

Models with Heterogeneous Agents

Introduction

Wouter J. Den Haan
London School of Economics

© 2011 by Wouter J. Den Haan

August 23, 2011

Overview

- "Simple" model with heterogeneous agents
 - understanding the complexity of these models
 - role of aggregate uncertainty
 - role of incomplete markets
- Solving the Aiyagari model
 - basic numerical techniques (refresher)
- Does heterogeneity matter?

Overview continued

- Avoiding complexity
 - heterogeneity only within the period
 - partial equilibrium
 - are two agents enough?
- Other models with heterogeneity
 - New Keynesian model
 - Multiplicity & domino effects due to tax externality
 - macro model with search frictions

First model with heterogeneous agents

- Agents are *ex ante* the same, but face different idiosyncratic shocks
 \implies agents are different *ex post*
- Incomplete markets
 \implies heterogeneity cannot be insured away

Individual agent

- Subject to employment shocks:
 - $e_{i,t} \in \{0, 1\}$
- Incomplete markets
 - only way to save is through holding capital
 - borrowing constraint $k_{i,t+1} \geq 0$

Aggregate shock

- $z_t \in \{z^b, z^g\}$
- z_t affects
 - ① aggregate productivity
 - ② probability of being employed

Laws of motion

- z_t can take on two values
- e_t can take on two values
- probability of being (un)employed depends on z_t
- transition probabilities are such that
 - unemployment rate only depends on current z_t
 - thus
 - $u_t = u^b$ if $z_t = z^b$ &
 - $u_t = u^g$ if $z_t = z^g$
 - with $u^b > u^g$.

Firm problem

$$\begin{aligned}r_t &= \alpha z_t K_t^{\alpha-1} L_t^{1-\alpha} \\w_t &= (1 - \alpha) K_t^{\alpha} L_t^{1-\alpha}\end{aligned}$$

These are identical to those of the rep. agent version

Government

$$\tau_t w_t \bar{l}(1 - u(a_t)) = \mu w_t u(a_t)$$

$$\tau_t = \frac{\mu u(a_t)}{\bar{l}(1 - u(a_t))}$$

Individual agent

$$\max_{\{c_{i,t}, k_{i,t+1}\}_{t=0}^{\infty}} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \ln(c_{i,t})$$

s.t.

$$c_{i,t} + k_{i,t+1} = r_t k_{i,t} + (1 - \tau_t) w_t \bar{l} e_{i,t} + \mu w_t (1 - e_{i,t}) + (1 - \delta) k_{i,t}$$
$$k_{i,t+1} \geq 0$$

- this is a relatively simple problem
if processes for r_t and w_t are given

Individual agent - foc

$$\frac{1}{c_{i,t}} \geq \beta \mathbb{E}_t \left[\frac{1}{c_{i,t+1}} (r_{t+1} + 1 - \delta) \right]$$

$$0 = k_{i,t+1} \left(\frac{1}{c_{i,t}} - \beta \mathbb{E}_t \left[\frac{1}{c_{i,t+1}} (r_{t+1} + 1 - \delta) \right] \right)$$

$$c_{i,t} + k_{i,t+1} = r_t k_{i,t} + (1 - \tau_t) w_t \bar{l} e_{i,t} + \mu w_t (1 - e_{i,t}) + (1 - \delta) k_{i,t}$$

$$k_{i,t+1} \geq 0$$

What aggregate info do agents care about?

- current **and** future values of r_t and w_t
- the period- t values of r_t and w_t
 - only depend on aggregate capital stock, K_t , & z_t
 - !!! This is not true in general for equilibrium prices

What aggregate info do agents care about?

- the future values, i.e., $r_{t+\tau}$ and $w_{t+\tau}$ with $\tau > 0$ depend on
 - future values of mean capital stock, i.e. $K_{t+\tau}$, & $z_{t+\tau}$
- \Rightarrow agents are interested in all information that forecasts K_t
- \Rightarrow typically this includes the complete cross-sectional distribution of employment status and capital levels
(even when you only forecast futures means like you do here)

Equilibrium - first part

- Individual policy functions that solve agent's max problem
- A wage and a rental rate given by equations above.

Equilibrium - second part

- A transition law for the cross-sectional distribution of capital, that is consistent with the investment policy function.

$$f_{t+1} = Y(z_{t+1}, z_t, f_t)$$

- f_t = cross-sectional distribution of beginning-of-period capital and the employment status *after* the employment status has been realized.
- z_{t+1} does *not* affect the cross-sectional distribution of capital
- z_{t+1} does affect the *joint* cross-sectional distribution of capital and employment status

Transition law & timing

- f_t & $z_t \implies f_t^{\text{end-of-period}}$
- $f_t^{\text{end-of-period}}$ & $z_{t+1} \implies f_{t+1}^{\text{beginning-of-period}} \equiv f_{t+1}$

Transition law & timing

- Let g_t be the cross-sectional distribution of capital (so without any info on employment status)
- Why can I write

$$g_{t+1} = Y_g(z_t, g_t) ?$$

Transition law & continuum of agents

$$\begin{aligned}g_{t+1} &= Y_g(z_t, g_t) \\f_{t+1} &= Y(z_{t+1}, z_t, f_t)\end{aligned}$$

Why are these exact equations without additional noise?

- continuum of agents \implies rely on law of large numbers to average out idiosyncratic risk
- are we allowed to do this?

Recursive equilibrium?

Questions

- ① Does an equilibrium exist?
 - ① If yes, is it unique?

- ② Does a recursive equilibrium exist?
 - ① If yes, is it unique?
 - ② If yes, what are the state variables?

Recursive equilibrium?

Jianjun Miao (JET, 2006): a recursive equilibrium exist for following state variables:

- usual set of state variables, namely
 - individual shock, $e_{i,t}$
 - individual capital holdings, $k_{i,t}$
 - aggregate productivity, z_t
 - joint distribution of income and capital holdings, f_t
- and *cross-sectional distribution of expected payoffs*

Unique?

Heterogeneity \implies more reasons to expect multiplicity

- my actions depend on what I think others will do
- heterogeneity tends to go together with frictions and multiplicity more likely with frictions
 - e.g. market externalities

Wealth-recursive (WR) equilibrium

- WR equilibrium is a recursive equilibrium with only $e_{i,t}$, $k_{i,t}$, z_t , and f_t as state variables.
(Also referred to as Krusell-Smith (KS) recursive equilibrium)
- Not proven that WR equilibrium exists in model discussed here
(at least not without making unverifiable assumptions such as equilibrium is unique for all possible initial conditions)
- Kubler & Schmedders (2002) give examples of equilibria that are *not* recursive in wealth
(i.e., wealth distribution by itself is not sufficient)

Wealth distribution not sufficient - Example

- Static economy
two agents, $i = 1, 2$, two commodities, $j = A, B$
- Utility: $\ln q_A + \ln q_B$
- Endowments in state I: $\omega_{1,A} = \omega_{2,A} = 1; \omega_{1,B} = \omega_{2,B} = 1$
- Endowments in state II:
 $\omega_{1,A} = \omega_{2,A} = 1; \omega_{1,B} = \omega_{2,B} = 10/9$
- Normalization: $p_A = 1$

Wealth distribution not sufficient - Example

- State I:
 - equilibrium: $p_B = 1; q_{1,A} = q_{2,A} = 1; q_{1,B} = q_{2,B} = 1$
wealth of each agent: = 2
- State II:
 - equilibrium: $p_B = 0.9; q_{1,A} = q_{2,A} = 1; q_{1,B} = q_{2,B} = 10/9$
wealth of each agent: = 2
- Thus: same wealth levels, but different outcome

How to proceed?

- Wealth distribution may not be sufficient!
- For numerical analysis less problematic: It typically leaves stuff out
After obtaining solution, you should check whether the approximation is accurate or not
- My *hunch* is that for many models of interest the wealth distribution should capture most of the relevant cross-sectional information

How to proceed?

- For now we assume that a wealth recursive equilibrium exists (or an approximation based on it is accurate)
- This is still a tough numerical problem

If a wealth recursive equilibrium exists

- Suppose that recursive RE for usual state space exists
 - $s_{i,t} = \{e_{i,t}, k_{i,t}, s_t\} = \{e_{i,t}, k_{i,t}, z_t, f_t\}$
- Equilibrium:
 - $c(s_{i,t})$
 - $k(s_{i,t})$
 - $r(s_t)$
 - $w(s_t)$
 - $Y(z_{t+1}, z_t, f_t)$

Alternative representation state space

- Suppose that recursive RE for usual state space exist
 - $s_{i,t} = \{e_{i,t}, k_{i,t}, s_t\} = \{e_{i,t}, k_{i,t}, z_t, f_t\}$
- What determines current shape f_t ?
 - z_t, z_{t-1}, f_{t-1} or
 - $z_t, z_{t-1}, z_{t-2}, f_{t-2}$ or
 - $z_t, z_{t-1}, z_{t-2}, z_{t-3}, f_{t-3}$ or
 - $z_t, z_{t-1}, z_{t-2}, z_{t-3}, z_{t-4}, f_{t-4}$ or
 - ...

No aggregate uncertainty

$$s_t = \lim_{n \rightarrow \infty} \{z_t, z_{t-1}, \dots, z_{t-n}, f_{t-n}\}$$

- Why is this useful from a numerical point of view?
 - when z_t is stochastic
 - when z_t is not stochastic (case of no aggregate uncertainty)

No aggregate uncertainty

State variables

$$\lim_{n \rightarrow \infty} \{z_t, z_{t-1}, \dots, z_{t-n}, f_{t-n}\}$$

- **If**
 - ① $z_t = z \ \forall t$ and
 - ② effect of initial distribution dies out
- **then** s_t constant
 - distribution still matters!
 - but it is no longer a *time-varying* argument

Aggregation

Statement:

*The representative agent model is silly,
because there is no trade in this model,
while there is lots of trade in financial assets in reality*

Aggregation

Statement:

*The representative agent model is silly,
because there is no trade in this model,
while there is lots of trade in financial assets in reality*

Problem with statement:

*RA is justified by complete markets
which relies on lots of trade*

Complete markets & exact aggregation

- economy with ex ante identical agents
- J different states
- complete markets $\implies J$ contingent claims

Complete markets & exact aggregation

$$\max_{c^i, b_{+1}^{1,i}, \dots, b_{+1}^{J,i}} \frac{(c^i)^{1-\gamma}}{1-\gamma} + \beta \mathbb{E} v(b_{+1}^{1,i}, \dots, b_{+1}^{J,i})$$

$$\text{s.t. } c^i + \sum_{j=1}^J q^j b_{+1}^{j,i} = y^i + \sum_{j=1}^J I(j^*) b_{+1}^{j,i}$$

$$b_{+1}^{j,i} > \bar{b} \text{ with } \bar{b} < 0$$

Euler equations individual

$$q^j \left(c^i \right)^{-\gamma} = \beta \left(c_{+1}^{j,i} \right)^{-\gamma} \text{prob}(j) \quad \forall j$$

This can be written as follows:

$$c^i = \left(\frac{\beta \text{prob}(j)}{q^j} \right)^{-1/\gamma} c_{+1}^{j,i} \quad \forall j$$

Aggregation

Aggregation across individual i of

$$c^i = \left(\frac{\beta \text{prob}(j)}{q^j} \right)^{-1/\gamma} c_{+1}^{j,i} \quad \forall j$$

gives

$$C = \left(\frac{\beta \text{prob}(j)}{q^j} \right)^{-1/\gamma} C_{+1}^j \quad \forall j,$$

which can be rewritten as

$$q^j (C)^{-\gamma} = \beta \left(C_{+1}^j \right)^{-\gamma} \text{prob}(j) \quad \forall j$$

Use equilibrium condition

- In equilibrium:
 - aggregate consumption equals aggregate income or
 - contingent claims are in zero net supply
- Thus

$$q^j (Y)^{-\gamma} = \beta \left(Y_{+1}^j \right)^{-\gamma} \text{prob}(j) \quad \forall j$$

Back to representative agent model

- Identical FOCs come out of this RA model:

$$\max_{C, B_{+1}^1, \dots, B_{+1}^J} \frac{(C)^{1-\gamma}}{1-\gamma} + \beta \mathbb{E} v(B_{+1}^1, \dots, B_{+1}^J)$$

$$s.t. C^i + \sum_{j=1}^J q^j B_{+1}^j = Y + \sum_{j=1}^J I(j^*) B^j$$

$$B_{+1}^j > \bar{b} \text{ with } \bar{b} < 0$$

Back to model with heterogeneous agents

① (For now) no aggregate risk

Aiyagari model

② We simplify the standard setup as follows:

- Replace borrowing constraint by penalty function
 \implies going short is possible but costly
- workers have productivity instead of unemployment shocks
 $e_{i,t}$ with $E[e_{i,t}] = 1$

Individual agent

$$\max_{\{c_{i,t}, k_{i,t+1}\}_{t=0}^{\infty}} E \sum_{t=0}^{\infty} \beta^t \ln(c_{i,t}) - \frac{\zeta_1}{\zeta_0} \exp(-\zeta_0 k_{i,t}) - \zeta_2 k_{i,t}$$

s.t.

$$c_{i,t} + k_{i,t} = r_t k_{i,t-1} + w_t e_{i,t} + (1 - \delta) k_{i,t-1}$$

First-order condition

$$-\frac{1}{c_{i,t}} + \zeta_1 \exp(-\zeta_0 k_{i,t}) - \zeta_2 + E_t \left[\frac{\beta}{c_{i,t+1}} (r_{t+1} + 1 - \delta) \right] = 0$$

Penalty function

- advantage of ζ_2 term:
 - suppose \bar{k} and \bar{r} are steady states of rep agent model
 - if

$$\zeta_2 = \zeta_1 \exp(-\zeta_0 \bar{k})$$

then steady state of this model is same

Equilibrium

- Unit mass of workers, $L_t = 1$
- Competitive firm \implies agent faces competitive prices
 - $w_t = (1 - \alpha) K_t^\alpha L_t^{1-\alpha} = (1 - \alpha) K_t^\alpha$
 - $r_t = \alpha K_t^{\alpha-1} L_t^\alpha = \alpha K_t^{\alpha-1}$
- No aggregate risk so

$$K_t = K$$

- How to find the equilibrium K ?

Algorithm

- Guess a value for r
- This implies values for K^{demand} and w
- Solve the individual problem with these values for r & w
- Simulate economy & calculate the supply of capital, K^{supply}
- If $K^{\text{supply}} < K^{\text{demand}}$ then r too low so raise r , say

$$r^{\text{new}} = r + \lambda(K^{\text{demand}} - K^{\text{supply}})$$

- Iterate until convergence

Algorithm

Using

$$r^{\text{new}} = r + \lambda(K^{\text{demand}} - K^{\text{supply}})$$

to solve

$$K^{\text{demand}}(r) = K^{\text{supply}}(r)$$

not very efficient

- Value of λ may have to be very low
- More efficient to use equation solver to solve for r

Use Dynare to solve indiv. policy rule

- Specify guess for r in mother Matlab file
- Make r parameter in *.mod file
- In mother Matlab file write r using

```
save r_file r
```

Use Dynare to solve indiv. policy rule

- In *.mod file use

```
load r_file
set_param_value('r',r)
```

instead of

```
r = 0.013;
```

Simulate yourself using Dynare solution

- ① Use values stored by Dynare or
- ② Replace Dynare's `disp_dr.m` with my alternative
 - this saves the policy functions *exactly as shown on the screen*
 - `asa` matrix
 - in a Matlab data file `dynarerocks.mat`
 - under the name `decision`

Does heterogeneity matter?

- Important to distinguish between
 - (i) theoretical results
 - (ii) their quantitative importance
- Examples
 - no aggregation in presence of incomplete markets
 - Arrow's impossibility theorem

Does incompleteness/heterogeneity matter?

- Take model with
 - infinitely-lived agents
 - no complete markets
 - e.g. agents can only borrow/lend through a safe asset
- \implies no aggregation to RA model possible
- But in many models effects small
 - why does infinitely-lived agent assumption matter?

Does incompleteness/heterogeneity matter?

- Effects often small for
 - asset prices
 - aggregate series
 - except possibly some impact on means
- Effects much bigger for
 - individual series, e.g. $VAR(c_{i,t}) >> VAR(C_t)$

Avoiding complexity

- heterogeneity only within the period
- partial equilibrium
- two agents?

Avoiding complexity

- Lesson learned above:
 - incomplete asset markets don't do much in many environments
- This implies you should
 - either use more interesting environment
 - or use complete asset markets
- This does *NOT* imply you should eliminate heterogeneity from your models

Only heterogeneity within period

- Household with heterogeneous members within the period:
 - members are on their own and face frictions. E.g.
 - cannot transfer funds to each other
 - cannot transfer information
- At the end of period:
 - all members bring this period's revenues to household who makes savings decision

Partial equilibrium

Which of the following two would you prefer?

- **General equilibrium** asset pricing model that generates *unrealistic* asset prices
- **Partial equilibrium** model that uses *realistic* asset prices as exogenous processes

Partial or general equilibrium?

What about following example

- Government sets interest rates
 - !!! Government cannot set current r_t nor r_{t+1} .
 - Suppose it sets $E_t [r_{t+1}]$. E.g.,

$$E_t [r_{t+1}] = (1 - \rho_r)r^* + \rho_r r_t + \varepsilon_{r,t}$$

- Government supplies capital to implement this.

Partial of general equilibrium?

- These expenditures are financed by lump sum taxes.
- State variables are
 - $k_{i,t}$
 - $e_{i,t}$
 - z_t
 - K_t but no higher-order moments
 - $E_t[r_{t+1}]$ or ???

Small number of agents

Consider following endowment economy

- Type 1 agent receives $z_{1,t}$
- Type 2 agent receives $z_{2,t}$
- average endowment z_t

$$z_t = 0.5z_{1,t} + 0.5z_{2,t}$$

- agents smooth idiosyncratic risk by trading in safe bonds

Small number of agents

$$c_{i,t}^{-\gamma} \geq q_t \beta \mathbb{E}_t \left[c_{i,t+1}^{-\gamma} \right]$$

$$(b_{i,t+1} - \bar{b}) \left(c_{i,t}^{-\gamma} - q_t \beta \mathbb{E}_t \left[c_{i,t+1}^{-\gamma} \right] \right) = 0$$

$$b_{i,t+1} \geq \bar{b}$$

$$b_{1,t+1} + b_{2,t+1} = 0$$

Idiosyncratic risk

- You want to study effect of idiosyncratic risk.
- Suppose agent 1 repeatedly gets the bad shock
- Difference with model with lots of types?
 - here: *lots* of agents always get *same* shock at *same* time
 - so what?

Idiosyncratic risk and interest rate

Heterogeneity in other models

- Standard New Keynesian model
- Simple static model with tax externality
- Standard model with search friction
 - multiple steady states
 - multiple solutions

New Keynesian models

- Calvo devil \implies heterogeneous price dispersion
- Standard approach:
 - only focus on *aggregates*
 - focus on linearized solution

Disaggregate results in NK models

- Suppose
 - all firms start with same price (for simplicity)
 - consider monetary tightening
- Aggregate:
 - downturn because of sticky prices

Disaggregate results in NK models

- Firms that are *not* constrained by Calvo devil: $p_i \downarrow$
 - their aggregate demand \uparrow because $p_i/P \downarrow$
 - their aggregate demand \downarrow because aggregate demand \downarrow
 - total effect can easily be \uparrow
- But empirical evidence suggests decline across different sectors

Asymmetry in New Keynesian models

Suppose commodities are perfect substitutes

- Monetary tightening:
 - firms that are *not* constrained by Calvo devil: $p_i \downarrow$
 - \implies firms constrained by Calvo devil sell 0
 - \implies same outcome as fully flexible case
 - $\implies \Delta Y = 0$

Asymmetry in New Keynesian models

Suppose commodities are perfect substitutes

- Monetary stimulus:
 - Firms that are constrained by Calvo devil: $\Delta p_i = 0$
 - \implies firms *not* constrained by Calvo devil: $\Delta p_i = 0$
 - \implies same outcome as fixed P case
 - $\implies \Delta Y < 0$

The true New Keynesian models

Conclusion:

True New Keynesian models are much more interesting than the linearized version the profession is obsessed with

Is the true NK model also more realistic?

Tax externality

- Static model
- N different skill levels
 - $z_k, k = 1, \dots, N$
 - $z_1 = \bar{z}$
 - $z_{k+1} = z_k + \varepsilon$
- unemployed get benefits

Tax externality

animated picture

Search model

Consider the following model

- unit mass of workers
- workers need to search to find a job
- employers post vacancy to find worker
- productivity of matched pairs distributed i.i.d
 - so each period a new draw

Key decision

- Given value of $\varepsilon_{i,t}$ is it better to
 - ➊ produce or
 - ➋ quit and enjoy leisure?

Equation for cut-off value

- The cut-off value $\bar{\varepsilon}_i$ given by

$$0 = \bar{\varepsilon}_i + G - b - W$$

- G : continuation value of ending period in match
 - does not depend on $\varepsilon_{i,t}$ (i.i.d. assumption)
 - does depend on $\bar{\varepsilon}_i$
- W : continuation value of ending period not in match
 - also depends on $\bar{\varepsilon}_i$

Solution for cut-off value

- We are looking for a solution to

$$0 = \bar{\varepsilon}_i + G(\bar{\varepsilon}_i) - b - W(\bar{\varepsilon}_i)$$

- Unique solution if

$$\frac{\partial (\bar{\varepsilon}_i + G(\bar{\varepsilon}_i) - b - W(\bar{\varepsilon}_i))}{\partial \bar{\varepsilon}_i} > 0 \quad \forall \bar{\varepsilon}_i$$

- but typically we have

$$\frac{\partial (G(\bar{\varepsilon}_i) - W(\bar{\varepsilon}_i))}{\partial \bar{\varepsilon}_i} < 0 \quad \text{for some } \bar{\varepsilon}_i$$

Unique steady state

Multiple steady state case

Reasons for multiplicity

- *expectations* about the stability of future matches
 - as in example above
- market activity could affect revenues
 - as in static example with tax externality

Tax externality and multiplicity

Easy to get two steady states

- Low (high) taxes \Rightarrow
- Surplus high (low) \Rightarrow
- Job destruction low (high) \Rightarrow
- Unemployment rate low (high) \Rightarrow
- Taxes indeed low (high)

Multiple what?

Multiple steady states $\not\Rightarrow$ multiple solutions

Transition dynamics I

Transition dynamics II

Why is it hard to get this published in AER?

- What aspect of distribution determines whether this is quantitatively important?
- How do you get data on this?

References

- Aiyagari, S. R., 1994, Uninsured Idiosyncratic Risk and Aggregate Saving, *Quarterly Journal of Economics*.
 - classic paper using a model with capital.
- Algan, Y., O. Allais, W.J. Den Haan, and P. Rendahl, Solving and Simulating Models with Heterogeneous Agents and Aggregate Uncertainty.
 - Survey article available online.
- Den Haan, W.J., 2001, The Importance of the Number of Different Agents in a Heterogeneous Asset-Pricing Model, *Journal of Economic Dynamics and Control*.
 - Shows that models with two agents are problematic models to study risk of individual agents.

- Den Haan, W.J., 2007, Shocks and the Unavoidable Road to Higher Taxes and Higher Unemployment, *Review of Economic Dynamics*.
 - Matching model with heterogeneous agents with multiple steady states and (sometimes) multiple equilibria.
- Fuerst, T.S., 1991, Liquidity, loanable funds, and real activity, *Journal of Monetary Economics*.
 - One of the first articles to use the trick of the happy household with heterogeneity within the period, but not across periods.
- Huggett, M., 1993, The risk-free rate in heterogeneous-agent incomplete-insurance economics, *Journal of Economic Dynamics and Control*.
 - classic paper using a model with bonds.
- Krusell, P., and A.A. Smith, 1997, Income and Wealth Heterogeneity in the Macroeconomy, *Journal of Political Economy*.
 - classic paper using a model with capital and aggregate risk.

- Kubler, F., and K. Schmedders, 2002, Recursive Equilibria in Economies with Incomplete Markets, *Macroeconomic Dynamics*.
 - discusses (non)existence and uniqueness.
- Lucas, R.E. Jr., 1990, Liquidity and Interest Rates, *Journal of Economic Theory*.
 - The article that introduces the idea of using the happy household with heterogeneity within the period, but not across periods.
- Miao, J., 2006, Competitive Equilibria of Economies with a Continuum of Consumers and Aggregate Shocks, *Journal of Economic Theory*.
 - discusses existence of a recursive equilibria in an environment like the one in Krusell and Smith (1997).