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Overview
o Key question
e Particular model
e Analysis for linearized model
e Algorithm for true nonlinear model
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Rational expectations equilibrium

o Let g(x, Ct;ﬂ*,az) be a rational expectations solution, where

e Xx; is a vector with the usual state variables
e (, is the sunspot variable

o with E [{;+q] =0 and E [gtzﬂ} - (02)2

e 1* are the function’s coefficients
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Beliefs

e Agents' expectations are based on the belief that

8(xt, 8™, 07) = 8(Xt, Tii M perceiveds T perceived)

® Yperceived aNd U7 perceived are the coefficients of g ()

e agents are assumed to use the correct functional form !!!

e framework modified below to let agents approximate g (-)
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Behavior with non-REE beliefs

e Model is such that if expectations are based on

g(JCt, Ct; N perceived” Ué,perceived)/

then actual behavior is given by

g(xt/ Cis M actual” Ug,actual)

e T-mapping: This can be represented as

|: Mactual }:T(|: 77perceived })
U actual U7 perceived
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Updating beliefs

e Adaptive expectations: Beliefs are updated iteratively using

{ nperceived :|:{ Nactual }
U7 perceived 07 actual
or possibly

[ ”perceived }: (1—(4))[ Mactual :|_|_w{ ﬂperceived }

07 perceived 07 actual 07 perceived



Key question Particular model Linearized system Nonlinear framework

Complete iterative system

iteration i is indicated with a superscript

i i
77,actua| =T Uperceived
i - i
C,actual Ug,perceived
i+1 i
”perceived _ ;]actual
i+1 -

i
{,perceived U@,actual
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Possible key question

e Let #* and (TZ be coefficients of rational expectations solution

e possible key question:

lim

i— 00 (TC *

i
17,perceived ; 77*
! o

,perceived

for
Mperce
1percelved c 117* -
o i i
{,perceived

where I« 5+ is a neigborhood around <17*,(72> .
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Agents cannot learn sunspot itself

e The sunspot variable, {;, is chosen

o Reason: agents cannot learn from system which variable from
outside system can be added to system
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Can you learn importance of sun spot?

e Linear framework with adaptive learning:
impact sunspot, F, and its standard deviation, oz, not
seperately identifyable

e product Foy also cannot be learned in standard linear model

1,1
o IfF ag,perceived

P*O’Z >0

= 0, then agents will never converge to a

o IfF 07 perceived 1S small, then agents will never converge to a
large Uz
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Key question

o Key question:

i+1 *
Wperceived 5 n
lim =
=00 i+1 ot

{,perceived

for
1 1 %
[”perceived} € 1’7*’ and U@,perceived - Uﬂ
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Important to distinguish

@ Stability of g (+)
@® Stability of T (+)

These are two different things

Nonlinear framework
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Stability of g(.)

e stability of g (+) is about stability of time series

?
e g (+) is stable since it is an REE
e g (+) is "more stable" for sunspots

e sunspots are made possible by extra eigen values with modulus
less than 1
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Stability of T(.)

e stability of T (-) is about stability of policy function itself
o T(-) tends to be complex and not so intuitive

e T (-) is typically nonlinear even if ¢ (-) is linear
o T(-) is "less stable" for sunspots in RBC type models

e this is the stability puzzle
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Particular model

e McGough, Meng, & Xue (2011) or MMX:

o simple RBC model with externality
e for some parameter values the model has learnable sunspots
e key is to use a negative capital externality
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Firm’s production function

Y, = AKHY
Ay = MERTE?

where:
e K; and H; are firm level variables

e K; and H; are aggregate variables (taken as given by firm)
e negative capital externality: &« < a
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Firm’s first-order conditions

Ry = aAK‘1HY
Wi = bAKIHY™!

In equilibrium: K; = K; and H; = H;. Thus

Ry = aAK'HY = aApK*'HP
W, = bAKH!™' = bA,KHP
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Household’s first-order conditions

C/V = E|p(1—=04Ri1)CY]

AgHY = WGV
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Complete model

Vo= E [p (1—(5+aAAKt+1Ht+1> cm]
AgHY = bAAK'HP 'V
Y, = ALKCHP

Yi = Ci+Kip1 — (1-0)K;
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Analytical solution steady state

GHSSZKsszl

® Choose Ay & Apy so that this is true
e A4 & Ap do not affect the dynamics (only scale)

©® Solve for Cgs from budget constraint
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Log-linearized system: Indeterminacy &
sunspots

e with H; substituted out, linearized system can be represented
as follows:

budget constraint: %t+1 = dk%t + dcct
Euler equation: Ct = bykiyq + beEy [Criq]

e Let Aj1 and Ajp be the two Eigenvalues of |
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Linearized system: Indeterminacy &
sunspots

linearized solution can be represented as follows:

w) =) (el )
(Et+1 J Ct - FGiy
dk dC 7{} ) ( 0 )
= — ~ |+
( _b}f;_ljk 1b—bckdc ) ( Ct FCiiq

where E; [Z,,,] = 0 and E; [gfﬂ] =1
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Linearized system: Indeterminacy &
sunspots

e Let Aj; and Ajp be the two eigen values of |

e Using Jordan decomposition of |

! =P ’ P -
( Cr+1 0 A Ct i FCyiq
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Understanding indeterminacy

suppose (; = 0Vt (ignore sunspot for simplicity)
e given 751, value of ¢1 can still be arbitrarily chosen

k> follows from budget constraint

¢, follows from Euler equation

that is, we are simply solving forward
If ’)\],1| <1 and |/\],2‘ < 1, then this will converge

e easy to find parameters to satisfy this condition
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Understanding indeterminacy

o If ‘)\],1| > 1 and |)\],2‘ < 1, then it must be true that

(1) (%
p-1 k)
o) (&)
to ensure that series don't explode

e this pins down ¢; as a function of 721
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Forming expectations

e There are many ways in which you can formulate expectations

e We follow MMX:

e agents use k;_1, ¢t—1, & {; to make forecasts
e (; is solved from Euler equation using

e E [¢] instead of ¢; to determine RHS
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MMX system

budget constraint EtH = d;jc} +d.E; [ct]

Euler equation ¢; = b;j(}H + beEy [Cri1]
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Perceived law of motion and expectations

Perceived law of motion:

G = A+ Bk_1 + D¢,_1 + FC,
Expectations:
E; [Ct] = A+ BEt—l + D¢y 1+ FCt

Ei[Gy1] = A+ Bk + DE[c] + FEt [C]
— A+ Bk; + DE; [¢f]



Key question Particular model Linearized system Nonlinear framework

Perceived & actual law of motion

if
ki = dk%t—l +dcCrq
ki1 = dike +d.E[¢]
E cf] = A+ BE_1 + Dc;_1 + FZ,
E:[¢i41] = A+ Bk + DE [¢]
G = bykiy1 + beEr [Gria]
then
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Actual law of motion

(be (14 D) + byde) A N

Z— by (d% +d.B+ b.B (di + D)) y ki1

f bidc (dy + D) + b (Bd, + D?) 1
(bydc +b.D) F 7,
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T-Mapping
A (be (14 D) + bydc) A
r| B by (d2 + d.B) + bcB (dy + D)
D bidc (di + D) + b (Bd. + D?)
F (bxde + b:D) F
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Rational Expectations Equilibrium

A =0
bid
B = lez—zk
Cc
1—bd
= Jn= bkc
c

F = anything
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Check

?
T(REE) +  REE
0 0
_ bidy _ bidy
e 2 Ie
Tl 1 pa = 1—byd,
B 5
F F

e This is true

e this doesn't say much except; just a check on calculations
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T-mapping and sunspot

i
oF REE
— the exact unit-root behavior implies that initial beliefs are
simply confirmed
e Exact unit-root behavior is valid when

e you are at the fixed point
e no stochastics (use population moments)
e exact linear model

e —> in practice you should simply fix F and not iterate on it

e — learning is about the non-sunspot coefficients
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PEA and learning the sunspot

Overview of remaing material

© Setting up PEA to generate first-order approximation

® Use PEA to generate higher-order approximation
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Model

G" = E [P (1 -9 +“AAK2XJ11H5+1> C;-Ul]
AgHY = bAAKf‘Hf_lct—v

Kiyp = AAKHP 4+ (1-6)K —C
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PEA - first-order

Ct_V = exp {170 + 1 In (Kt—l/Kss) + 1. In (Ct—l /Css) + ngt}
AgHX = bAAK'HP GV
Ko = AAKCHP 4+ (1-6)K -G

where

exp {’70 + 1 In (Ki—1/Kss) +17.In(C—1/Css) + ngt}
~E [p (1 o+ aAAK;"—lﬂf) c;;l]
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How to find eta coefficients

* 1]; has to be fixed as explained above
® 7o, My, and 77, can be used using regular PEA algorithm
¢ Note that
Mo Mey (K-t 7eq (C—1) 71
NG = — 20 _ Tkqn (Bt ) _ Teqp (=t=2) 1
nG v v n( Kss ) v n( Css vggt

—> solution from linearized system can be used as initial
conditions
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How to find eta coefficients continued

[terative scheme:

. 176, 77;‘{, and 172 . coefficients at it iteration
e Simulate K;, H;, C;, and

Ziy1=1p (1 -0+ ”AAKQXJ:lleH) G

T b
= in)" _ Mo + 1 In (Ky—1/Kss)
= a;()qu '7m T <(Zt+1) P { 17,0 (Cr1/Css) + 115G,

Mkl e 1

't =(1-w)ij+ wy'
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How to find eta coefficients continued

Comments:

e You are not allowed to take logs to get a linear regression
equation!

e 0 < w < 1:dampening factor

e may be needed to get convergence
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PEA - general setup

o Let Sy = {Ki 1,Ct1}
e Approximation used:

B o (1-0+ansk™'HE) G |

~
~

hs(Si1s) + 7sin (1 (2, Sz ))
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PEA - approximating function

® h5(St;77g) « a flexible functional form
e 1 : coefficients of kg (+)

hy (Z4, St}’?g) : a flexible functional form

Mg coefficients of hg (+)

7 : FIXED coefficient that determines maximum impact
sunspot (since [sin| < 1)

e fixing 77 corresponds to fixing F and o7 above
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PEA - finding eta coefficients

e Exactly as before

e Just a more complex nonlinear regression problem
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Advantage of additive approximation

E, [p (1 — 5+ aAsK 1Hﬁ> Ctﬂ] =
0 (1 -0+ aAAKf_lHF> X hs(Sey1;mg)+

E; 0 (1 _§+aAAKf_1Htﬁ> X 1] sin <h§ <€t+1'5t+1;17§)>

= sunspot part is likely to have little effect on E; [/]

° e this mimics linear case
e but in non-linear case E; {ﬁsin (hg <§t+1,5t+1;17€>>] does
not have to be zero, i.e., sun'spot can have first-order effects
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A bit more on eta-tilde

e Approximation used is still:
e [p (10 +anaki 1) ¢ 1
~ hs(S;mg) + 17 sin (hg (ét, 5tr”7g>>

e But go back to 1%t-order approximation:

hg (Ctzst”?g> = 117G
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A bit more on eta-tilde

e Question: What is

lim 17i ?

i—00

e Exact unit-root type of linear non-stochastic setting not true
o —> unlikely that‘ lim; . 172 = '7%
o — likely that #; will wander off

e where to?
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A bit more on eta-tilde - Case |
e Suppose that

7, = —1 with probability 1 2
£ 1 +1 with probability 1 5

e My experience (not a theorem):

lim 17€ = 71/2 for large enough initial value
1—?00
lim 17€ = 0 for low enough initial value
i—00

¢ Note that

H}EX ‘sin <;7€Ct> ‘ =7/2

e Thus, impact sunspot is made as large as possible when
172 — 71/ 2.
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A bit more on eta-tilde - Case |l

e Suppose that
gy ~N(0,1)

e Again it looks like convergence to different sunspot solutions is
possible depending on initial conditions

e Much work remains to be done
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Learnability

Other examples of learnable sunspots:

e Evans and McGough (2005): New Keynesian model with
particular Taylor rule.

e Shea (2011): model with short-sighted managers.
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