk and interest rate

Heterogeneity in other models

- Standard New Keynesian model
- Simple static model with tax externality
- Standard model with search friction
 - multiple steady states
 - multiple solutions

New Keynesian models

- Calvo devil ⇒ heterogeneous price dispersion
- Standard approach:
 - only focus on aggregates
 - focus on linearized solution

- Suppose
 - all firms start with same price (for simplicity)
 - consider monetary tightening
- Aggregate:
 - downturn because of sticky prices

Disaggregate results in NK models

- Firms that are *not* constrained by Calvo devil: $p_i \downarrow$
 - their aggregate demand \uparrow because $p_i/P \downarrow$
 - their aggregate demand ↓ because aggregate demand ↓
 - total effect can easily be ↑
- But empirical evidence suggests decline across different sectors

Asymmetry in New Keynesian models

Suppose commodities are perfect substitutes

- Monetary tightening:
 - firms that are *not* constrained by Calvo devil: $p_i \downarrow$
 - \implies firms constrained by Calvo devil sell 0
 - ullet \Longrightarrow same outcome as fully flexible case
 - $\Longrightarrow \Delta Y = 0$

Asymmetry in New Keynesian models

Suppose commodities are perfect substitutes

- Monetary stimulus:
 - Firms that are constrained by Calvo devil: $\Delta p_i = 0$
 - \implies firms *not* constrained by Calvo devil: $\Delta p_i = 0$
 - \implies same outcome as fixed P case
 - $\Longrightarrow \Delta Y < 0$

The true New Keynesian models

Conclusion:

True New Keynesian models are much more interesting than the linearized version the profession is obsessed with

Is the true NK model also more realistic?

Other models

Tax externality

- Static model
- N different skill levels
 - $z_k, k = 1, \cdots, N$
 - $z_1 = \bar{z}$
 - $z_{k+1} = z_k + \varepsilon$
- unemployed get benefits

Avoiding complexity

Other models

animated picture

Does it matter?

Search model

Consider the following model

- unit mass of workers
- workers need to search to find a job
- employers post vacancy to find worker
- productivity of matched pairs distributed i.i.d
 - so each period a new draw

Other models

Key decision

- Given value of $\varepsilon_{i,t}$ is it better to
 - produce or
 - **2** quit and enjoy leisure?

Equation for cut-off value

• The cut-off value $\bar{\varepsilon}_i$ given by

$$0=\bar{\varepsilon}_i+G-b-W$$

- G : continuation value of ending period in match
 - does not depend on $\varepsilon_{i,t}$ (i.i.d. assumption)
 - does depend on \(\bar{\varepsilon}_i\)
- W : continuation value of ending period not in match
 - also depends on $\bar{\varepsilon}_i$

Solution for cut-off value

• We are looking for a solution to

$$0 = \bar{\varepsilon}_i + G\left(\bar{\varepsilon}_i\right) - b - W\left(\bar{\varepsilon}_i\right)$$

• Unique solution if

$$\frac{\partial\left(\bar{\varepsilon}_{i}+G\left(\bar{\varepsilon}_{i}\right)-b-W\left(\bar{\varepsilon}_{i}\right)\right)}{\partial\bar{\varepsilon}_{i}}>0\quad\forall\bar{\varepsilon}_{i}$$

but typically we have

$$\frac{\partial\left(G\left(\bar{\varepsilon}_{i}\right)-W\left(\bar{\varepsilon}_{i}\right)\right)}{\partial\bar{\varepsilon}_{i}}<0\quad\text{for some }\bar{\varepsilon}_{i}$$

Does it matter?

er? Avoiding complexity

Other models

Unique steady state

Multiple steady state case

Reasons for multiplicity

- expectations about the stability of future matches
 - as in example above
- market activity could affect revenues
 - as in static example with tax externality

Tax externality and multiplicity

Easy to get two steady states

- Low (high) taxes \Longrightarrow
- Surplus high (low) \Longrightarrow
- Job destruction low (high) \Longrightarrow
- Unemployment rate low (high) \Longrightarrow
- Taxes indeed low (high)

Avoiding complexity

Other models

Multiple what?

Multiple steady states \Rightarrow multiple solutions

Does it matter?

Avoiding complexity

Other models

Transition dynamics I

Transition dynamics II

Why is it hard to get this published in AER?

- What aspect of distribution determines whether this is quantitatively important?
- How do you get data on this?

References

- Aiyagari, S. R., 1994, Uninsured Idiosyncratic Risk and Aggregate Saving, Quarterly Journal of Economics.
 - classic paper using a model with capital.
- Algan, Y., O. Allais, W.J. Den Haan, and P. Rendahl, Solving and Simulating Models with Heterogeneous Agents and Aggregate Uncertainty.
 - Survey article available online.
- Den Haan, W.J., 2001, The Importance of the Number of Different Agents in a Heterogeneous Asset-Pricing Model, Journal of Economic Dynamics and Control.
 - Shows that models with two agents are problematic models to study risk of individual agents.

- Den Haan, W.J., 2007, Shocks and the Unavoidable Road to Higher Taxes and Higher Unemployment, Review of Economic Dynamics.
 - Matching model with heterogeneous agents with multiple steady states and (sometimes) multiple equilibria.
- Fuerst, T.S., 1991, Liquidity, loanable funds, and real activity, Journal of Monetary Economics.
 - One of the first articles to use the trick of the happy household with heterogeneity within the period, but not across periods.
- Huggett, M., 1993, The risk-free rate in heterogeneous-agent incomplete-insurance economics, Journal of Economic Dynamics and Control.
 - classic paper using a model with bonds.
- Krusell, P., and A.A. Smith, 1997, Income and Wealth Heterogeneity in the Macroeconomy, Journal of Political Economy.
 - classic paper using a model with capital and aggregate risk.

- Kubler, F., and K. Schmedders, 2002, Recursive Equilibria in Economies with Incomplete Markets, Macroeconomic Dynamics.
 - discusses (non)existence and uniqueness.
- Lucas, R.E. Jr., 1990, Liquidity and Interest Rates, Journal of Economic Theory.
 - The article that introduces the idea of using the happy household with heterogeneity within the period, but not across periods.
- Miao, J., 2006, Competitive Equilibria of Economies with a Continuum of Consumers and Aggregate Shocks, Journal of Economic Theory.
 - discusses existence of a recursive equilibria in an environment like the one in Krusell and Smith (1997).