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Overview

• Key question
• Particular model
• Analysis for linearized model
• Algorithm for true nonlinear model
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Rational expectations equilibrium

• Let g(xt, ζt; η∗, σ∗ζ) be a rational expectations solution, where

• xt is a vector with the usual state variables
• ζt is the sunspot variable

• with Et
[
ζt+1

]
= 0 and Et

[
ζ2

t+1

]
=
(

σ∗ζ

)2

• η∗ are the function’s coeffi cients
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Beliefs

• Agents’expectations are based on the belief that

g(xt, ζt; η∗, σ∗ζ) = g(xt, ζt; ηperceived, σζ,perceived)

• ηperceived and σζ,perceived are the coeffi cients of g (·)

• agents are assumed to use the correct functional form !!!
• framework modified below to let agents approximate g (·)
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Behavior with non-REE beliefs

• Model is such that if expectations are based on

g(xt, ζt; ηperceived, σζ,perceived),

then actual behavior is given by

g(xt, ζt; ηactual, σζ,actual)

• T-mapping: This can be represented as[
ηactual

σζ,actual

]
= T

([
ηperceived

σζ,perceived

])
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Updating beliefs

• Adaptive expectations: Beliefs are updated iteratively using[
ηperceived

σζ,perceived

]
=

[
ηactual

σζ,actual

]
or possibly[

ηperceived
σζ,perceived

]
= (1−ω)

[
ηactual

σζ,actual

]
+ω

[
ηperceived

σζ,perceived

]
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Complete iterative system

iteration i is indicated with a superscript[
ηi
actual

σi
ζ,actual

]
= T

([
ηi
perceived

σi
ζ,perceived

])

[
ηi+1
perceived

σi+1
ζ,perceived

]
=

[
ηi
actual

σi
ζ,actual

]
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Possible key question

• Let η∗ and σ∗ζ be coeffi cients of rational expectations solution
• possible key question:

lim
i−→∞

[
ηi
perceived

σi
ζ,perceived

]
?
=

[
η∗

σ∗

]
for [

η1
perceived

σ1
ζ,perceived

]
∈ Iη∗,σ∗ ,

where Iη∗,σ∗ is a neigborhood around
(

η∗, σ∗ζ

)
.
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Agents cannot learn sunspot itself

• The sunspot variable, ζt, is chosen

• Reason: agents cannot learn from system which variable from
outside system can be added to system
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Can you learn importance of sun spot?

• Linear framework with adaptive learning:
impact sunspot, F, and its standard deviation, σζ , not
seperately identifyable

• product Fσζ also cannot be learned in standard linear model

• If F1σ1
ζ,perceived = 0, then agents will never converge to a

F∗σ∗ζ > 0

• If F1σ1
ζ,perceived is small, then agents will never converge to a

large σ∗ζ
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Key question

• Key question:

lim
i−→∞

 ηi+1
perceived

σi+1
ζ,perceived

 ?
=

 η∗

σ∗


for [

η1
perceived

]
∈ Iη∗ , and σ1

ζ,perceived = σ∗η
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Important to distinguish

1 Stability of g (·)
2 Stability of T (·)

These are two different things
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Stability of g(.)

• stability of g (·) is about stability of time series

E
[

lim
t→∞

Kt

]
?
6= ∞

• g (·) is stable since it is an REE
• g (·) is "more stable" for sunspots

• sunspots are made possible by extra eigen values with modulus
less than 1
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Stability of T(.)

• stability of T (·) is about stability of policy function itself
• T (·) tends to be complex and not so intuitive

• T (·) is typically nonlinear even if g (·) is linear
• T (·) is "less stable" for sunspots in RBC type models

• this is the stability puzzle
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Particular model

• McGough, Meng, & Xue (2011) or MMX:
• simple RBC model with externality
• for some parameter values the model has learnable sunspots
• key is to use a negative capital externality
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Firm’s production function

Yt = AtKa
t Hb

t

At = ΛAKα−a
t Hβ−b

t

where:

• Kt and Ht are firm level variables
• Kt and Ht are aggregate variables (taken as given by firm)
• negative capital externality: α < a
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Firm’s first-order conditions

Rt = aAtKa−1
t Hb

t

Wt = bAtKa
t Hb−1

t

In equilibrium: Kt = Kt and Ht = Ht. Thus

Rt = aAtKa−1
t Hb

t = aΛAKα−1
t Hβ

t

Wt = bAtKa
t Hb−1

t = bΛAKα
t Hβ−1

t
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Household’s first-order conditions

C−ν
t = Et

[
ρ (1− δ+ Rt+1)C−ν

t+1
]

ΛHHχ
t = WtC−ν

t
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Complete model

C−ν
t = Et

[
ρ
(

1− δ+ aΛAKα−1
t+1 Ht+1

)
C−ν

t+1

]
ΛHHχ

t = bΛAKα
t Hβ−1

t C−ν
t

Yt = ΛAKα
t Hβ

t

Yt = Ct + Kt+1 − (1− δ)Kt
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Analytical solution steady state

1 Hss = Kss = 1

2 Choose ΛA & ΛH so that this is true

• ΛA & ΛH do not affect the dynamics (only scale)

3 Solve for Css from budget constraint
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Log-linearized system: Indeterminacy &
sunspots

• with Ht substituted out, linearized system can be represented
as follows:

budget constraint: k̃t+1 = dkk̃t + dcc̃t

Euler equation: c̃t = bkk̃t+1 + bcEt [̃ct+1]

• Let λJ,1 and λJ,2 be the two Eigenvalues of J
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Linearized system: Indeterminacy &
sunspots

linearized solution can be represented as follows:

(
k̃t+1
c̃t+1

)
= J

(
k̃t
c̃t

)
+

(
0

Fζt+1

)

=

(
dk dc

− bkdk
bc

1−bkdc
bc

)(
k̃t
c̃t

)
+

(
0

Fζt+1

)

where Et [ζt+1] = 0 and Et

[
ζ2

t+1

]
= 1
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Linearized system: Indeterminacy &
sunspots

• Let λJ,1 and λJ,2 be the two eigen values of J

• Using Jordan decomposition of J(
k̃t+1
c̃t+1

)
= P

[
λJ,1 0
0 λJ,2

]
P−1

(
k̃t
c̃t

)
+

(
0

Fζt+1

)
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Understanding indeterminacy

• suppose ζt = 0∀t (ignore sunspot for simplicity)
• given k̃1, value of c̃1 can still be arbitrarily chosen
• k̃2 follows from budget constraint
• c̃2 follows from Euler equation
• that is, we are simply solving forward
• If

∣∣λJ,1
∣∣ < 1 and

∣∣λJ,2
∣∣ < 1, then this will converge

• easy to find parameters to satisfy this condition
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Understanding indeterminacy

• If
∣∣λJ,1

∣∣ > 1 and
∣∣λJ,2

∣∣ < 1, then it must be true that

P−1
[

1
0

]′ ( k̃1
c̃1

)
= 0

to ensure that series don’t explode

• this pins down c̃1 as a function of k̃1
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Forming expectations

• There are many ways in which you can formulate expectations

• We follow MMX:
• agents use k̃t−1, c̃t−1, & ζt to make forecasts
• c̃t is solved from Euler equation using

• Êt [̃ct] instead of c̃t to determine RHS
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MMX system

budget constraint k̃t+1 = dkk̃t + dcÊt [̃ct]

Euler equation c̃t = bkk̃t+1 + bcÊt [̃ct+1]
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Perceived law of motion and expectations

Perceived law of motion:

c̃t = A+ Bk̃t−1 +Dc̃t−1 + Fζt

Expectations:

Êt [̃ct] = A+ Bk̃t−1 +Dc̃t−1 + Fζt

Êt [̃ct+1] = A+ Bk̃t +DEt [̃ct] + FÊt [ζt+1]

= A+ Bk̃t +DEt [̃ct]
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Perceived & actual law of motion

if

k̃t = dkk̃t−1 + dcc̃t−1

k̃t+1 = dkk̃t + dcÊ [̃ct]

Êt [̃ct] = A+ Bk̃t−1 +Dc̃t−1 + Fζt

Êt [̃ct+1] = A+ Bk̃t +DÊt [̃ct]

c̃t = bkk̃t+1 + bcÊt [̃ct+1]

then
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Actual law of motion

c̃t =


(bc (1+D) + bkdc)A

bk
(
d2

k + dcB+ bcB (dk +D)
)

bkdc (dk +D) + bc
(
Bdc +D2)

(bkdc + bcD) F


′

×


1

k̃t−1
c̃t_1
ζt


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T-Mapping

T


A
B
D
F

 =


(bc (1+D) + bkdc)A

bk
(
d2

k + dcB
)
+ bcB (dk +D)

bkdc (dk +D) + bc
(
Bdc +D2)

(bkdc + bcD) F


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Rational Expectations Equilibrium

A = 0

B = J21 = −
bkdk
bc

D = J22 =
1− bkdc

bc
F = anything
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Check

T (REE) ?
= REE

T


0
− bkdk

bc
1−bkdc

bc
F

 ?
=


0
− bkdk

bc
1−bkdc

bc
F


• This is true

• this doesn’t say much except; just a check on calculations
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T-mapping and sunspot

•
∂T
∂F

∣∣∣∣
REE

= 1

=⇒ the exact unit-root behavior implies that initial beliefs are
simply confirmed

• Exact unit-root behavior is valid when
• you are at the fixed point
• no stochastics (use population moments)
• exact linear model

• =⇒ in practice you should simply fix F and not iterate on it
• =⇒ learning is about the non-sunspot coeffi cients
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PEA and learning the sunspot

Overview of remaing material

1 Setting up PEA to generate first-order approximation

2 Use PEA to generate higher-order approximation
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Model

C−ν
t = Et

[
ρ
(

1− δ+ aΛAKα−1
t+1 Hβ

t+1

)
C−ν

t+1

]
ΛHHχ

t = bΛAKα
t Hβ−1

t C−ν
t

Kt+1 = ΛAKα
t Hβ

t + (1− δ)Kt − Ct
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PEA - first-order

C−ν
t = exp

{
η0 + ηk ln (Kt−1/Kss) + ηc ln (Ct−1/Css) + ηζζt

}
ΛHHχ

t = bΛAKα
t Hβ−1

t C−ν
t

Kt+1 = ΛAKα
t Hβ

t + (1− δ)Kt − Ct

where

exp
{

η0 + ηk ln (Kt−1/Kss) + ηc ln (Ct−1/Css) + ηζζt

}
≈ Et

[
ρ
(

1− δ+ aΛAKα−1
t Hβ

t

)
C−ν

t+1

]
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How to find eta coeffi cients

• ηζ has to be fixed as explained above

• η0, ηk, and ηc can be used using regular PEA algorithm

• Note that

ln Ct = −
η0
ν
− ηk

ν
ln
(

Kt−1

Kss

)
− ηc

ν
ln
(

Ct−1

Css

)
− η

ν ζ
ζt

=⇒ solution from linearized system can be used as initial
conditions
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How to find eta coeffi cients continued

Iterative scheme:

• ηi
0, ηi

k, and ηi
c : coeffi cients at ith iteration

• Simulate Kt, Ht, Ct, and
Zt+1 = ρ

(
1− δ+ aΛAKα−1

t+1 Hβ
t+1

)
C−ν

t+1
•

η̂ = arg min
η0,ηk,ηc

T

∑
T1

(
(zt+1)− exp

{
η0 + ηk ln (Kt−1/Kss)

+ηc ln (Ct−1/Css) + ηζζt

})2

•
ηi+1 = (1−ω) η̂ +ωηi
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How to find eta coeffi cients continued

Comments:

• You are not allowed to take logs to get a linear regression
equation!

• 0 ≤ ω < 1 : dampening factor
• may be needed to get convergence
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PEA - general setup

• Let St = {Kt−1, Ct−1}
• Approximation used:

Et

[
ρ
(

1− δ+ aΛAKα−1
t Hβ

t

)
C−ν

t+1

]
≈

hS(St; ηS) + η̃ sin
(

hζ

(
ζt, St; ηζ

))
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PEA - approximating function

• hS(St; ηS) : a flexible functional form
• ηS : coeffi cients of hS (·)
• hζ(ζt, St; ηζ) : a flexible functional form

• ηζ : coeffi cients of hζ (·)
• η̃ : FIXED coeffi cient that determines maximum impact
sunspot (since |sin| ≤ 1)
• fixing η̃ corresponds to fixing F and σζ above
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PEA - finding eta coeffi cients

• Exactly as before
• Just a more complex nonlinear regression problem
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Advantage of additive approximation

Et

[
ρ
(

1− δ+ aΛAKα−1
t Hβ

t

)
C−ν

t+1

]
=

Et

 ρ
(

1− δ+ aΛAKα−1
t Hβ

t

)
× hS(St+1; ηS)+

ρ
(

1− δ+ aΛAKα−1
t Hβ

t

)
× η̃ sin

(
hζ

(
ζt+1, St+1; ηζ

)) 
=⇒ sunspot part is likely to have little effect on Et [·]

• • this mimics linear case
• but in non-linear case Et

[
η̃ sin

(
hζ

(
ζt+1, St+1; ηζ

))]
does

not have to be zero, i.e., sun‘spot can have first-order effects
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A bit more on eta-tilde

• Approximation used is still:

Et

[
ρ
(

1− δ+ aΛAKα−1
t Hβ

t

)
C−ν

t+1

]
≈ hS(St; ηS) + η̃ sin

(
hζ

(
ζt, St; ηζ

))
• But go back to 1st-order approximation:

hζ

(
ζt, St; ηζ

)
= ηζζt
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A bit more on eta-tilde

• Question: What is
lim

i−→∞
ηi

ζ ?

• Exact unit-root type of linear non-stochastic setting not true
• =⇒ unlikely that limi−→∞ ηi

ζ = η1
ζ

• =⇒ likely that ηi
ζ will wander off

• where to?
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A bit more on eta-tilde - Case I
• Suppose that

ζt =

{
−1 with probability 1

2
+1 with probability 1

2

• My experience (not a theorem):

lim
i−→∞

ηi
ζ = π/2 for large enough initial value

lim
i−→∞

ηi
ζ = 0 for low enough initial value

• Note that
max

ηζ

∣∣∣sin
(

ηζζt

)∣∣∣ = π/2

• Thus, impact sunspot is made as large as possible when
ηi

ζ −→ π/2.
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A bit more on eta-tilde - Case II

• Suppose that
ζt ∼ N(0, 1)

• Again it looks like convergence to different sunspot solutions is
possible depending on initial conditions

• Much work remains to be done
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Learnability

Other examples of learnable sunspots:

• Evans and McGough (2005): New Keynesian model with
particular Taylor rule.

• Shea (2011): model with short-sighted managers.
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